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Chondroitin sulfate proteoglycans (CSPGs) 
and heparan sulfate proteoglycans (HSPGs)
Proteoglycans are proteins glycosylated with sulfated glycos-
aminoglycan (GAG) side chains. The diversity of proteogly-
cans arises from their core protein sequences, the degree of 
glycosylation, and the length and composition of the GAGs. 
Based on the types of associated GAGs, proteoglycans are 
classified into four families: chondroitin sulfate proteogly-
cans, heparan sulfate proteoglycans, dermatan sulfate pro-
teoglycans, and keratan sulfate proteoglycans. CSPGs and 
HSPGs carry chondroitin sulfate (CS) and heparan sulfate 
(HS) GAGs, respectively. The CS and HS share similar poly-
saccharide structures, but differ in their sulfation patterns 
along the sugar chains. Many of these proteoglycans are 
secreted into the intercellular space, yet others are either 
transmembrane proteins or tethered to the cell membrane 
through a glycosylphosphatidylinositol (GPI) anchor. CSPGs 
and HSPGs are produced by many cell types and found in all 
vertebrate tissues and organs.

Expression patterns and functional significance in the 
nervous system
In the nervous system, CSPGs and HSPGs are synthesized by 
neurons and glia, and their spatiotemporal expression is dy-
namically regulated throughout the course of development 
(Brittis et al., 1992; Pindzola et al., 1993; Oohira et al., 1994; 
Stipp et al., 1994; Ivins et al., 1997; Milev et al., 1998; Hsueh 
and Sheng, 1999; Bovolenta and Fernaud-Espinosa, 2000). 
For example, Glypican-2, a nervous system specific HSPG, is 
expressed only transiently when axons are actively growing, 
but not after cell migration has completed and axons have 
reached their targets (Stipp et al., 1994; Ivins et al., 1997). 

Many CSPGs are highly expressed in the developing central 
nervous system (CNS). They appear around the critical peri-
od in the perineuronal nets and in boundary regions where 
axon growth is normally restricted (Brittis et al., 1992; Wang 
and Fawcett, 2012). As the CNS matures, the expression of 
CSPGs gradually declines (Oohira et al., 1994; Milev et al., 
1998). In rat embryonic retina, regression of CSPG level 
closely correlates with the onset of ganglion cell differentia-
tion (Brittis et al., 1992). 

Although attenuated in the mature nervous system, the 
expression of CSPGs and HSPGs may resurrect upon inju-
ries (Garcia de Yebenes et al., 1999; Asher et al., 2000; Iseki et 
al., 2002; Jones et al., 2003; Bloechlinger et al., 2004; Properzi 
et al., 2008; Yi et al., 2012). Spinal cord and brain lesions in 
adult rodents induce waves of post-injury CSPG expres-
sion near the injury epicenters (Asher et al., 2000; Jones et 
al., 2003; Yi et al., 2012). CSPGs are also upregulated in the 
perineuronal nets of deafferented neurons distal to spinal 
cord lesion sites (Massey et al., 2006; Alilain et al., 2011). 
Glypican-1, an HSPG, is upregulated in adult rat dorsal root 
ganglion (DRG) neurons after sciatic nerve injury, and the 
elevated Glypican-1 expression persists until the injured ax-
ons reinnervated their peripheral targets (Bloechlinger et al., 
2004).  

The dynamic expression patterns of these proteoglycans 
during development and injuries are consistent with their 
functional roles in these processes, as HSPGs and CSPGs are 
found to be crucial players in regulating embryonic axon 
pathfinding and post-injury axonal plasticity (Brittis et al., 
1992; Pindzola et al., 1993; Bandtlow and Zimmermann, 
2000; Bovolenta and Fernaud-Espinosa, 2000; Wilson and 
Snow, 2000; Alilain et al., 2011; Maeda et al., 2011). Inter-
estingly, HSPGs and CSPGs often have opposite effects on 
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axonal behavior. In the developing nervous system, CSPGs 
function as repulsive guidance molecules, whereas HSPGs 
often present attractive signals to axons (Brittis et al., 1992; 
Kantor et al., 2004; Wang et al., 2012). Likewise, CSPGs in-
hibit, while HSPGs promote, neurite outgrowth in cultured 
neurons (Snow et al., 1990; Snow et al., 1991; Coles et al., 
2011). After injuries in the CNS, CSPGs deposited at the 
lesion sites form a potent inhibitory barrier that prevents 
the regeneration of severed axons (McKeon et al., 1991; Da-
vies et al., 1997; Busch and Silver, 2007; Bartus et al., 2012; 
Garcia-Alias and Fawcett, 2012). On the contrary, treatment 
with Glypican, an HSPG that promotes axon growth, im-
proves anatomical regeneration and functional recovery after 
cerebral ischemia (Hill et al., 2012). 

Although the functional significance of these proteogly-
cans in axon growth has been documented for decades, the 
underlying mechanisms remained poorly understood, main-
ly because no molecular signaling was identified. Fortunate-
ly, a number of neuronal receptors for CSPGs and HSPGs 
have recently been discovered, allowing further research to 
decode the signaling mechanisms underlying proteoglycan 
regulation of axon growth.

Neuronal receptors of CSPGs and HSPGs
The LAR family RPTPs
Three transmembrane receptor protein tyrosine phos-
phatases (RPTPs), PTPsigma, PTPdelta, and leukocyte 
antigen-related (LAR), form a family that is often referred 
to as the LAR family RPTPs. These RPTPs have long been 
implicated in synaptogenesis and axon pathfinding during 
development (Garrity et al., 1999; Ledig et al., 1999; John-
son and Holt, 2000; Chagnon et al., 2004; Dunah et al., 
2005; Fox and Zinn, 2005; Johnson et al., 2006; Kwon et al., 
2010; Horn et al., 2012; Hendriks et al., 2013; Takahashi 
and Craig, 2013), and are now increasingly recognized as 
key regulators of post-injury axonal plasticity (Xie et al., 
2001; McLean et al., 2002; Thompson, 2003; Van der Zee 
et al., 2003; Sapieha et al., 2005; Shen et al., 2009; Fry et al., 
2010; Fisher et al., 2011; Takahashi et al., 2012; Gardner and 
Habecker, 2013). 

In the nervous system, the LAR family RPTPs are ex-
pressed by both neurons and glia. In neurons, they are 
localized in soma, axons, and growth cones (Zhang et al., 
1998; Mueller et al., 2000; McLean et al., 2002; Thomp-
son, 2003; Fisher et al., 2011; Takahashi et al., 2012). The 
LAR family RPTPs are highly expressed in the developing 
nervous system of the vertebrates, with certain splicing iso-
forms of PTPsigma and PTPdelta exclusively confined to 
the CNS (Yan et al., 1993; Pulido et al., 1995). As the animal 
matures, expression levels of these RPTPs significantly de-
cline in most areas of the CNS, except some brain regions 
such as the hippocampus, where PTPsigma and PTPdelta 
expression remains substantial (Yan et al., 1993; Wang et al., 
1995; Schaapveld et al., 1998). 

In the adult nervous system, injuries may also play a 
role in regulating the expression of the LAR family RPTPs. 
There have been a number of reports on injury-induced 
changes of LAR and PTPsigma expression; however, the 

results were not always consistent between studies, possibly 
due to the different analytical methods used (Haworth et 
al., 1998; Xie et al., 2001; McLean et al., 2002; Thompson, 
2003; Sapieha et al., 2005; Fry et al., 2010). Nonetheless, a 
growing number of studies have shown consistent results 
on the functional roles of PTPsigma and LAR in nervous 
system injuries. Despite opposite findings on post-injury 
LAR expression, different research groups showed similar 
results that genetic depletion of LAR hampers axon re-
generation after sciatic nerve injuries (Xie et al., 2001; Van 
der Zee et al., 2003). On the other hand, many research 
groups, using various injuries models of both central and 
peripheral nervous systems, showed unanimously that PT-
Psigma deficiency improves axon regeneration (McLean et 
al., 2002; Thompson, 2003; Sapieha et al., 2005; Shen et al., 
2009; Fry et al., 2010; Gardner and Habecker, 2013). 

Receptors of CSPGs and HSPGs
For many years, despite growing implications of the LAR 
RPTPs in axon pathfinding and regeneration, little was know 
about the underlying molecular mechanisms. Although these 
RPTPs are transmembrane proteins with structures that re-
semble cell surface receptors, no functional ligands had been 
identified until recently. 

The initial evidence of the LAR family RPTPs serving as 
proteoglycan receptors emerged from the finding that in 
chick embryos, PTPsigma, a retinal axon protein, binds with 
high affinity to HSPGs in retinal basal lamina (Aricescu et al., 
2002). Heparinase treatment, which digests the HS epitopes 
from the retinal basal lamina, effectively removes PTPsigma 
binding. Mutations in the first N-terminal Ig-like domain of 
PTPsigma eliminate its binding to the HSPG ligands. These 
data suggest that the receptor-ligand binding is mediated by 
the N-terminal domain of PTPsigma and the GAG moieties 
of HSPGs. In addition, PTPsigma was recently shown to be 
a neuronal receptor for CSPGs (Shen et al., 2009). Through 
the same N-terminal domain, PTPsigma binds to CSPGs 
secreted by reactive astrocytes in spinal cord lesion sites. The 
same binding site mutations that abrogate PTPsigma-HSPG 
binding also eliminate PTPsigma-CSPG binding. Chon-
droitinase treatment, which degrades CS GAGs, abolishes 
PTPsigma binding to CSPGs. Therefore, PTPsigma serves as 
a common GAG receptor for both CSPGs and HSPGs. Fur-
thermore, PTPsigma has similar affinity towards HSPGs and 
CSPGs. The fact that both CS and HS GAGs interact with 
PTPsigma through the same binding site and with compa-
rable affinities suggests a competition between these ligands 
(Shen et al., 2009; Coles et al., 2011). 

In neurons, PTPsigma mediates intracellular signaling 
from both classes of proteoglycans. The biological effects 
of HSPG and CSPG signaling through this same receptor, 
however, can be counteracting. In cultured neurons, PTPsig-
ma-CSPG interaction inhibits neurite extension, and genetic 
depletion of PTPsigma desensitizes neurons to CSPG-inhi-
bition. In injured spinal cord, deficiency of PTPsigma en-
hances axon extension into CSPG-enriched glial scar (Shen 
et al., 2009; Fry et al., 2010). On the other hand, HSPGs, 
such as Glypican-2, induce robust neurite outgrowth in 
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cultured neurons, and this effect is abolished in PTPsigma 
deficient neurons (Coles et al., 2011). In the presence of both 
CS and HS proteoglycans, the outcome of neurite outgrowth 
depends on the relative abundance of these competing PT-
Psigma ligands (Coles et al., 2011). PTPsigma therefore plays 
a role as a bifunctional receptor in the regulation of neurite 
extension by mediating “stop” and “go” signals from CSPGs 
and HSPGs, respectively.

Within the LAR family, the first N-terminal Ig-like do-
main, through which PTPsigma binds to the GAGs, is highly 
conserved (Coles et al., 2011). Thus it is conceivable that the 
other two members of the family, LAR and PTPdelta, may 
also function as receptors of CSPGs and HSPGs. In fact, all 
three LAR RPTPs, through their first N-terminal domains, 
bind to heparin, a structural analog of HS (Coles et al., 
2011). Drosophila LAR, a remote homologue of the verte-
brate LAR family RPTPs, functions as an axonal receptor 
of Syndecan, an HSPG, and mediates its positive regulatory 
signals in motor axon guidance and synaptic development 
(Fox and Zinn, 2005; Johnson et al., 2006). In zebrafish, LAR 
isoforms steer somatosensory innervation into the skin, pre-
sumably through a receptor-ligand interaction with HSPGs. 
Deleting the first N-terminal domain of LAR or removing 
the HS GAGs from the skin tissue disrupts innervation 
(Wang et al., 2012). Although yet to be verified, mammalian 
LAR may as well be an HSPG receptor, given that the N-ter-
minal ligand-binding domain is highly conserved across 
species (Coles et al., 2011). 

Moreover, LAR was recently found to be an additional 
receptor of CSPGs. Like PTPsigma, LAR binds to CSPGs 
through CS GAGs. Deficiency of LAR eliminates CSPG sig-
naling and mitigates CSPGs-inhibition of neurite outgrowth 
in cultured neuron, suggesting a functional role of LAR-
CSPG interaction in neurite extension (Fisher et al., 2011). 
It is therefore reasonable to expect that LAR deficiency 
would promote post-injury axon regeneration in a lesion 
environment rich of CSPGs, in a similar fashion as PTPsig-
ma deficiency. However, after sciatic nerve injuries, axon 
regeneration is hampered by LAR deficiency, but enhanced 
by PTPsigma deficiency (Xie et al., 2001; McLean et al., 2002; 
Van der Zee et al., 2003). It is not clear what results in the 
discrepancy between the in vitro and in vivo effects of LAR 
deficiency.

Opposite axon growth signals by CSPGs and HSPGs
As discussed above, it seems that HSPGs and CSPGs signal 
opposite instructions to the axons, through the same neuro-
nal receptor PTPsigma, much like turning on and off a mo-
lecular switch. What are the underlying mechanisms of such 
bimodal signaling? To decode this paradox, a recent study 
showed that CSPGs and HSPGs induce differential molecular 
configuration of the LAR family RPTPs (Coles et al., 2011). 
When bound to these RPTPs, HS GAGs and their analogs 
cluster the receptors into oligomers, whereas CS GAGs main-
tain them in monomers. In the presence of both HS and CS, 
the degree of receptor clustering appears to depend on the 
relative abundance of these competitive ligands. As suggest-
ed by previous studies, oligomerization of these receptor 

tyrosine phosphatases may lead to the inhibition of their en-
zyme activity (Bilwes et al., 1996; Wallace et al., 1998). If so, 
the binding of CS and HS to the RPTPs would switch their 
phosphatase activity “on” and “off”, respectively. In a migrat-
ing growth cone, suppressed tyrosine phosphatase activity 
can be translated into a local increase of phosphotyrosine 
residues on many signaling molecules, thereby activating 
pathways leading to axon growth. In fact, Glypican-2, which 
possesses HS chains that cluster PTPsigma, stimulates robust 
neurite outgrowth in cultured neurons (Coles et al., 2011). 
Conversely, while CSPGs are notorious inhibitors of neurite 
extension, their CS GAGs, which dissociate the receptors in 
monomers, enhance LAR phosphatase activity in cultured 
cells (Fisher et al., 2011). Treatment with peptides that inhibit 
LAR phosphatase activity improves axon regeneration into 
CSPG-enriched glial scar after spinal cord injury, suggesting 
that CSPG-inhibition of axon growth is mediated by LAR 
enzyme activity (Fisher et al., 2011). In a similar vein, a very 
recent study showed that a PTPsigma inhibitory peptide 
significantly enhances axonal plasticity and promotes robust 
functional recovery following severe spinal cord injury (B. T. 
Lang, 2012). 

Because of the counteracting functions of CSPGs and 
HSPGs in regulating axon growth, it is critical to maintain a 
homeostatic balance of these proteoglycans in the perineu-
ronal environment. Pathological conditions of the nervous 
system, such as traumatic injuries, disrupt such balance and 
often lead to a CSPG-dominant lesion environment sur-
rounding the injured neurons. As a consequence, this may 
deviate neuronal signaling through the LAR family RPTPs, 
which could result in downstream cellular events such as in-
tense adhesion and low motility of the dystrophic axon tips, 
and eventual long-term entrapment of injured axons at the 
glial scar barriers or within the perineuronal nets (Busch et 
al., 2010; B. T. Lang, 2012). 

The Nogo receptors (NgRs)
The Nogo receptor (NgR) family consists of three GPI-an-
chored receptors: NgR1, the bona fide “Nogo receptor”, 
and its two homologues, NgR2 and NgR3. The NgRs are 
predominantly expressed by neurons throughout devel-
opment and remain highly expressed in the adult nervous 
system (Lauren et al., 2003). Subcellular localization anal-
ysis showed that NgR1 and NgR2 are expressed on axons, 
and in particular on growth cones (Wang et al., 2002b; 
Venkatesh et al., 2005). Earlier studies have identified NgR1 
as a receptor of the myelin-associated inhibitors (MAIs), 
including Nogo-A, myelin-associated glycoprotein (MAG), 
and oligodendrocyte myelin glycoprotein (OMgp). NgR1 
was shown to mediate MAI-inhibition of axon regeneration 
in injured adult CNS (Kim et al., 2004; McGee et al., 2005; 
Cafferty and Strittmatter, 2006), although results were 
sometimes inconsistent between different research groups 
(Zheng et al., 2005). While denoted as Nogo receptors, nei-
ther NgR2 nor NgR3 binds to Nogo-A. NgR2 was instead 
found to be a receptor of MAG, and NgR3 does not interact 
with any of the MAIs (Venkatesh et al., 2005; Lauren et al., 
2007). 



359

Shen Y. / Neural Regeneration Research. 2014;9(4):379-384.

Receptors of CSPGs (and HSPGs?)
A recent study showed that NgR1 and NgR3 are also func-
tional receptors of CSPGs (Dickendesher et al., 2012). NgR1 
and NgR3 each bind with high affinity to purified CS GAGs, 
and to CSPGs in developing brains and injured optic nerves. 
The binding of CSPGs and MAIs to NgR1 appears to be me-
diated by distinct domains, suggesting independent receptor 
engagement and possible synergistic signaling by these li-
gands through this common receptor. Interestingly, binding 
of CSPGs induces the formation of a receptor complex that 
comprises NgR1 and NgR3, along with p75, an NgR1 co-re-
ceptor in MAI signaling (Wang et al., 2002a). These findings 
therefore revealed a molecular platform shared by the MAIs 
and CSPGs, which involves multiple receptors and serves as 
a signal converging point for these axon growth inhibitors. 

Although loss of Ngr1 or Ngr3 alone is not sufficient to 
overcome CSPG-inhibition, combined loss of Ngr1 and 
Ngr3 renders resistance to CSPG-inhibition in cultured 
neurons and promotes axon regeneration in injured optic 
nerves. A further enhancement of axon regeneration was ob-
served with triple depletions of Ngr1, Ngr3, and PTPsigma, 
suggesting a functional redundancy among these receptors 
(Dickendesher et al., 2012).

The study also showed a robust binding of NgR1 to the 
HS GAGs in developing brains. The interactions of CS and 
HS with Ngr1 are mediated by the same motif on Ngr1, sug-
gesting a competition between these GAG ligands for this 
common receptor. The biological relevance of HS-Ngr1 in-
teraction, however, has not been characterized, leaving an in-
teresting topic for future studies as this would reveal whether 
the NgRs behave as bifunctional receptors to mediate oppo-
site axon growth instructions from CSPGs and HSPGs. 

Semaphorin 5A
In addition to the LAR family and NgR family receptors, 
Semaphorin 5A, an axon guidance molecule, binds through 
its thrombospondin repeats to the GAGs of both CSPGs and 
HSPGs and thereby presents itself to the developing axons 
as a bifunctional guidance molecule (Kantor et al., 2004). 
Whereas HSPGs are required for axon attraction by Sema-
phorin 5A, CSPGs convert Semaphorin 5A into an inhibito-
ry guidance cue. 

Given the abundance of proteoglycans in the intercellular 
space, it would not be surprising that future studies may 
identify more receptors of CSPGs and HSPGs, and perhaps 
also receptors of other proteoglycans such as the dermatan 
sulfate proteoglycans and keratan sulfate proteoglycans.

Discussion
The functional significance of HSPGs and CSPGs in axon 
growth is known for decades; however, the underlying mo-
lecular mechanisms remain poorly understood. These recent 
discoveries of CSPG and HSPG receptors provided us with 
molecule tools to further dissect the mechanisms of axon 
growth regulation. More importantly, these proteoglycan re-
ceptors are likely potential therapeutic targets for promoting 
post-injury axon regeneration. The studies aforementioned in 
this review also give a few take-home messages regarding the 
treatment strategies that target these axon growth regulators. 

Functional redundancy among CSPG receptors
The fact that CSPGs interact with multiple receptors in 
the LAR and NgR family suggests a functional redundancy 
among these receptors. Removing an individual CSPG recep-
tor, or even a combined loss of NgR1 and NgR3 only results 
in a partial relief of CSPG-inhibition (Shen et al., 2009; Fish-
er et al., 2011; Dickendesher et al., 2012). Hence, a combina-
tional targeting strategy that simultaneously interferes with 
multiple CSPG receptors may be necessary to achieve an 
optimal result in promoting post-injury axon regeneration. 
Nonetheless, in some occasions the injured axons may pos-
sess a predominant CSPG receptor. For example, in cardiac 
sympathetic neurons, where PTPsigma appears to be the 
major CSPG receptor, targeting PTPsigma alone is sufficient 
for a full reinnervation of the scar after ischemia-reperfusion 
injury (Gardner and Habecker, 2013). Therefore, the strategy 
to combat CSPG inhibition should be tailored based on the 
local distribution of the CSPG receptors.

Targeting a bifunctional receptor
For a bifunctional receptor such as PTPsigma, blocking 
ligand access to its binding domain will eliminate the in-
hibitory signals of CSPGs; however, this will also deprive 
the growth promoting signals of HSPGs. Such an approach 
therefore may not provide the best outcome in promoting 
axon growth. Instead, supplying HSPGs to the CSPG-en-
riched lesion environment is a simple strategy that eliminates 
CSPG-inhibition and stimulated axon growth simultaneous-
ly. Alternatively, inhibiting PTPsigma phosphatase activity 
can be another strategy to switch downstream signaling in 
favor of axon growth. Compared with the genetic deletion 
of PTPsigma, a PTPsigma inhibitory peptide evidently has 
much stronger effects in promoting axonal plasticity, pre-
sumably because the blockade of the phosphatase activity 
assimilates not only the removal of CS but also the addition 
of HS (as discussed above) (B. T. Lang, 2012).

Locations of treatment
In injured spinal cords, CSPGs are heavily deposited in the 
lesion areas, forming a barrier that halts the severed axons. It 
is therefore rational to apply CSPG-combatting treatments to 
the area of dystrophic axon tips. In fact, lesion site injection 
of Chondroitinase ABC, an enzyme that digests CS GAGs, 
effectively enhances axonal plasticity and functional recovery 
after spinal cord injuries (Bradbury et al., 2002; Garcia-Alias 
et al., 2009; Alilain et al., 2011). 

However, the lesion sites are not the only location where 
CSPGs contact the injured neurons, and often neglected is 
the somatodendritic region where the proteoglycan receptors 
are surrounded by perineuronal CSPGs. Upon spinal cord 
injuries, CSPGs are upregulated in the perineuronal nets 
of deafferented neurons distal to the lesion sites (Massey et 
al., 2006; Alilain et al., 2011). In a recent study, systemic ap-
plication of a PTPsigma inhibitory peptide achieved robust 
functional restoration, which appears to mostly result from 
sprouting fibers that presumably have broken through the 
perineuronal nets (B. T. Lang, 2012). These findings therefore 
suggest that the cell bodies of deafferented neurons distal 
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from the lesion site are additional locations where CSPG-re-
ceptor interaction plays a role in curtailing plasticity. There-
fore, an optimal treatment regime should take into account 
both the axons and cell bodies of the injured neurons so as to 
maximize the opportunity for functional recovery.
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