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Abstract. Acute myeloid leukemia (AML) is the most common 
type of acute leukemia and is a heterogeneous clonal disorder. 
At present, the pathogenesis of AML and potential methods 
to effectively prevent AML have become areas of interest in 
research. In the present study, two messenger ribonucleic acid 
sequencing datasets of patients with AML were downloaded 
from the cancer Genome Atlas and Gene Expression Omnibus 
databases. The differentially expressed genes (dEGs) of the 
poor and good prognosis groups were screened using the Linear 
Models for Microarray data package, and the prognosis-related 
genes were screened using univariate cox regression analysis. 
A total of 206 significant DEGs were identified. Following 
univariate and multivariate cox regression analysis, 14 genes 
significantly associated with prognosis were screened and six 
of these genes, including triggering receptor expressed on 
myeloid cells 2 (TREML2), cysteine-glutamate transporter 
(SLC7A11), NAcHT, LRR, and PYd domains-containing 
protein 2 (NLRP2), dNA damage-inducible transcript 
4 protein (DDIT4), lymphocyte‑specific protein 1 (LSP1) and 
c-type lectin domain family 11 member A (CLEC11A), were 
used to construct model equations for risk assessment. The 
prognostic scoring system was used to evaluate risk for each 
patient, and the results showed that patients in the low-risk 
group had a longer survival time, compared with those in 
the high-risk group (P=9.59e-06 for the training dataset and 
P=0.00543 for the validation dataset). A total of eight main 
Kyoto Encyclopedia of Genes and Genomes pathways were 
identified, the top three of which were hematopoietic cell 
lineage, focal adhesion, and regulation of actin cytoskeleton. 
Taken together, the results showed that the scoring system 

established in the present study was credible and that the six 
genes were identified, which were significantly associated 
with the risk assessment of AML, offer potential as prognostic 
biomarkers. These findings may provide clues for further 
clarifying the pathogenesis of AML.

Introduction

Acute myeloid leukemia (AML) is the most common type of 
acute leukemia. It is a heterogeneous clonal disorder charac-
terized by an increase in the number of myeloid cells in the 
marrow and an arrest in their maturation, frequently resulting in 
hematopoietic insufficiency (1). The annual incidence of AML 
in the United States in 1999 was ~2.4 per 100,000 individuals, 
and the prevalence of the condition increased progressively 
with age to reach a peak of 12.6 per 100,000 individuals in 
adults aged 65 years or older (1). The incidence of AML has 
become higher than ever. In 2016, the number of new cases of 
AML in the United States was 19,950, representing an increase 
of 6,090 from the number reported in 2013 (2,3).

By contrast, the number of cases of AML-associated 
mortality in 2016 revealed an increase of only 230 cases, 
compared with the number of cases of AML-associated 
mortality in 2013 (2,3). With the ongoing improvements in 
chemotherapeutic protocols in support therapy, and the devel-
opment of hematopoietic stem cell transplantation techniques, 
the prognosis of patients with AML has improved. However, 
there remain several challenges in the clinical treatment of 
AML. For example, it was previously reported that 10-20% 
of patients with AML do not enter remission following their 
first course of chemotherapy, a number of patients succumb 
to mortality due to complications of chemotherapy, and >50% 
of affected patients are expected to eventually relapse with 
low remission rates and short median survival rates (4,5). 
Therefore, AML remains one of the most difficult diseases to 
treat clinically; therefore, the examination of the pathogenesis 
of AML and methods to effectively prevent the condition have 
become areas of interest in research.

At present, the pathogenesis of AML remains to be fully 
elucidated, and it is generally considered to involve multiple 
mutations of gene loci with numerous mechanisms. Previous 
studies have identified several prognostic indicators for AML, 
including age, cytogenetic findings, white blood cell count, 
and the presence or absence of an antecedent hematologic 
disorder (e.g., myelodysplasia) (6). Until the 1990s, cytogenetic 
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findings represented the most useful prognostic factor (7,8). 
However, additional factors associated with the pathogen-
esis and prognosis of AML have been found, including cell 
karyotype, micro-ribonucleic acid-155 (9), and gene muta-
tion and expression (10). The aberrant expression of certain 
specific genes associated with hematopoiesis, bone marrow 
differentiation and immune stress can significantly affect the 
chemotherapeutic effects on and the prognosis of AML. For 
example, the high expression of brain and acute leukemia, 
cytoplasmic (BAALc) and MN1 has a close association with 
the poor prognosis of AML (10-13). As the previous prognostic 
scoring systems that have been used are mainly based on age, 
cytogenetic findings and white blood cell count, the examina-
tion of additional AML-related genes and the establishment 
of a more effective scoring system based on the expression 
levels of these genes are of important theoretical and clinical 
significance.

In order to investigate the possible unknown important 
pathogenic mechanisms and novel biomarkers of AML, 
comprehensive bioinformatics analysis methods were 
used in the present study. The messenger ribonucleic acid 
sequencing (mRNA-seq) data of patients with AML were 
downloaded from the cancer Genome Atlas (TcGA) data-
base, and were integrated with clinical data and survival 
information to screen out differentially expressed genes 
(dEGs) associated with AML. A prognostic scoring system 
was established based on the screened genes and simulta-
neously validated by a dataset from the Gene Expression 
Omnibus (GEO) database. The reliability of the novel prog-
nostic scoring system was further validated by performing 
a correlation analysis between clinical characteristics and 
prognosis, and stratified analysis between risk assessment 
and clinical characteristics.

Materials and methods

Data sources. The mRNA‑seq expression profiles of adult 
patients with AML were downloaded from TcGA database 
(https://gdc-portal.nci.nih.gov/) on April 10, 2017, having been 
sequenced on the Illumina HiSeq™ 2000 platform (Illumina, 
San diego, cA, USA). In total, there were 200 bone marrow 
tissue samples from patients with AML, of which 173 had 
corresponding clinical information barcode numbers. This 
dataset was used as the training dataset.

For the validation dataset, ‘acute myeloid leukemia’ and 
‘human’ were used as key words to search the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo) on April 27, 2017. 
Subsequently, the GSE12417 expression dataset (14) from the 
GPL96 platform, which contained a total of 163 AML adult 
bone marrow tissue samples, was selected and downloaded. 
In the original article of the GSE12417 dataset, the trials were 
approved by the local institutional review boards of all partici-
pating centers, and informed consent was obtained from all 
patients in accordance with the declaration of Helsinki (14). 
The overall analytical process used in the present study is 
presented in Fig. 1.

Clinical information. The clinical information of the training 
and validation datasets were received and then sorted, as 
shown in Table I. Survival information was provided; the 

overall survival rates were 19.30±19.79 months in the training 
dataset and 15.12±14 months in the validation dataset, 
respectively (Table I).

Screening of DEGs. Among the 173 AML samples in the 
training dataset, 160 had survival and prognosis information. 
Following the removal of those without clinical information 
and those with survival rates of <6 months, 141 samples 
remained for further analysis. Of these, samples with survival 
rates of <12 months were defined as the poor prognosis group, 
whereas those with survival rates of >24 months were classified 
into the good prognosis group. The dEGs of the two groups 
were examined using the Linear Models for Microarray data 
(LIMMA) package (15) of R3.1.0 with a false discovery rate 
(FdR) threshold of <0.05.

Screening of genes associated with prognosis. For the 
141 samples with survival rates of >6 months, univariate cox 
regression analysis was used in the survival package of R3.1.0 
language (16) to screen for genes significantly correlated with 
prognosis. P‑values were examined by log‑rank and P≤0.05 
was set as the threshold of significant correlation. Multivariate 
cox regression was then performed to narrow down the 
eligible genes associated with prognosis.

Establishment of the risk assessment model. Using the genes 
obtained in the above analyses, a system of patient risk 
assessment was established by regression factor-weighted 
gene expression based on linear combination to acquire the 
risk values for each patient. That is, each risk value was a 
linear combination of the mRNA expression values obtained 
following weighting with regression coefficients. The 
risk score for each patient was calculated according to the 
following equation: Risk score = βGENE1 x ExprGENE1 + β
GENE2 x ExprGENE2 + ··· + βGENEn x ExprGENEn, where 
β represents the coefficient for each gene obtained from the 
training set and was used to validate the risk of patients in the 
validation dataset. The difference in prognosis between the 
high-risk and low-risk groups (with the risk score median as 
the break point) was also assessed.

Correlation analysis between risk scores and clinical features. 
The risk scores of samples in the training set and validation set 
were calculated according to the aforementioned risk assess-
ment system. Likewise, the samples were divided into high 
and low risk types with the threshold being the median risk 
score. Additionally, corresponding clinical features of those 
samples that were significantly associated with prognosis 
were analyzed using Kaplan-Meier (KM) survival analysis. 
consequently, their correlation analysis was performed by 
cox regression, which combined the clinical data and the 
corresponding samples.

Stratification analysis of clinical features significantly 
correlated with risk scores. According to the aforementioned 
available information, stratification analysis was performed 
on the clinical features significantly associated with high 
and low risk. The detailed analytical procedure included: 
i) calculation of the correlation between the expression values 
of each selected gene and their high or low risk; ii) calculation 



INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  42:  1495-1507,  2018 1497

of the correlation between the high- and low-risk groups with 
their respective survival prognosis with regard to the same 
risk condition; and iii) calculation of the correlation between 
different clinical conditions and survival prognosis with the 
same risk factor.

Functional analysis of important genes associated with 
high and low risk. According to the scores calculated by 
the risk assessment model, the samples were divided into a 

high risk and low risk group. In the training set, the dEGs 
were screened using the LIMMA package (15) (FdR<0.05). 
Subsequently, the genes associated with positive or negative 
risk were selected on the basis of the correlation coefficient 
between their expression values and corresponding risk 
values. Thereafter, their biological functions were analyzed 
by the database for Annotation, Visualization, and Integrated 
Discovery (17) to screen the significantly enriched biological 
processes and pathways in combination with information 

Figure 1. Overall analytical process of the study. TGcA, The cancer Genome Atlas; AML, acute myeloid leukemia; GEO, Gene Expression Omnibus; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.

Table I. clinical information of TcGA training and validation datasets.

clinical characteristics TcGA (N=174) GSE1241 (N=326)

Age (mean years ± standard deviation) 55.28±16.14 55.66±14.82
Gender (male/female/-) 93/80/1 -
FLT3 mutation (positive/negative/-) 50/116/8 -
BcR-ABL (positive/negative/-) 1/13/160 -
IdH1 R132 (positive/negative/-) 15/153/6 -
IdH1 R140 (positive/negative/-) 13/153/8 -
IdH1 R172 (positive/negative/-) 2/167/5 -
Activating RAS (positive/negative/-) 9/161/4 -
NPMc (positive/negative/-) 42/128/4 -
PML-RAR (positive/negative/-) 5/7/162 -
death (deceased/alive/-) 103/57/14 206/120
Overall survival months (mean ± standard deviation) 19.30±19.79 15.12±14.00

‘-’ Indicates information unavailable. TcGA, The cancer Genome Atlas; FLT3, FMS-like tyrosine kinase 3; BcR-ABL, breakpoint cluster 
region-Abelson; IdH1, isocitrate dehydrogenase (NAdP+) 1, cytosolic; RAS, reticular activating system; NPMc, nucleophosmin mutation; 
PML-RAR, promyelocytic leukemia-retinoic acid receptor.
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from the Gene Ontology (GO; http://www.geneontology.org/) 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.genome.jp/kegg/pathway.html) databases. The 
cut‑off for the selection of significant categories was P<0.05.

Results

Identification and validation of a six gene prognostic signa-
ture. The genes in the training datasets were first filtered 
according to their expression values, and those with an average 
expression of <5 were removed. Subsequently, a total of 
141 samples were screened out following the exclusion of those 
with survival rates of <6 months. Among the 141 samples, 
further grouping was performed to differentiate the samples 
with good or poor prognosis. Finally, a total of 55 samples 
from deceased patients with survival rates of <12 months were 
classified as the poor prognosis group, and 27 patient samples 
from living patients with survival rates of >24 months were 
classified as the good prognosis group. The DEGs of the two 
groups were screened and a total of 206 significant DEGs were 
screened out.

Subsequently, the prognostic values of the above 206 dEGs 
were assessed by univariate cox regression analysis and a 
total of 162 genes associated with prognosis were screened 
out. Multivariate cox regression analysis was then performed 
for these 162 genes associated with prognosis, and a total of 
14 genes significantly associated with prognosis were selected 
according to the threshold of P<0.01. Finally, the model equa-
tions for risk assessment were established based on six genes, 
specifically NAcHT, LRR, and PYd domains-containing 
protein 2 (NLRP2); triggering receptor expressed on myeloid 
cells 2 (TREML2); cysteine-glutamate transporter (SLC7A11); 
dNA damage-inducible transcript 4 protein (DDIT4); lympho-
cyte-specific protein 1 (LSP1); and c-type lectin domain 
family 11 member A (CLEC11A) (Table II). The risk scores 
were determined as follows: Risk score = 1.053 x ExprTREM
L2 + 0.426 x ExprSLc7A11 + 0.222 x ExprNLRP2 + 0.548 x E
xprddIT4 + (-0.771) x ExprLSP1 + (-0.396) x ExprcLEc11A

Validation of the model classification effect. The model equa-
tion for risk assessment was used to evaluate the risk of each 
patient, following which patients in the TcGA training group 

were divided into high-risk patients and low-risk patients 
according to the median risk score. Patients in the low-risk 
group had longer survival rates, compared with those in the 
high-risk group. In the training dataset, the mean survival rate 
of 71 samples in the high-risk group was 14.06±14.81 months, 
whereas that of the 70 samples in the low-risk group was 28.9
6±21.57 months (P=9.59e-06). In the validation dataset, the 
mean survival rate of 81 samples in the high-risk group was 
17.48±7.49 months, whereas that of 82 samples in the low-risk 
group was 28.24±12.89 months (P=0.00543). The significant 
association between the expression of the above six genes and 
the survival information was validated using KM survival 
curve analysis (Fig. 2A and B).

Expression profile of the six important genes. In the training 
dataset, the expression values of TREML2, SLC7A11, NLRP2 
and DDIT4 in the high‑risk group were significantly higher, 
compared with those in the low-risk group (P<0.005), whereas 
the expression values of LSP1 and CLEC11A in the high-risk 
group were significantly lower, compared with those in the 
low-risk group (P<0.005) (Fig. 3A). In the validation dataset, 
the expression trends of five genes were similar to those in 
the training dataset (P<0.005), with the exception of NLRP2 
(0.01≤P<0.05) (Fig. 3B).

Correlation analysis between risk score and clinical features. 
The clinical features that were significantly associated with 
prognosis were screened using univariate and multivariate 
cox regression analysis and the results showed that, in addi-
tion to risk score, which was the independent prognostic 
factor, age was another factor associated with clinical prog-
nosis (Table III).

Correlation between individual signature genes and risk 
score. The correlation between the six individual signature 
genes (TREML2, SLC7A11, NLRP2, DDIT4, LSP1 and 
CLEC11A) and risk score model equations were analyzed 
using univariate Cox regression. As shown in Table IV, five 
genes, including TREML2, SLC7A11, NLRP2, LSP1 and 
CLEC11A, were associated with age (P<0.05) and TREML2 
was also associated with FMS-like tyrosine kinase 3 (FLT3) 
mutation and nucleophosmin mutation (NPMc) (P<0.05).

Table II. Information of six genes based on which the model equations for risk assessment were constructed.

Gene coef HR P-value

TREML2 1.053 0.349 1.76E-05
SLC7A11 0.426 0.653 9.52E-05
NLRP2 0.222 0.801 0.000442
DDIT4 0.548 0.578 0.000609
LSP1 -0.771 2.162 0.000692
CLEC11A -0.396 1.486 0.000989

TREML2, triggering receptor expressed on myeloid cells 2; SLC7A11, cysteine-glutamate transporter; NLRP, NAcHT, LRR, and PYd 
domains-containing protein 2; DDIT4, dNA damage-inducible transcript 4 protein; LSP1, lymphocyte‑specific protein 1; CLEC11A, c-type 
lectin domain family 11 member A.
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Stratification analysis of clinical features significantly 
correlated with risk scores. The correlations between clinical 
features and prognosis were analyzed. The results showed that 
age, FLT3 mutation, isocitrate dehydrogenase (NAdP+) 1, 
cytosolic R132, and NPMc were significantly associated with 
prognosis (Table V). The KM survival curves of the above 

four factors in the low-risk and high-risk groups are shown in 
Fig. 4A-d.

The correlations between different clinical conditions and 
survival prognosis under the same risk condition were analyzed, 
and the results showed that age was significantly associated 
with prognosis under the same risk conditions (Table VI). 

Figure 2. Kaplan-Meier survival curves. Kaplan-Meier survival curves of high-risk and low-risk group samples in the (A) training dataset and (B) validation 
dataset.

Figure 3. Expression values of the six signature genes. Expression values of genes in the (A) training dataset and (B) validation dataset. Significant differences 
between low-risk samples (blue bar) and high-risk samples (red bar) are indicated (***P<0.005; *0.01≤P<0.05). TREML2, triggering receptor expressed on 
myeloid cells 2; SLc7A11, cysteine-glutamate transporter; NLRP, NAcHT, LRR, and PYd domains-containing protein 2; ddIT4, dNA damage-inducible 
transcript 4 protein; LSP1, lymphocyte‑specific protein 1; CLEC11A, C‑type lectin domain family 11 member A.
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The KM survival curves of age and prognosis in the low-risk 
and high-risk groups are shown in Fig. 5A-c. The risk score, 
overall survival, and the expression values of the six signa-
ture genes in the training dataset (Fig. 6Aa-c) and validation 
dataset (Fig. 6Ba-c) are shown in Fig. 6.

Functional enrichment analysis of genes associated with 
different prognoses. The dEGs of the high-risk group and 
low-risk group in the training dataset were screened using 
LIMMA (15). A total of 309 dEGs were obtained with the 
criterion of FdR<0.05.

Following correlation analysis between the dEGs 
and risk value, 111 and 198 dEGs were obtained with 
expression levels associated with negative or positive risk, 
respectively. GO function and KEGG pathway enrichment 
analysis of these dEGs were performed and the results are 
shown in Fig. 7. The downregulated genes were significantly 
enriched into 10 GO terms, predominantly associated with 
cell defense and immune response, whereas the upregu-
lated genes were significantly enriched into 12 GO terms, 
predominantly associated with morphogenesis and devel-
opment (Fig. 7A). With regard to the KEGG pathways, as 
no significant pathways were enriched for the upregulated 
and downregulated genes, respectively, all these genes were 

Table V. correlation between risk score and prognosis in the 
same clinical setting.

clinical characteristic P-value

Age (>58 years, N=70) 0.081
Age (<58 years, N=71) 6.30E-05
Gender (male, N=75) 0.249
Gender (female, N=66) 0.102
FLT3 mutation (positive, N=37) 0.020
FLT3 mutation (negative, N=97) 8.75E-05
IdH1 R132 (positive, N=12) 0.117
IdH1 R132 (negative, N=126) 1.21E-05
IdH1 R140 (positive, N=12) 0.741
IdH1 R140 (negative, N=125) 0.251
IdH1 R172 (positive, N=2) -
IdH1 R172 (negative, N=135) 0.349
Activating RAS (positive, N=8) 0.059
Activating RAS (negative, N=130) 2.44E-01
NPMc (positive, N=36) 0.015
NPMc (negative, N=102) 6.97E-05

FLT3, FMS-like tyrosine kinase 3; IdH1, isocitrate dehydrogenase 
(NAdP+) 1, cytosolic; RAS, reticular activating system; NPMc, 
nucleophosmin mutation.

Table IV. correlation between six individual signature genes and risk score.

clinical characteristic TREML2 SLC7A11 NLRP2 DDIT4 LSP1 CLEC11A

Age (>58, vs. <58 years) 0.039 0.031 0.001 0.113 0.001 0.029
Gender (male, vs. female) 0.487 0.378 0.149 0.914 0.294 0.835
FLT3 mutation (positive, vs. negative) 0.012 0.494 0.095 0.274 0.250 0.130
IdH1 R132 (positive, vs. negative) 0.424 0.376 0.661 0.270 0.809 0.304
IdH1 R140 (positive, vs. negative) 0.896 0.319 0.647 0.701 0.380 0.625
IdH1 R172 (positive, vs. negative) 0.852 0.452 0.878 0.827 0.503 0.964
Activating RAS (positive, vs. negative) 0.558 0.166 0.860 0.969 0.152 0.766
NPMc (positive, vs. negative) 0.049 0.329 0.336 0.987 0.807 0.898

TREML2, triggering receptor expressed on myeloid cells 2; SLC7A11, cysteine-glutamate transporter; NLRP, NAcHT, LRR, and PYd 
domains-containing protein 2; DDIT4, dNA damage-inducible transcript 4 protein; LSP1, lymphocyte‑specific protein 1; CLEC11A, 
c-type lectin domain family 11 member A; FLT3, FMS-like tyrosine kinase 3; IdH1, isocitrate dehydrogenase (NAdP+) 1, cytosolic; RAS, 
reticular activating system; NPMc, nucleophosmin mutation.

Table III. Results of clinical prognosis by cox regression analysis.

clinical characteristic Univariate cox Multivariate cox

Gender (male vs. female) 0.215 -
FLT3 mutation (positive vs. negative) 0.051 -
IdH1 R132 (positive vs. negative) 0.770 -
IdH1 R140 (positive vs. negative) 0.985 -
IdH1 R172 (positive vs. negative) 0.876 -
Activating RAS (positive vs. negative) 0.892 -
NPMc (positive vs. negative) 0.027 0.735
Age (above vs. below median of 58 years) 0.000283 0.018
Risk score 2.12E-06 0.0000712

FLT3, FMS-like tyrosine kinase 3; IdH1, isocitrate dehydrogenase (NAdP+) 1, cytosolic; RAS, reticular activating system; NPMc, nucleo-
phosmin mutation.
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Figure 4. KM survival curves in the low- and high-risk patient groups. (A) KM survival curves of patients (a) younger and (b) older than the median age 
(58 years). (B) KM curves of patients in the (a) IdH R132-negative group and (b) IdH R132-positive group, (c) KM curves of patients in the (a) FLT3 
mutation-negative group and (b) FLT3 mutation-positive group. (d) KM curves of patients in the (a) NPMc-negative group and (b) NPMc-positive group. The 
high-risk group is denoted by red and purple curves, the low-risk group is denoted by black and blue curves. KM, Kaplan-Meier; L, low-risk; H, high-risk; 
IdH1 R132, isocitrate dehydrogenase (NAdP+) 1, cytosolic R132; FLT3, FMS-like tyrosine kinase 3; NPMc, nucleophosmin mutation.
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Table VI. correlation between clinical features and prognosis under the same risk factors.

clinical characteristic High risk Low risk

Age (above vs. below median of 58 years) 0.054 6.46E-05
Gender (male vs. female) 0.310 0.131
FLT3 mutation (positive vs. negative) 0.818 0.574
IdH1 R132 (positive vs. negative) 0.539 0.206
IdH1 R140 (positive vs. negative) 0.674 0.067
IdH1 R172 (positive vs. negative) 0.553 0.570
Activating RAS (positive vs. negative) 0.228 0.327
NPMc (positive vs. negative) 0.753 0.517

FLT3, FMS-like tyrosine kinase 3; IdH1, isocitrate dehydrogenase (NAdP+) 1, cytosolic; RAS, reticular activating system; NPMc, nucleo-
phosmin mutation.

Figure 5. Kaplan-Meier survival curves of age and prognosis. (A) Survival curves for low-risk patients aged below the median age (black curve) and above 
the median age (red curve). (B) Survival curves for high-risk patients aged below the median age (blue curve) and above the median age (purple curve). 
(c) Survival curves for all groups. L, low-risk; H, high-risk.



INTERNATIONAL JOURNAL OF MOLEcULAR MEdIcINE  42:  1495-1507,  2018 1503

combined to show the KEGG pathway enrichment results. 
These genes were predominantly enriched in eight KEGG 
pathways: Systemic lupus erythematosus, type 2 diabetes 
mellitus, regulation of actin cytoskeleton, hematopoietic cell 
lineage, complement and coagulation cascades, extracellular 
matrix receptor interaction, focal adhesion, and galactose 
metabolism (Fig. 7B).

Discussion

Previous studies have identified several prognostic indicators 
for AML, including age and cytogenetic findings (6). With the 
development of molecular biology, genetics, and blood cell 
disease detection technology, increasing factors associated with 
AML pathogenesis and prognosis have been found, including 

Figure 6. Risk score, overall survival and the gene expression values. (A) Training set (a) risk score, (b) overall survival and (c) expression values of six 
signature genes. (B) Validation set (a) risk score, (b) overall survival and (c) expression values of six signature genes. The abscissa values in Aa and b, and Ba 
and b indicate the sample number after sorting of the risk score from low to high. In Ab and Bb, the orange spots represent samples from deceased patients and 
the black spots represent samples from living patients.
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cell karyotype, and gene mutation and expression (10). In 
the present study, the large quantities of mRNA-seq data on 
patients with AML published in TcGA database were used to 
screen out the significant DEGs associated with AML. As a 
large-scale cancer genomics project, TcGA database contains 
substantial cancer genomics data from multiple technical 
platforms (18). The data are important to cancer research 
and several studies have demonstrated the value of analyzing 
networks based on TcGA database (19,20). The present study 
was performed using 141 patients with AML in the training 
dataset and 163 patients with AML in the validation dataset. 
The two datasets provided survival information. According to 

the survival rates, of the 141 patients with AML in the training 
dataset, 55 poor prognosis samples were distinguished from 
27 good prognosis samples. The aberrant expression of certain 
specific genes associated with hematopoiesis, bone marrow 
differentiation, and immune stress can significantly affect the 
chemotherapeutic effects on and the prognosis of AML, and 
can become preferred potential candidate genes for investiga-
tions, providing assistance in revealing the pathogenesis of 
AML. In the present study, a total of 206 significantly DEGs 
were screened out between the poor prognosis group and the 
good prognosis group. Following univariate cox regression 
analysis and multivariate cox regression analysis, a total of 14 

Figure 7. Functional enrichment analysis of top 20 genes with significant positive and negative correlations. (A) GO function analysis of genes with signifi-
cantly downregulated and upregulated expression; (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis. GO, Gene Ontology.
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genes significantly associated with prognosis were screened. 
Finally, six genes (TREML2, SLC7A11, NLRP2, DDIT4, LSP1 
and CLEC11A) were used to establish the model equations 
for risk assessment. As previous prognostic scoring systems 
have mainly been based on age, cytogenetic findings and white 
blood cell count, the establishment of the present prognostic 
scoring system based on the expression level of AML-related 
genes has important theoretical and clinical significance, and 
offers potential for practical application in preclinical and 
clinical trials.

The six candidate signature genes were divided into two 
groups according to their expression profiles. The first group 
included four upregulated genes, which were TREML2, 
SLC7A11, NLRP2 and DDIT4. TREM proteins are a family 
of cell surface receptors, which are involved in diverse 
cell processes, including inflammation, bone homeostasis, 
neurological development and coagulation (21). Reportedly, 
TREML2 is a potential susceptible gene of osteoporosis. In 
addition, missense mutation of TREML2 has a protective effect 
in the development of Alzheimer’s disease (22,23). Based on 
the present study, it may be associated with the progression of 
AML.

SLC7A11 is a member of a heterodimeric Na+-independent 
anionic amino acid transport system, which mediates 
cysteine-glutamate exchange and thereby regulates intracel-
lular glutathione levels (24,25). In addition, SLC7A11 controls 
the production of pheomelanin pigment and the proliferation 
of cultured cells (26), and protects cancer cells of the NcI-60 
panel from chemoresistance to numerous compounds (24). 
The impairment of SLC7A11 can result in the disruption of 
glutamate homeostasis and lead to a variety of central nervous 
system disorders, including drug addiction, schizophrenia and 
neurodegenerative conditions (27). Studies have indicated that 
the expression of SLC7A11 is markedly increased in breast 
cancer cell lines and clinical samples (28), and can serve as 
a predictor of cellular response to L-alanosine- and gluta-
thione-mediated resistance to geldanamycin (24). In gastric 
cancer, the long non-coding RNA SLc7A11-AS1 can promote 
tumor growth, and its decreased expression is linked with poor 
prognosis (29). According to the results of the present study, 
SLC7A11 may be important in the pathogenesis of AML, 
yielding a potential target for AML treatment.

NALP genes are characterized by the N-terminal pyrin 
domain (PYd), and are involved in the activation of caspase-1 
by Toll-like receptors and in protein complexes that activate 
proinflammatory caspases (30). As the most well known 
member of the NALP gene family, NLRP3 has been shown to 
form the core of the inflammasome and respond to numerous 
pathogen-, danger-, and disease-associated molecular 
patterns (31‑33). Similarly, NALP2 is crucial in inflamma-
tion through the regulation of nuclear factor-κB activity, and 
the PYd of NALP2 can inhibit cell proliferation and tumor 
growth in human glioblastoma (34). Additionally, NALP2 
has been identified as a predictive biomarker for pregnancy 
following in vitro fertilization (35). However, there is no direct 
evidence to date that NALPs are associated with AML.

DDIT4, also known as regulated in development and 
dNA damage response 1 (REdd1), usually acts as a negative 
regulator of mechanistic target of rapamycin (mTOR), which 
regulates a variety of cellular functions including growth, 

proliferation and autophagy (36,37). due to its effect on 
mTOR, which has been associated with aging and linked with 
diseases including tuberous sclerosis, diabetes and cancer (38), 
DDIT4 has attracted increasing interest in clinical studies. The 
high expression of DDIT4 has been considered as a prognostic 
marker in certain malignancies, including AML, breast cancer, 
and colon, skin and lung cancer (39). This finding supports the 
reliability of the results of the present study.

The second group included two downregulated genes, 
LSP1 and CLEC11A, which are associated with cellular immu-
nity, hematopoiesis and the cytoskeleton. LSP1 was originally 
reported as a lymphocyte‑specific actin‑binding protein in 
murine lymphocytes (40) and was subsequently found in all 
hematopoietic cells (41). LSP1 has been reported to regulate 
cell biology in several types of human cancer, including 
lymphomas (42), pancreatic cancer (43), breast cancer (44), 
dermatofibroma (45) and hepatocellular carcinoma (HCC) (46). 
However, the functions of LSP1 in AML remain to be eluci-
dated. It has been reported that LSP1 is downregulated in 
breast cancer and in patients with Hcc, and is considered a 
risk factor for these two types of cancer (44,46,47). On the 
basis of previous findings, the downregulation of LSP1 in the 
poor prognosis group in the present study indicated that LSP1 
may serve as a prognostic marker and a potential therapeutic 
target in AML.

CLEC11A, a secreted sulfated glycoprotein expressed in 
the bone marrow and skeletal tissues, can promote colony 
formation by human hematopoietic progenitors in culture and 
assist in maintenance of the adult skeleton (48-51). Previously, 
CLEC11A was identified as a biomarker for predicting colorectal 
cancer (52). A previous study confirmed the central role of 
CLEC11A as a potential regulator of multiple myeloma SET 
protein in multiple myeloma cell survival and regulation (53). 
In addition, the plasma level of CLEC11A has been associ-
ated with hemoglobin levels and was found to be increased 
in patients following bone marrow transplantation (54,55). 
Therefore, it has been considered as a hematopoietic growth 
factor and novel drug target for myeloma. However, the physi-
ological function of CLEC11A in AML has not been reported.

As SLC7A11, NLRP2, DDIT4 and LSP1 have previously 
been reported to be associated with cancer, it was hypoth-
esized that the six candidate signature genes identified in the 
present study may be novel factors associated with AML. A 
correlation analysis between the risk assessment model and 
clinical features was performed and the results showed that 
both the risk score and age were prognostic factors, and that 
age was significantly associated with prognosis under the 
same risk conditions. The reliability of the model equations 
for risk assessment was further validated in an independent 
validation dataset. These investigations aimed to provide an 
effective tool for the clinical diagnosis of AML, which may 
assist in elucidating the possible pathogenesis of AML.

Functional annotations of the significant DEGs according 
to the GO and KEGG databases can provide numerous 
candidate genes and more information on the pathogenesis of 
AML. In the present study, GO function analysis of dEGs was 
performed. The GO terms of the significantly downregulated 
genes were mainly associated with cell defense and immune 
response, whereas the GO terms of the significantly upregu-
lated genes were mainly associated with morphogenesis and 
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development, indicating that the immune defense system of the 
organism was suppressed, with the abnormal amplification of 
cancer cells predominant. This finding was consistent with the 
characterization of AML (1). Subsequently, KEGG pathway 
analysis was performed on the 20 significant characteristic 
factors, and the results showed that these genes were mainly 
involved in eight KEGG pathways. The top three significant 
KEGG pathways were hematopoietic cell lineage, focal 
adhesion, and regulation of actin cytoskeleton, which are all 
associated with the abnormal amplification of hemocytes. For 
example, the ‘hematopoietic cell lineage’ pathway is important 
in the processes of hematopoiesis and immune response (56), 
whereas the ‘focal adhesion’ pathway is associated with another 
blood disease, macrothrombocytopenia (57). The results of 
the present study may provide clues for further clarifying the 
pathogenesis of AML. However, there were several limitations 
in the present study. For example, the predictive capability of 
the model has not been confirmed by direct experiments. In 
addition, the expression of the six important genes (TREML2, 
SLC7A11, NALP2, DDIT4, LSP1 and CLEC11A) and their 
functions in AML require further validation in experiments 
in vitro and in vivo. Additionally, the survival rates of different 
individuals in the two datasets were different, which may 
influence the accuracy of the analysis. Therefore, further 
analyses are required to elucidate the mechanisms underlying 
the processes of tumorigenesis and the development of AML.

In conclusion, the present study provided a credible risk 
assessment model for AML prognosis based on a comprehen-
sive bioinformatics analysis of six candidate genes using data 
from two independent datasets. All six genes were significantly 
associated with the diagnosis of AML and may be potential 
prognostic biomarkers.
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