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RNA sequencing (RNAseq) has been widely used to generate bulk gene expression
measurements collected from pools of cells. Only relatively recently have single-cell
RNAseq (scRNAseq) methods provided opportunities for gene expression analyses
at the single-cell level, allowing researchers to study heterogeneous mixtures of
cells at unprecedented resolution. Tumors tend to be composed of heterogeneous
cellular mixtures and are frequently the subjects of such analyses. Extensive method
developments have led to several protocols for scRNAseq but, owing to the small
amounts of RNA in single cells, technical constraints have required compromises. For
example, the majority of scRNAseq methods are limited to sequencing only the 3′ or
5′ termini of transcripts. Other protocols that facilitate full-length transcript profiling tend
to capture only polyadenylated mRNAs and are generally limited to processing only
96 cells at a time. Here, we address these limitations and present a novel protocol
that allows for the high-throughput sequencing of full-length, total RNA at single-cell
resolution. We demonstrate that our method produced strand-specific sequencing data
for both polyadenylated and non-polyadenylated transcripts, enabled the profiling of
transcript regions beyond only transcript termini, and yielded data rich enough to allow
identification of cell types from heterogeneous biological samples.

Keywords: full-length, total RNA, single-cell, RNAseq, cellenONE

INTRODUCTION

Bulk RNA sequencing (RNAseq) is commonly used to study the average gene expression of cells
within a population. The relatively recent introduction of single-cell RNAseq (scRNAseq) has
provided insights into cell-level heterogeneity in biological samples in developing tissues (e.g.,
Scialdone et al., 2016) and tumors (e.g., Tirosh et al., 2016) at unprecedented resolution. It has
become clear that to accurately assess the spatial and temporal patterns of gene expression in
healthy and diseased cells, the profiling of samples at a single-cell resolution is vital.

The first step of scRNAseq is the isolation of individual cells, where capture efficiency
remains a significant challenge. Several existing approaches include flow cytometry, limiting
dilution, laser capture microdissection, and microfluidic techniques (Kolodziejczyk et al., 2015;
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Ziegenhain et al., 2017). Others involve the trapping of single
cells within droplets followed by on–bead or in-droplet molecular
barcoding of cells (Kolodziejczyk et al., 2015; Ziegenhain
et al., 2017). Approaches differ in their cost, efficiency, starting
material type and number of cells required while low capture
efficiencies and cell size restrictions of microfluidic approaches
remain a challenge (Kolodziejczyk et al., 2015; Ziegenhain
et al., 2017; Cao et al., 2017, 2019). To address some of these
shortcomings, Cao et al. (2017) developed a combinatorial cell
indexing approach uniquely free of both single cell isolation or
compartmentalization techniques (Cao et al., 2017, 2019).

Regardless of the method used for single cell isolation,
scRNAseq protocols are further limited by the amount of RNA
in single cells. Since the first scRNAseq method was published
by Tang et al. (2009), several approaches have been developed to
improve RNA capture efficiency. Even so, scRNAseq protocols
are generally limited to capturing only the 3′or 5′ ends of
transcripts (Kolodziejczyk et al., 2015) and therefore remain best
suited for transcript counting, but not for examining transcript
structures such as splice variants and fusion transcripts, as are
often found in cancers. Furthermore, protocols tend to capture
only polyadenylated (polyA+) transcripts and therefore exclude
non-polyadenylated (polyA−) transcripts, including some non-
coding RNAs. Finally, commonly used scRNAseq protocols
do not provide strand-orientation information. Discriminating
sense and antisense overlapping transcripts has been important
in studies of antisense expression (e.g., Balbin et al., 2015).

The SMART-seq protocol, which employs the Fluidigm
C1 System (Durruthy-Durruthy and Ray, 2018), yields data
appropriate for full-length transcript analyses but only for
polyA+ mRNAs. Recently, Hayashi et al. (2018) reported a
scRNAseq protocol that also employed the Fluidigm C1 System,
but as it only allowed for processing of up to 96 cells per
run, sensitivity to minor cell populations is low (Hayashi et al.,
2018), thus constraining the technique to samples with limited
heterogeneity. Moreover, both protocols are strand-agnostic,
which is known to lead to inaccurate transcript quantification
and does not readily allow for studies of anti-sense RNA biology
(Mills et al., 2013; Sigurgeirsson et al., 2014; Zhao et al., 2015).

To better profile gene expression at single-cell resolution, a
high-throughput, strand-specific protocol with minimal 3′ or 5′
bias that extends sequence results beyond polyA+ RNA is needed.
Here, we report a method that addresses the aforementioned
limitations, and demonstrate its capacity to process over 1,000
cells per run. This protocol enables full-length, strand-specific
sequencing of total RNA at single-cell resolution, providing
researchers with an avenue for a more complete analysis of gene
expression in heterogeneous biological samples.

MATERIALS AND METHODS

Cell Line and RNA Samples
Universal Human Reference (UHR) total RNA was obtained
from Stratagene (Cat. No.740000) and quantified using the
Agilent RNA 6000 Nano Kit (Cat. No.5067-1511). For the input
titration experiments shown in Figure 1, UHR was spiked with

External RNA Controls Consortium (ERCC) spike-in mix 1 from
Ambion (Cat. No.4456740) where 0.02 µL of the spike-in mix
(∼1.035 moles) was used per 1 µg UHR total RNA. For the
single-cell experiments, an equivalent of 1 µL of one million-
fold dilution of the ERCC mix 1 stock (∼0.1 attomoles) was used
per well. The immortalized Normal Human Astrocyte (NHA) cell
line (Sonoda et al., 2001) was obtained from Applied Biological
Materials (ABM) Inc (T3022; Richmond, BC, Canada) while
the Human Peripheral Blood Mononuclear Cells (PBMCs) were
purchased from STEMCELL Technologies (Cat. No.70025.1).

Sample Preparation for RNAseq
Standard and Modified RNaseH rRNA Depletion
Standard RNaseH rRNA depletion was applied to 1–10 ng of total
RNA as described previously (Haile et al., 2017a, 2019) except
that half of the rRNA probe amount was used. Upstream DNase
I treatment was omitted as the probe removal DNase treatment
step that is integrated into the rRNA depletion kit was found to
be sufficient for removing residual gDNA contamination.

For modified RNase H-based rRNA depletion, unpurified
RNA following rRNA depletion was incubated at 95◦C for 10 min
without EDTA to heat-inactivate the DNase and to fragment the
RNA in a Mg2+-dependent manner (Mg2+ is part of DNase
reaction buffer as a cofactor for the enzyme). The amount of
rRNA probe used was half of the standard amount for 1–
10 ng total RNA and fivefold less than the standard amount
for < 1 ng total RNA. Following the rRNA depletion, DNase
I treatment, and RNA fragmentation steps, first-strand cDNA
synthesis was performed directly without purification to remove
contaminants from upstream reactions. The first-strand buffer
amount was adjusted to account for the buffers in the upstream
reactions and was spiked with DTT to a final concentration
of 2.5 mM as is standard for first strand cDNA synthesis.
cDNA synthesis and library construction steps were performed
as described previously (Haile et al., 2019). PCR was performed
using 15 and 18 cycles for 1–10 ng and 0.1–0.25 ng total RNA
input, respectively.

SMART-Seq_v4
SMART-Seq v4 Ultra Low input RNA for sequencing (Cat. No.
634888; Takara Bio Inc) was used according to the manufacturer’s
recommendations. PCR was done using 14 cycles for 0–250 pg
total RNA input, 10 cycles for 1 ng, and 7 cycles for 5–10 ng.
Following purification of the PCR reactions, 150 pg of amplified
cDNA was used for library construction using the Nextera XT
DNA Library Preparation Kit (Cat. No. FC-131-1024; Illumina)
as per the manufacturer’s recommendations.

PolyA-Based RNAseq and Exome RNAseq
PolyA-based libraries were constructed as described previously
(17). For exome RNAseq, total RNA was directly used for
cDNA synthesis and library construction steps as described
previously (Haile et al., 2017b). PCR was done using 15 cycles
to amplify 0–250 pg RNA and 13 cycles to amplify 1–10 ng.
Following purification of the PCR reactions, 500 ng of amplified
libraries were used for exome capture as described previously
(Cieslik et al., 2015).
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FIGURE 1 | DLP-scRNAseq workflow. Following single-cell isolation using the CellenONE automated cell spotter and lysis, RNA was fragmented using magnesium
ion-dependent heating. Adapters containing 5′- and 3′-end sequencing primer targets were introduced sequentially as part of the cDNA synthesis steps, thereby
achieving strand-specificity. Cell-specific barcodes were introduced in the first round of PCR (Index PCR). All steps up to Index PCR were performed in
nanoliter-scale wells (Nanoliter platform). PCR products were then pooled and subsequent steps including rRNA depletion were performed in 96-well plate format
(Microliter platform). Figure was created using biorender.com.

SMARTer Bulk Total RNAseq
SMARTer R© Stranded Total RNAseq Kit v2–Pico Input
Mammalian (Cat. No. 634413; Takara Bio Inc.) was used as
per the manufacturer’s instructions when the starting material
was total RNA. PCR was done using 16 cycles of PCR to amplify
0–250 pg of RNA, 14 cycles to amplify 1 ng, and 12 cycles to
amplify 5–10 ng.

For bulk RNAseq, 10–500 cells, based on hemocytometer
cell counting, were first washed and resuspended in 2 µL of
1× PBS and were mixed with 6 µL of 1× lysis buffer (Cat.
No. 635013; Takara Bio Inc) containing 0.5% RNase inhibitor
(Cat. No. 635013; Takara Bio Inc). The rest of the steps were
performed according to the manufacturer’s instructions in the
supplementary Pico v2 protocol for intact-cell inputs (Takara Bio
Inc). Prior to rRNA depletion, 5 cycles of PCR were used to
amplify cDNA fragments. Following rRNA depletion, 18 cycles
of PCR were used for 10 cells and 14 cycles for 500 cells.

Direct Library Preparation (DLP)-Based Single Cell
Total RNAseq (DLP-scRNAseq)
Cell spotting was performed using the cellenONE (Cellenion)
platform as previously described for the Direct Library
Preparation Plus (DLP+) single-cell genome sequencing
protocol (Laks et al., 2019). For single cells, the upstream RNAseq

preparation steps including cell lysis, RNA fragmentation, cDNA
synthesis and adapter addition were performed as described
above for the SMARTer bulk protocol, but generally with
volumes in nanoliters as opposed to microliters. The step-by-step
details of the protocol are attached in Supplementary Text
File (pages 5–29). For optimal spotting of reaction mixes other
than the lysis/fragmentation mix, 0.05% Tween-20 was spiked
into the reactions. Reaction mixes and primers were filtered
using spin-x columns (Cat. No. CLS8162; Merck) whenever
spotting proved to be problematic. All steps up to and including
the introduction of cell-specific indices during the first round
of PCR (pre-rRNA depletion), were performed in nanoliter
volumes using Takara Smart Chips (Takara Bio Inc). These arrays
consist of a 72 × 72 (5184) well layout each of which able to
hold a volume of approximately 100 nl. After 5 cycles of the first
round of PCR, the chip was inverted and spun down to pool
all reactions into one tube. Subsequent steps were performed
according to the SMARTer Stranded Total RNAseq Kit v2–Pico
Input Mammalian manufacturer’s instructions.

The SMARTer R© kit comes with indexing primers that allow
the barcoding of a maximum of 96 samples. To increase the
number of cells that could be processed, we designed our own
barcodes based on the following requirements: (1) the random
primer and strand-switching oligos were to be anchored to
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Illumina sequencing primer sequences, and (2) primers used for
the first round of PCR must have complementary sequences to
the Illumina sequencing primer anchors internally, followed by
indices in the middle, and P5/P7 priming sites at their distal ends.
We thus designed 72 × 72 dual indexing primers enabling 5184
unique cell-specific barcodes (Supplementary Table 1).

Sequencing and Bioinformatic Analysis
We generated the following libraries using the DLP-scRNAseq:
402 single NHA cells with the same indexing primers, 92 single
NHA cells with unique cell-specific primers, and triplicates of no-
cell negative controls and positive control 5 pg UHR total RNA.
These libraries were pooled into one tube, which we referred to
as the nano-pool. We also prepared the following libraries in the
microliter platform: 10 NHA cells in bulk, 500 NHA cells in bulk
as well as a single replicate of 4 ng total UHR.

The DLP-scRNAseq NHA pool (0.5×), the bulk SMARTer
NHA 500 cells (0.2×), the bulk NHA 10 cells (0.2×), and the
bulk UHR (0.1×) were pooled and sequenced on one lane of an
Illumina HiSeq 2500 flowcell (paired end 75 bp).

JAGuaR Alignment
Sequence analysis was performed as described previously (Haile
et al., 2017a,b, 2019), and briefly involved alignment of reads
to the hg19 reference genome in combination with Ensembl
69 gene models using the JAGuaR junction-aware alignment
pipeline (Butterfield et al., 2014) using the “mem” alignment
option in place of “aln.” Gene expression values were calculated
exactly as described in Haile et al. (2017a,b, 2019). Briefly, the
read chastity status was first marked with custom scripts and
duplicates were marked with Sambamba 0.5.5 (Tarasov et al.,
2015). Reads were then split into positive- and negative-strand
BAM files, analyzed for depth of reads after converting to wig
files, and finally reads per kilobases per million (RPKM) values
were generated from these counts.

When comparing results for non-single-cell libraries, we
control for depth-related variables by down-sampling the original
BAM files to obtain approximately equal numbers of reads for
each library. Down-sampled read alignments were subsequently
enumerated to generate an expression matrix of sample-by-
gene RPKM estimates that were then used in correlation
analyses to evaluate the similarities in expression profiles across
samples and protocols.

Sequencing data is deposited at Sequence Read
Archive (SRP286135).

STAR Alignments
RNA read alignments were performed with STAR 2.7.3a (Dobin
et al., 2013) in 2-pass mode after detecting adapter sequence
using bbmerge (Bushnell et al., 2017) and trimming with cutadapt
version 1.16 (Chen et al., 2018). TPM expression estimates were
generated from the STAR alignments using Stringtie (Pertea et al.,
2015).

Comparison With qPCR Data
UHR qPCR data from the MicroArray Quality Control project
(GSE5350) (MAQC Consortium et al., 2006) were downloaded
for comparison to our expression results. Using samples
GSM129638-GSM129641, expression estimates were matched

by gene name between our RPKM values and the published
qPCR estimates. Each sample was correlated with all four
replicate qPCR data sets, from which a median Pearson
correlation was calculated.

Exon-Level Analysis
For exon analysis, BAM files were generated from aligning
reads (read 1&2 lengths of 69 bp for single-cell libraries and
read 1&2 length of 75 bp for bulk libraries) using JAGuaR as
described above.

Exon quantification was performed for full exons as well
as partial exons that fell within the 3′ and 5′ untranslated
regions (UTRs) of annotated transcripts. Partial exon means
only part of an exon falls within either the 3′ or 5′ UTR of a
transcript. The analysis was performed using the following R
packages: GenomicFeatures (v1.26.4), GenomicRanges (v1.26.4),
Rsamtools (v1.26.2), IRanges (2.8.2), and GenomicAlignments
(v1.10.1). All exon start and end locations and their associated
transcript and gene IDs were retrieved from the Ensembl
databases using the functions makeTxDbFromUCSC and exons
from GenomicFeatures. The functions fiveUTRsByTranscript and
threeUTRsByTranscript from GenomicFeatures were used to
extract the start and end coordinates of full or partial exons that
constituted the 3′UTR or 5′UTR regions of each transcript.

Non-duplicate paired-end reads were imported from the
BAM files using readGAlignmentPairs from GenomicAlignments.
A second filtering step was applied to keep only reads that aligned
to genomic locations that did not fall exclusively within 100 bp
of the start and end of each chromosome. The second filtering
step was applied to avoid the confounding effects of telomeric
repeats on read mapping. The number of reads that overlapped
with each exon, or each exonic region within the 3′UTR or 5′UTR
of transcripts, was quantified using the countOverlaps function
from the IRanges package. A read could map to multiple exons
or exonic regions if its genomic coordinates overlapped with
the coordinates of more than one region. For expression-based
comparisons of expression levels, exon counts were normalized
for sequencing depth using calcNormFactors and converted to
RPKM using the rpkm function from edgeR v3.24.3.

PBMC Clustering Analysis
For the PBMC clustering analysis, the fastq file for the 10X PBMC
data was obtained from the 10X website1, and the CellRanger
pipeline (v3.0.2) was used to obtain a count matrix for 1,223 cells,
aligning to hg19 (v3.0.02). Data preprocessing was performed
in R, based on the count matrices output by HTSeq (Anders
et al., 2015) using the JAGuaR-based read alignments (DLP-
scRNAseq data) or by the CellRanger pipeline (10X data). For
the DLP-scRNAseq dataset, counts from all wells identified as
containing a cell (n = 517) were combined into a single count
matrix. Outliers were identified based on total read counts,
total number of genes detected, and the percent of counts
coming from ERCC spike-ins for DLP-scRNAseq, as previously
described (Lun A.T et al., 2016). For each of these metrics, cells
with lower (read counts and genes detected) or higher (percent

1https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_1k_v3
2http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-hg19-3.0.0.tar.gz
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of counts from ERCCs) than three median absolute deviations
from the median were considered outliers (n = 56 for the
DLP-scRNAseq dataset; n = 94 for the 10X dataset). After
cell filtering, genes with at least one read count in at least
two cells were retained, resulting in a final datasets with 461
cells and 16,642 genes (DLP-scRNAseq) and 1,129 cells and
15,982 genes (10X). Normalization was then applied to all cells
using the scran package (V1.10.1) (Lun A.T et al., 2016). The
quickCluster function was used to cluster cells for normalization
with min.mean = 0.1 for the DLP-scRNAseq dataset, as suggested
for read count data, and 0.01 for the 10X dataset, as suggested
for UMI data. Resulting clusters were used as input to the
computeSpikeFactors (DLP-scRNAseq, with ERCC reads labeled
as spike-ins) or computeSumFactors (10X) function. These factors
were then used in the normalize function of the scater R package
(v1.10.0) to obtain normalized expression values that were used
for downstream analyses.

Cell clustering was performed largely as described previously
(Lun A.T.L. et al., 2016). Highly variable genes (HVGs) were
first identified using the trendVar function of the scran R
package with parametric set to TRUE, a span of 0.3 for the
LOESS fitting, and min.mean set to 0.1 (DLP-scRNAseq) or
0.01 (10X). The decomposeVar function was then used to
decompose gene-specific variances into biological and technical
components, and genes with a biological component >0.1 and
a Benjamini-Hochberg-corrected p < 0.05 were considered
HVGs. Principal component analysis (PCA) was performed
using the parallelPCA function on the normalized expression
matrix containing only HVGs, and 1,000 permutation iterations
were performed to identify significant principal components
(PCs). Briefly, this function permutes the expression vector for
each gene and repeats the PCA to calculate the fraction of
variance explained by each PC (up to 100) under a random
null model; all PCs from the first PC where the permuted
fractions exceed the observed fraction of variance in more than
10% of iterations (the default threshold) are then discarded,
and earlier PCs are retained as “significant PCs” (with a
minimum of five). A shared nearest neighbor graph (k = 15)
was then obtained using the buildSNNGraph function based
on the PCA reduction (with six and seven significant PCs for
the DLP-scRNAseq and 10X datasets, respectively), and the
cluster_walktrap function from the igraph R package (v1.2.2) was
used to identify clusters.

Marker genes with high expression in individual clusters were
identified using the overlapExprs function from scran, which
performs Wilcoxon rank-sum tests between each pair of clusters
and then calculates a combined p-value using Sime’s method.
The tSNE plots used for visualization were obtained using
the Rtsne.multicore R package (v0.0.99) with perplexity = 50,
theta = 0.0, and a maximum of 2,000 iterations, based on the
significant PCs described above. The correlation analysis to
reference cell types was performed using the SingleR (v0.2.0)
(Aran et al., 2019) tool in R with the LM22 matrix (Newman
et al., 2015) as a reference. For this analysis, normalized
expression values from the DLP-scRNAseq dataset were further
normalized for gene length using the approach described in
Reid et al. (2018).

PBMC Alternative Splicing Analysis
Splicing patterns were first quantified in individual cells using
BRIE (Huang and Sanguinetti, 2017) and the lenient annotations
provided by the tool’s authors (Gencode v193). Differential
splicing was then performed between each pair of cells using
default parameters. Events with a Bayes factor ≥10 and a
difference in the proportion of spliced isoform (1PSI) > 0.2
were considered to be differentially spliced (Bray et al., 2016). For
each pair of cell types, the total possible number of events was
calculated as follows: # of cells in cell type 1 × # of cells in cell
type 2× # of unique transcripts in the annotation file.

To identify cell type-specific alternative splicing events, we
first pooled reads from all cells assigned to the same cell type.
BRIE was then used to quantify events in each cell type and
perform differential splicing analyses between each pair of cell
types using default parameters. Events with a Bayes factor ≥10
were considered to be differentially spliced between cell types
(Huang and Sanguinetti, 2017) and events that were specific to
one cell type (i.e., had a higher or lower PSI than all other cell
types) were identified (Supplementary Table 3). Sashimi plots
were created using the script provided with the briekit tool4 using
default parameters.

ERCC Spike-in Analysis
ERCC alignment and sensitivity analysis were performed using
seqtk (default parameters)5 to down-sample the fastq files when
matching depths were required. Fastp (Chen et al., 2018) was
used to detect and trim adapters, after which alignment and gene
expression quantification were performed with Kallisto (Falcao
et al., 2018). Sensitivity analysis was performed using logistic
regression as outlined in Svensson et al. (2017). A Nextflow
script orchestrating these operations across folders of fastqs is
available at https://svn.bcgsc.ca/bitbucket/projects/RCORBETT/
repos/single_cell_rna/browse where the R scripts used to make
related figures can also be found.

Enhancer and Circular RNA Analyses
Enhancer RNA analysis was performed as described in Hayashi
et al. (2018) using the JAGuaR alignments as the starting point.
Circular RNA detection was performed with CIRIquant (Zhang
et al., 2020) for which a Nextflow script and associated R
notebook are available at https://svn.bcgsc.ca/bitbucket/projects/
RCORBETT/repos/single_cell_rna/browse.

RESULTS AND DISCUSSION

Here, we address limitations of current scRNAseq approaches,
pursuing two aims: (1) identification and optimization of a
strand-specific scRNAseq protocol that offers the potential of
full-length transcript analysis of both polyA+ and polyA− RNAs
on Illumina sequencing instruments, and (2) the potential for
automation of such a protocol on a platform that allows for

3https://sourceforge.net/projects/brie-rna/files/annotation/
4https://github.com/huangyh09/briekit
5https://github.com/lh3/seqtk
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high-throughput processing of various cell types with acceptable
recovery of single cells and sequencing data quality.

Requirements for a Strand-Specific Total
RNA scRNAseq Protocol
Random priming of cDNA synthesis was chosen to enable
total RNA sequencing, the result of which required both
removal of ribosomal RNAs (rRNAs) without loss of cell-specific
indexing, and the generation of small sequencing template
fragments appropriate for analysis on short-read sequencers. To
achieve such fragments, the protocol design incorporated RNA
fragmentation. From there, steps leading up to single cell-specific
indexing were envisioned as occurring in one reaction vessel,
without the need for purifications between protocol steps. The
cDNA synthesis step was viewed as the earliest opportunity
for cell-specific indexing, and so we preferred the possibility of
performing rRNA depletion after cDNA synthesis.

We first conducted a literature search for protocols that met
these requirements (Supplementary Figure 1A), and identified
or developed three protocols that met these criteria. The first
protocol, hereafter referred to as SMARTer, is based on the
SMARTer R© Stranded Total RNAseq Kit (Takara Bio Inc). In
this protocol, rRNA depletion relies on hybridization following
the PCR amplification of cDNA fragments. Library construction
is not ligation-based, as the introduction of priming sites for
Illumina sequencing is integrated into the cDNA synthesis
and amplification steps. The second protocol is a variation of
an exome RNAseq method that was reported previously for
bulk RNAseq (Cieslik et al., 2015). rRNA depletion is done
using exome capture and occurs following PCR amplification
of adapter-ligated cDNA fragments. The disadvantage of this
protocol is that recovered transcripts were limited by probe sets
matching annotated exons: transcripts lacking probe sets could
not be recovered.

Previously, we showed that the RNaseH rRNA depletion
protocol was optimal for low input RNA (Haile et al.,
2017a,b, 2019); however, that protocol involved a purification
step following rRNA depletion, which occurred prior to
cDNA synthesis. We modified this protocol by removing the
purification step, thereby providing a third scRNAseq protocol
for evaluation (referred to as the Modified RNaseH protocol).
We also generated data using the SMART-Seq v4 (SMART_v4)
Ultra Low input RNA for sequencing (Takara Bio Inc.), the
latest commercial version of the Smart-seq2 protocol that is
commonly used for scRNAseq (Picelli et al., 2013). However,
this protocol does not meet the requirements mentioned above
since it is strand-agnostic, is restricted to poly-A RNAs and is
of smaller scale (maximum of 96 cells). We used these data as
“gold standard” comparators to the data generated using other
protocols, as described below.

We performed comparative analyses of the four protocols
described above using Universal Human RNA (UHR) as
total RNA input. UHR was spiked with synthetic RNAs
from the External RNA Control Consortium (ERCC) at
a constant proportion of the input amount to evaluate
how well the observed RNA levels correlated with those

expected theoretically (External RNA Controls Consortium,
2005). The SMART_v4 protocol and the standard RNaseH
rRNA depletion protocol (Haile et al., 2017a,b, 2019) served
as our gold standards. Libraries were generated from total
RNA input amounts ranging from 100 pg to 10 ng. Except
for SMART_V4 and standard RNaseH, where one reaction
was used for each of the indicated total RNA input amounts,
duplicates were used for all the other protocols for each of
the input amounts. Data from various post-sequencing and
alignment metrics and expression comparisons are presented
in Supplementary Figures 2–9 and are summarized in
Supplementary Figure 1B. We used the JAGuaR junction-
aware alignment pipeline (Butterfield et al., 2014) for sequence
analysis. Compared to STAR, we found that this pipeline
enabled a higher mappability of reads to the human reference
genome (Supplementary Figure 2A) and a higher sensitivity
in the detection of genes (Supplementary Figure 2B) for all
the libraries that were generated using the four protocols we
described above.

The proportion of reads that aligned to the human genome
reference (other than ribosomal RNA and mitochondrial RNA
reads) was lowest for the modified RNaseH protocol (as low as
45% vs. >82% for the other protocols) with minimal differences
between the other protocols (Supplementary Figure 3). The
unaligned reads for the RNaseH protocol appear to result
predominantly from microbial contamination. The non-exonic
content was lowest for the exome and SMART_V4 protocols
(<8 and < 6%, respectively, vs. > 46% for the other protocols)
(Supplementary Figure 4). Consistent with a previous report
(Ziegenhain et al., 2017), sensitivity of transcript detection
and diversity were highest for the SMART_v4 protocol
(Supplementary Figures 1B, 5) but these advantages came at the
cost of quantitative accuracy of transcript levels as demonstrated
by lower expression correlation values with expected levels of
ERCC transcripts, UHR expression values obtained using the
standard RNaseH and polyA RNAseq protocols, and expression
values of 1,000 genes that were previously (MAQC Consortium
et al., 2006) quantified using qPCR, especially when compared
with the SMARTer protocol. The SMARTer protocol gave the
highest base error rate (Supplementary Figure 1B) which
appeared to be due to artifacts introduced at strand-switch sites
(Supplementary Figure 6). The proportion of properly paired
reads for the SMARTer protocol (mean = 78%) was lower than
that of the RNaseH protocol (mean = 89%) but higher than
that of the SMART_v4 protocol (mean = 70%) (Supplementary
Figure 1B). Overall, the SMARTer protocol displayed higher
accuracy in representing quantitative expression based on
ERCC transcripts (Supplementary Figures 1B, 7; lower panel),
comparison with UHR expression values obtained using the
standard RNaseH and polyA RNAseq protocols (Supplementary
Figures 1B, 7; upper panel), and relative to qPCR expression
values of 1,000 genes (Supplementary Figures 1B, 8). This
protocol is also strand-specific (Supplementary Figure 9),
unlike most of the previously reported protocols for full-length
scRNAseq (for example, the SMART_v4 protocol). Given these
observations, we thus decided to further investigate the SMARTer
protocol and its adaptability to a higher-throughput platform.
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Adapting SMARTer to a
Higher-Throughput, Strand-Specific
Total RNA scRNAseq Protocol
To increase the throughput of the SMARTer protocol, we chose
to adapt it to an open array platform from Scienion that integrates
single-cell isolation with nanoliter reagent dispensing capacity.
The instrument’s cellenONE automated single-cell isolation
feature uses piezo acoustic technology and optical monitoring of
picodroplets to dispense cells: a droplet is dispensed into a waste
recovery receptacle if the distal tip of the nozzle is automatically
determined to contain no cell or multiple cells, or into a well
if a single cell is found in the ejection zone. We adapted the
instrument to dispense into a Wafergen chip (Takara) containing
5,184 nanoliter-scale wells, maximizing potential throughput and

constraining reagent volumes to nanoliters in a fashion similar to
that described previously for the Direct Library Preparation Plus
(DLP+) single-cell genome protocol (Laks et al., 2019).

To determine the fidelity of single-cell dispensing, we stained
cells and upon imaging of the chip, counted instances of no cell,
single cell or multiple cells within individual wells. Based on
seven independent runs, three different cell types and a total of
6,216 cells, post-imaging calls of single cells were made for 91–
98% of the wells (Supplementary Figure 10). Importantly, all
wells with multiple cells could be identified based on the image
of unstained cells in the cell dispensing nozzle, and these could
thus be excluded from downstream analyses. Given the protocol’s
high fidelity in delivering one cell per well, we adopted a staining-
free protocol for our scRNAseq application. Modifications to the
SMARTer protocol included expansion of the indexing capacity

FIGURE 2 | Comparisons of DLP-scRNAseq data and bulk RNAseq data and benchmarking using orthogonally generated data. (A) Alignment-based metrics of
scRNAseq (DLP-scRNAseq) data vs. bulk (SMARTer) RNAseq data. 80 million reads were used for each data set. (B) Number of genes detected in DLP-scRNAseq
data vs. bulk RNAseq data. 80 million reads were used. (C) Number of genes detected by at least one read in each of the 90 uniquely barcoded single cells (blue
dots). Cells are sorted in ascending order based on number of reads. (D) Evaluation of sequencing saturation. Reads were down-sampled to numbers between
0.125 and 1.25 million and the number of genes with >0 reads was enumerated at each sampling depth. Curve slopes are indicative of the yield of new genes
sampled as a function of sequencing depth, with steeper slopes indicative of lower saturation levels. (E) Pearson correlation values comparing expression values
from bulk-based RNAseq (SMARTer) data with DLP-scRNAseq data for UHR and NHA data. (F) Pearson correlations comparing DLP-scRNAseq and qPCR data
(UHR) and known synthetic RNA measurements (ERCC).
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beyond 96 cells and workflow changes to enable early pooling
of indexed cells before rRNA depletion and adaptation to our
automated system as depicted in Figure 1. We hereafter refer to
this method as DLP-scRNAseq.

Comparison of DLP-scRNAseq With Bulk
RNAseq and Orthogonal Assays
To examine the extent to which the DLP-scRNAseq protocol
introduced artifacts affecting sequencing data quality or
expression dynamics, we compared our single-cell data to
data generated from populations of cells using the same
protocol but in a 96-well format. Specifically, we compared 92
individually indexed cells and a pool of 402 individual cells
with identical index, all of which were processed according
to the DLP-scRNAseq protocol, to pools of 10 cells and 500
cells that were processed in bulk. An immortalized normal
human astrocyte (NHA) cell line was used for these comparisons
(Sonoda et al., 2001).

Analyses of sequencing quality (Figure 2A) and quantification
of the number of genes detected (Figure 2B) indicated data
of comparable quality between libraries generated using our
DLP-scRNAseq protocol and those generated from bulk cell

populations, suggesting that quality and gene detection were
preserved as reaction volumes were reduced to nanoliter levels.

Although DLP-scRNAseq libraries from two of the 92
individually indexed cells produced only 462 and 602 reads,
respectively, reads from the remaining libraries yielded from
98,222 to 1,773,656 reads with an average of 757,791 reads per
cell. The average number of expressed genes detected per cell was
7,371 (+/− 903) (Figure 2C). As shown in Figure 2D, it appears
that saturation of the number of genes detected was not reached
at 1 million reads per cell.

Gene-level expression analysis showed that data from the
DLP-scRNAseq pool of single cells were highly correlated
with those of SMARTer libraries from bulk cells (Pearson’s
correlation = 0.82) (Figure 2E). We included 5 pg UHR RNA
in selected wells to represent the amount of RNA expected from
a single cell. The Pearson correlation of gene-level expression
from these 5 pg DLP-scRNAseq UHR libraries to bulk SMARTer
libraries from 5 ng UHR total RNA input was 0.97–0.98
(Figure 2E), indicating good expression concordance between
single-cell and bulk implementations of the method.

We further evaluated the accuracy of gene expression
quantification, comparing the single-cell protocol to public
qPCR data for 1,000 UHR genes and considered the expected

FIGURE 3 | DLP-scRNAseq profiles full-length RNAs (A) A screen shot of an Integrative Genomics Viewer image of the genomic region spanning the ACTB (left) and
FTL (right) genes. DLP-scRNAseq _1 is a single-cell library with a read number (710,000) representative of that obtained for other single cells (mean = 757,791
reads). Genomic location-specific read depth ranges are indicated within each plot, and the total number of reads for each library is shown between the plots.
(B) Comparison of the normalized coverage of transcript bodies, from 5′ (left) to 3′ (right) of all annotated termini (3′ being the location of the polyadenylation site),
achieved using DLP-scRNAseq and bulk RNAseq data. The left panel shows data from NHA cells and the right panel shows data that were generated from PBMCs.
For the PBMC plot, data that were generated using the 3′-end profiling 10× Chromium protocol are also shown, illustrating the 3′ end bias expected from the 10X
platform.
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expression levels of the 92 ERCC spike-in RNAs. The
average Pearson correlation between the qPCR data and DLP-
scRNAseq data for the 1,000 UHR genes was >0.7 and the
average correlation between expected and observed levels of
ERCC RNAs was >0.9 (Figure 2F), once again indicating
that the DLP-scRNAseq protocol generated accurate gene
expression measurements.

To compare the sensitivity, accuracy and technical variability
of DLP-scRNAseq, we compared counts of ERCC RNA-aligning
reads in our protocol with those from publicly available gold
standard full-length SMART-seq single-cell data (PRJEB20161,
PRJEB20163, and PRJEB20166). To measure sensitivity, logistic
regression to estimate the concentration at which an ERCC
RNA had a 50% likelihood of being detected was applied as

described previously (Svensson et al., 2017). The molecular limit
of detection was derived from these results.

Based on an equivalent total number of reads (100,000 reads
per cell), the median limit of detection with 50% probability
was considerably lower for our protocol compared to datasets
generated using SMART-seq protocols (50 vs. 268, 133, and 216)
(Supplementary Figure 11A). Pearson’s correlation values of
expected vs. observed ERCC RNA levels also indicated that our
protocol was more accurate (median R = 0.84) than the SMART-
seq protocols (median R = 0.68, 0.58, and 0.70, respectively)
(Supplementary Figure 11B). Sequencing depth had a negligible
effect on the correlation values (Supplementary Figure 12).
Variability of ERCC expression, based on normalized total read
numbers (100,000 total reads per cell), was assessed by: (1)

FIGURE 4 | Exon level quantification of gene expression. (A) Comparisons of sensitivity of exon-level detection between DLP-scRNAseq and bulk protocols. Violin
plots show the distributions of the density of the data representing various fraction of exons covered by one or more reads (Y-axis) for various ranges of transcript
lengths in Ensembl annotations. Shown are data for all exonic regions (left panel), for full and partial exons falling within 5′ untranslated regions (UTRs) of transcripts
(middle panel), and for full and partial exons falling within 3′ UTRs of transcripts (right panel). The coverage across coding regions of transcripts ranging in length from
200 to 5,000 nucleotides (178,348 transcripts in total) was similar between data from the DLP-scRNAseq pool of single cells and bulk libraries generated using
SMARTer and RNaseH methods. Transcripts that are shorter than 200 nt (9,750 in total) showed more variable coverage, particularly at the 3′- and 5′-UTR regions.
(B) A log-log plot of exon-level expression values comparing DLP-scRNAseq to bulk SMARTer data. Correlation values were calculated for exons with one or more
reads in both datasets. The Spearman correlation was 0.93, indicating high similarity of expression of 333,517 exons. Exons captured to a higher extent with
DLP-scRNAseq than SMARTer (∼459 exons, blue dots), falling below the diagonal (using the formula y–1.28× < –5), spanned all chromosomes and mapped to 354
genes.
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adjusting the number of cells based on the sample with the
fewest cells (random sampling of cells was applied to match the
minimum number); (2) removing ERCCs with 0 reads in all
cells within a sample; (3) calculating average expression levels of
each of the ERCC RNAs across all cells within a sample; and (4)
computing the coefficient of variation (% CV) for each ERCC
RNA (standard deviation divided by the average expression
level across cells within a sample). As shown in Supplementary
Figure 13, % CV was comparable between the different protocols.

DLP-scRNAseq Can Yield Sequences
Spanning Entire Transcripts
Several lines of evidence supported the notion that our DLP-
scRNAseq protocol could recover sequences spanning entire
transcripts and not only terminal transcript regions. First, visual
inspection of randomly selected highly expressed genes, such as
the ACTB and FTL genes in Figure 3A, showed that sequence
reads mapped to all annotated exons. Second, the distribution
of sequence reads along the 5′–3′positions of transcript bodies
was comparable between libraries that were generated from
single cells and bulk populations of cells, including those that
were generated using the standard rRNA depletion protocol
(RNaseH) (Figure 3B). Third, exon-level expression analysis
revealed that the fractions of exons that were covered with at
least one read were comparable between a pool of single cell
libraries (n = 402 cells) and bulk RNAseq libraries regardless
of transcript length and the 5′ or 3′ location of the exons

(Figure 4A). The exon-level expression from the pool of single-
cell libraries was highly correlated with that of a bulk RNAseq
library from 500 cells (Spearman correlation = 0.936) for the
333,517 exons detected in both the pool of single cell libraries
and the bulk library (59% of the 562,205 total exons in the
Ensembl annotation) (Figure 4B). In addition to the commonly
detected exons, 47,904 exons (from 17,704 genes) were uniquely
detected in the pool of single cells and 21,429 exons (from
10,534 genes) were uniquely detected in the bulk library. The
average RPKMs of the uniquely detected exons were 0.646 and
0.762 for the single-cell pool and the bulk libraries, respectively.
The expression level of these uniquely detected exons was
∼27-fold lower compared to the average RPKM of the exons
detected in both the single-cell and bulk libraries (RPKMs
of 18 and 20, respectively), indicating that highly expressed
genes were detected more consistently, while the detection of
less abundantly expressed genes was less robust, regardless of
the method used.

Finally, we assessed whether fusion transcripts could
be detected in our data. For this analysis, we made use of
previously identified UHR fusion transcripts (Sakarya et al.,
2012; Figure 5A). Twenty-two of these fusion transcripts
were detected in UHR libraries that were generated using
the bulk RNaseH protocol; of these, nine were detected
using DLP-scRNAseq (Figure 5B). The fusion events that
were not detected in the DLP-scRNAseq data were of
low abundance, as they were detected in the bulk data
with fewer spanning reads compared to the rest of the

FIGURE 5 | DLP-scRNAseq can be used to detect fusion transcripts. (A) Reads from 62 UHR (5 pg total RNA) libraries that were generated using the
DLP-scRNAseq protocol were pooled and analyzed for intergenic transcript fusion junctions, previously identified and validated using qPCR (Sakarya et al., 2012).
Black boxes indicate events that were confirmed by de-novo transcript sequence assembly (Nip et al., 2019). The number on the black boxes indicate the number of
contiguous reads covering the fusion transcript. The fraction of down-sampled reads is indicated in the legend (e.g., 1× corresponds to 250 million reads, 0.1×
corresponds to 25 million reads). The fewest total reads corresponds to 0.4 million/cell and the highest total number of reads represents 4 million reads per cell.
(B) Comparison of the sensitivity of detection of fusion transcripts between the pool of UHR libraries that were generated using DLP-scRNAseq data and data from
UHR bulk libraries (100 ng total RNA) that were generated using the RNaseH protocol. The number on the black boxes indicate frequencies of detection for each
fusion event.
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fusion events (Figure 5B). These data indicated that DLP-
scRNAseq can capture reads that span entire transcripts,
depending on the abundance of such transcripts and
sequencing depth.

DLP-scRNAseq Allows for the Profiling
of Non-polyadenylated Transcripts
We evaluated the capacity of DLP-scRNAseq to profile diverse
species of RNA, including those lacking polyA+ tails. We
merged the sequence reads from 62 UHR libraries that were
each generated from 10 pg total RNA using DLP-scRNAseq
and compared the resulting proportion of RNA biotypes to
those that were detected in libraries that were generated
from 10 to 25 ng total UHR RNA using rRNA depletion
(RNaseH) and polyA-enriched protocols, respectively. In the
DLP-scRNAseq data, 85.6% of the reads were mapped to
protein-coding genes and 4.3% of the reads were mapped to
long intergenic non-coding RNAs (lincRNAs) (Figure 7A). In
the RNaseH-derived data, 93.8% of total number reads were
mapped to protein-coding genes and 2.6% of total number
reads were mapped to lincRNAs (Figure 6A). In the data
obtained using the polyA-enriched protocol, 97.5% of total
number reads were mapped to protein-coding genes and
only 0.95% of total number reads were mapped to lincRNAs
(Figure 6A). There was also a higher proportion (4.7%) of
other non-coding RNAs such as antisense RNAs, small nuclear
RNAs (snRNAs) and small nucleolar RNAs (snoRNAs) in the
DLP-scRNAseq data compared to the RNaseH (0.98%) and
polyA data (0.24%) (Figure 6A), which is consistent with
the notion that our protocol can be used to profile a range
of RNA biotypes.

Non-coding RNAs, including lincRNAs, may be
polyadenylated (Ravasi et al., 2006) while histone mRNAs
are among those lacking polyA tails (Marzluff et al., 2008).
We evaluated the proportion of histone mRNAs in the
UHR DLP-scRNAseq, RNaseH and polyA-enriched libraries
described above. There were eight and ninefold enrichments
of histone mRNAs in the DLP-scRNAseq and RNaseH
libraries, respectively, compared to the polyA-enriched library
(Figure 6B), indicating that these protocols effectively capture
histone transcripts lacking polyA tails.

Yang et al. (2011) previously identified 278–324 transcripts
that were enriched in polyA− fractions in two different human
cell lines. Approximately 95% of these transcripts were detected
in our DLP-scRNAseq data from 402 pooled NHA cells. We
compared the gene-level expression of these transcripts in our
data from pooled NHA cells to those that were reported from
the polyA− fraction in Yang et al. (2011) and found the Pearson
expression correlations to be 0.80 and 0.86 when compared to the
values from the two cell lines; Figure 6C). The corresponding
values for the bulk SMARTer protocol were 0.83 and 0.89,
respectively. In contrast, Pearson correlations using values from
the polyA+ fraction were lower (0.06 and 0.33 for DLP-scRNAseq
and 0.07 and 0.32 for bulk SMARTer; Figure 6C), which likely
reflects background noise consistent with the transcripts being
not polyadenylated.

Next, we examined whether DLP-scRNA could detect
enhancer RNAs (eRNAs), which represent a class of non-
polyadenylated nuclear RNAs (Lam et al., 2014). To do so, we
used a previously described approach (Hayashi et al., 2018)
that leveraged genomic coordinates from the GENCODE and
CAGE FANTOM databases. First, we performed comparative
analysis of eRNAs for the single-cell protocols described above,
namely SMARTer, SMART_V4, exome, RNaseH (RBD), and
modified RBD, using 10 ng UHR total RNA input and a
normalized number of total reads (10 million). As expected,
the exome approach resulted in negligible levels of eRNAs and
the polyA-based SMART_V4 similarly showed minimal eRNA
levels (Supplementary Figure 14A). The SMARTer protocol,
which underpins our single cell protocol, displayed the highest
sensitivity of eRNA detection at a level comparable to that of the
modified rRNA depletion protocol (Supplementary Figure 14A).
Using a comparable number of NHA cells and normalized
number of total reads (80 million), the pooled data generated
using our DLP-scRNAseq protocol showed a comparable level of
eRNA detection relative to that of the bulk SMARTer protocol
(Supplementary Figure 14B).

Circular RNAs (cRNAs) are another class of non-
polyadenylated RNAs. Using a recently reported approach
(Zhang et al., 2020), we compared the protocols described above
using varying input amounts (0.1–10 ng) of UHR total RNA. This
analysis showed that the SMARTer protocol displayed > 4-fold
higher cRNA levels compared to the other protocols. The exome
and SMART_4 approaches resulted in the lowest cRNA recovery
(Supplementary Figure 15A). Supplementary Figure 15B
shows that DLP-scRNAseq identified ∼50% of the cRNAs
that were detected using the bulk SMARTer protocol from a
comparable number of NHA cells. Taken together, these data
indicate that DLP-scRNAseq can be used to profile both polyA+
and polyA− transcripts.

DLP-scRNAseq Enables Cell Type
Classification Using a Biologically
Heterogeneous Sample
To assess the capacity of the DLP-scRNAseq protocol to
discern cell types from a biologically complex sample, we
processed cryopreserved human peripheral blood mononuclear
cells (PBMCs) using DLP-scRNAseq. Of the libraries from 518
cells that were sequenced on one-third of a HiSeq 2500 lane (188
million reads), 473 libraries had > 100,000 reads with an average
of 383,812 reads per cell. The average number of genes detected
per cell was 2,830 (Supplementary Figure 16).

To identify distinct cell types, we first performed clustering
analysis on the expression profile of the PBMCs, identifying
nine clusters (Figure 7A). Examination of genes that marked
the expression of each cluster (Supplementary Table 2) revealed
the anticipated cell types at expected ratios (Kleiveland, 2015),
namely T cells [clusters 4, 5, and 7 (∼57%)], collectively marked
by expression of IL7R (Carrette and Surh, 2012) and the T cell
surface glycoproteins CD5 and CD6 (Gonçalves et al., 2018);
B cells [cluster 1 (∼6%)], enriched for expression of the B
cell receptor signaling molecule MS4A1 (Polyak et al., 2008);
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FIGURE 6 | Demonstration of the capacity of DLP-scRNAseq to capture both polyadenylated and non-polyadenylated RNAs. (A) Detection of various RNA
biotypes. The proportion of various classes of detected transcripts is shown for a pool of single cell libraries generated using DLP-scRNAseq and for bulk libraries
that were generated using the SMARTer and RNaseH protocols. Total UHR RNA was used as input. (B) Detection of histone mRNAs. The proportion of histone
transcripts is shown for a pool of single cell libraries generated using DLP-scRNAseq and for bulk libraries that were generated using the SMARTer and RNaseH
protocols. Total UHR RNA was used as input. (C) Detection and quantification of polyA- RNAs in scRNAseq data and bulk RNAseq data from NHA cells. Pearson
correlations between expression profiles generated by DLP-scRNAseq or SMARTer and expression values of genes whose expression was enriched in polyA- and
polyA+ fractions are shown.

CD14+ (cluster 2) and CD16+ (cluster 6) monocytes (Ziegler-
Heitbrock et al., 2010) (∼18%); natural killer cells [cluster 9
(∼7%)], enriched for markers such as KLRF1(Moretta et al.,
2003) and KLRD1(Borrego et al., 2005); and dendritic cells
[cluster 8 (∼4%)], marked by high expression of CD74 and
FCER1A (Greer et al., 2014; Figure 7B). Within the T cell clusters,
cells in clusters 4 and 7 (∼60% of T cells) expressed CD4, whereas
cluster 5 (∼40% of T cells) was enriched in cells expressing CD8A.
Cells in cluster 3 were not enriched for cell type-specific markers
(FDR < 0.05). However, closer examination of QC measures
revealed that this population had a high proportion of reads
aligned to ERCCs (Supplementary Figure 17A), indicating that
these may have been poorer quality libraries that were not filtered
using standard QC methods.

To analyze a comparable dataset produced using a different
platform, we also obtained data from 1,223 PBMCs profiled using
the 10X Genomics Chromium platform6. Our clustering analysis
also identified nine clusters for this dataset which displayed
similar expression patterns to those found in the DLP-scRNAseq
dataset: cell clusters 2, 5, and 6 (44% of cells) expressed markers of
T cells such as IL7R, cluster 4 (∼16%) was enriched for expression
of the B cell marker MS4A1, cells in cluster 9 expressed the NK
cell marker KLF1, clusters 3 (∼26%) and 7 (∼3%) appeared to
be composed of CD14+ and CD16+ monocytes, respectively,
and cells in cluster 1 (∼5%) displayed high expression of CD74
and FCER1A, indicating that they were likely dendritic cells
(Supplementary Figures 17B,C and Supplementary Table 2).

6https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_1k_v3

Similar to our observations for the PBMC dataset obtained using
DLP-scRNAseq, cells in cluster 8 were not characterized by a
pattern of marker gene expression that was clearly indicative of
a cell type, and this cluster appeared to be composed of lower-
quality cells as evidenced by its high proportion of read counts
assigned to mitochondrial genes (Supplementary Figure 17D).
Overall, the cell type proportions identified in the DLP-scRNAseq
and 10X datasets were comparable (Figure 7C) despite some
differences that can also be attributed to the individual source
variation of the PBMC samples.

To determine whether DLP-scRNAseq data could be used
to identify alternatively spliced (AS) transcripts, we used BRIE
(Huang and Sanguinetti, 2017) to quantify exon inclusion events.
We first performed pairwise comparisons between individual
cells and, for each pair of cell types, calculated the proportion
of all possible events that were identified as alternatively spliced
(Bayes factor ≥10; Methods). Pairs of cells assigned to the
same cell type consistently had a lower proportion of AS events
between them than pairs of cells assigned to different cell types
(Figure 7D). Additionally, pairs of cells from similar cell types
(e.g., CD4+ T-cells and CD8+ T-cells) tended to have lower
proportions of AS events between them than pairs of cells
assigned to more distinct cell types (e.g., B-cells and dendritic
cells). These results both supported the clustering-based cell type
assignments and indicated that alternative splicing events can be
identified between individual cells at ratios that are consistent
with expected cell type differences.

We next performed alternative splicing analyses comparing
distinct cell types (Methods). We identified 3,008 AS events
between at least two cell types (Bayes factor ≥10), and from this
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FIGURE 7 | Classification of PBMC cell types based on expression profiles that were generated using DLP-scRNAseq. (A) tSNE plot with DLP-scRNAseq cells
colored by cluster. (B) tSNE plots with cells colored by normalized expression of the indicated marker gene. (C) Proportions of cells identified as the indicated cell
types in the DLP-scRNAseq and 10X PBMC datasets. (D) Heatmap showing proportion of all possible event pairs that were found to be alternatively spliced
between indicated cell types. The number of cells assigned to each cell type is indicated on the right: the total number of possible event pairs was calculated by (# of
cell type 1 cells × # of cell type 2 cells × total number of transcripts tested). Absolute numbers of AS events between cell type pairs are also shown on the heatmap.
(E) Example of a cell type-specific AS event (HIPK3, BRIE transcript ID ENSG00000110422.7.AS2). Left: sashimi plots showing read densities (in RPKM) within
pools of cells assigned to the same cell type. Junction reads linking exons are also indicated with lines and labeled by their count. The outside exons are exons 3
(left) and 4 (right) in most Gencode v19 HIPK3 transcripts (16 exons total in ENST00000525975.1, ENST00000379016.3, and ENST00000456517.1; 17 exons total
in ENST00000303296.4); the middle exon, which is more frequently retained in dendritic cells compared to the other cell types shown, is specific to transcript
ENST00000534262.1 (exon 2 of 4). Right: posterior distributions (blue curve, histogram in black) learned by BRIE for each cell type. Red bar depicts the mean, and
the 95% confidence interval is indicated by dashed lines. The posterior (9) is a measure of the frequency of exon inclusion (0–never; 1–always).
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list identified 179 cell type-specific events (example shown in
Figure 7E; full results in Supplementary Table 3). Notably, these
included events that have previously been identified: for example,
BTG3, which has been found to be differentially spliced in lung
cancers (Chen et al., 2013), appeared to be most highly expressed
in T-cells and NK cells, and inclusion of exon 4 was significantly
higher in CD4+ T-cells than other cell types (Supplementary
Figure 18A). Similarly, several CTSB splice variants, including
one lacking exon 2, have been shown to be differentially expressed
in cancer (Liyanage et al., 2019), and we found evidence in our
dataset that CD14+monocytes had significantly more expression
of exon 2 than other cell types (Supplementary Figure 18B). Our
results thus indicate that DLP-scRNAseq can be used to study AS
transcripts enriched in comparisons of cell types.

Verboom et al. (2019) recently reported single-cell profiling
results from the same scRNAseq (SMARTer) kit that we used
here. Another study also reported on a similar protocol (Isakova
et al., 2020). Unique contributions of our work here include:
analyses revealing the ability of DLP-scRNAseq to discern
cellular heterogeneity; the orthogonal validation of expression
accuracy using qPCR on 1,000 genes; our comparisons to
bulk total RNAseq data; and expanded analysis of full-length
transcript coverage. Further, our work adapts the kit to a
different automation platform of single-cell isolation and library
construction that allows for the simultaneous processing of
hundreds to thousands of cells, while previous protocols are
limited to 96 cells per run. Our data demonstrate that our
approach allows for measurements of full-length transcript
expression of both polyA+ and polyA− RNAs at a single-cell
resolution for hundreds to thousands of cells per run, thus
providing an avenue to comprehensively study gene expression
in the context of complex, heterogeneous biological samples at
single-cell resolution.
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