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Abstract

Background and aims

Associated with numerous metabolic and behavioral abnormalities, obesity is classified by

metrics reliant on body weight (such as body mass index). However, overnutrition is the

common cause of obesity, and may independently contribute to these obesity-related abnor-

malities. Here, we use dietary challenges to parse apart the relative influence of diet and/or

energy balance from body weight on various metabolic and behavioral outcomes.

Materials and methods

Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm,

generating groups with various body weights and energetic imbalances. Spontaneous activ-

ity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing

ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were

compared using standardized multivariate linear regression models.

Results

Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not

diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulat-

ing glucose and insulin levels, while body weight alone predicted plasma leptin levels.

Regarding gene expression within the ventral hypothalamus, only two genes responded to

diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others

were related only to body weight.
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Conclusions

Collectively, these results demonstrate that individual components of obesity—specifically

obesogenic diets/energy imbalance and elevated body mass—can have independent

effects on metabolic and behavioral outcomes. This work highlights the shortcomings of

using body mass-based indices to assess metabolic health, and identifies novel associa-

tions between blood biomarkers, neural gene expression, and animal behavior following die-

tary challenges.

Introduction

Obesity and overweightness are conditions of excessive fat or body weight, typically quantified

by body mass index (BMI: weight / height2) in humans. Currently, over 70% of American

adults are overweight (BMI > 25 kg/m2) with roughly half of those people considered obese

(BMI> 30 kg/m2) [1]. Obesity is a risk factor for numerous morbidities, including hyperten-

sion, type II diabetes, neurological disorders (such as depression), and sleep disorders (such as

sleep apnea) [2–4]. Therefore, there is great incentive to determine the links between obesity

and physiological dysregulation.

Excess body weight per se is not the only predictor of molecular, metabolic, and behavioral

abnormalities. Some studies have tracked obese individuals shortly after bariatric surgery (<4

weeks), when weight loss has initiated but these people are still considered obese (BMI > 30

kg/m2). These patients exhibit reductions in hypertension, normalization of many blood

metabolite levels, and significant improvements in subjective sleepiness and alertness prior to

significant weight loss [5–7]. Second, moderate diet-induced weight loss in humans improves

cardiometabolic health outcomes [8, 9]. Third, studies with diet-induced obese (DIO) mice

following weight loss show similar effects to humans. DIO mice switched to a leptogenic diet

show normalized glucose tolerance and insulin sensitivity, even though they weigh signifi-

cantly more than lean controls [10]. Furthermore, our previous work using a diet switch feed-

ing paradigm found that mice gaining weight on high-fat diet exhibit increased total sleep time

and sleep/wake fragmentation compared to overweight mice losing weight due to regular

chow consumption, despite these two groups of mice having nearly identical body weight at

the time of recording [11]. Using linear regression modeling, we demonstrated that body

weight and diet/energy balance independently influence sleep/wake architecture [11]. Collec-

tively, these studies demonstrate that diet/energy balance could also influence certain obesity-

related physiological abnormalities.

These studies highlight underexplored areas of research, specifically related to obesity-

related pathogenesis and its reversibility. First, how are metabolic parameters affected by initial

consumption of high-fat diet, and do these parameters normalize in obese animals following

weight loss? Second, what is the relative contribution of diet/energy balance vs body mass in

mediating these changes? Third, can we build hypothesis-generating models assessing changes

in gene expression in relevant brain regions, biomarkers in the blood, and spontaneous sleep/

wake and locomotor activity and isolate their relationship to diet/energy balance and body

weight? The present study is focused on addressing these broad questions.

Following high-fat diet-induced weight gain, many peripheral organs release hormones

(e.g., insulin and leptin), which signal to the central nervous system (CNS) to reduce caloric

intake [12, 13]. However, hormone resistance develops within three days of overfeeding,
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causing an increase in circulating hormone levels but blunted downstream signaling within

the CNS [14, 15]. One of the critical brain areas responsible for sensing and responding to

these hormones is the ventral hypothalamus (VH), which contains the arcuate nucleus (ARC),

ventromedial nucleus (VMN), and paraventricular nucleus (PVN). These heterogeneous pop-

ulations of neurons adjoin the 3rd ventricle, thus allowing entry of these hormones into the

CNS [13, 16, 17]. Furthermore, these VH nuclei are defined both anatomically and by the neu-

ropeptides they express, many of which have roles in energy balance [18]. Importantly, many

VH nuclei, including the ARC, send projections to both intra- and extra-hypothalamic brain

areas important for regulating behavior, including locomotor activity and sleep and wakeful-

ness [19, 20]. Furthermore, VH neurons express functional hormone receptors, including for

insulin and leptin, and their activation alters the electrochemical properties of these neurons,

thereby affecting the synthesis and release of neuropeptides [17, 18, 21]. Taken together, the

VH contains a heterogeneous population of neurons and neuropeptides that work in concert

to regulate complex behaviors such as food intake, energy expenditure, and sleep/wake. How-

ever, it is unclear how the input signals to the VH, the VH itself, and downstream behaviors

are relatively influenced by changes in diet/energy balance and body weight.

We hypothesize that identifying unique associations of blood hormones, VH gene expres-

sion, and behavior to diet/energy balance and body mass to will reveal novel relationships

between these physiological parameters. We found that sleep/wake behavior, but not sponta-

neous activity patterns, were affected by diet/energy balance; these behaviors are highly corre-

lated under normal conditions [11, 22]. Furthermore, we use linear modeling approaches to

relate circulating metabolites, neural gene expression, and behavior, finding some VH genes

and blood biomarkers correlate with spontaneous locomotor activity while others correlate

with electroencephalography (EEG)-measured sleep/wake behavior.

Methods

Animals

Male C57BL/6J mice (12–14 weeks of age) were purchased directly from Jackson Laboratories

(#664; Bar Harbor, ME). The Institutional Animal Care and Use Committee (IACUC) at the

University of Pennsylvania approved all experimental procedures prior to initiation of these

studies. Mice were housed at 23˚C on a 12:12 h light:dark cycle, with lights-on at 7:00am. Light

intensity was 100–150 lux during lights ON (Zeitgeber [ZT] 0–12), and 0 lux during lights

OFF (ZT 12–24).

Diet Switch protocol

Upon arrival to our facility, mice were weighed (Week 0), ear tagged, and group-housed while

consuming either regular chow (RC; 5001, Lab Diet, St. Louis, MO) or high-fat diet (HFD;

D12451, Research Diets, New Brunswick, NJ). RC is composed predominately of corn, soy-

bean meal, and vitamin supplements and contains 13.5% calories from fat and 3.35 kcal/g,

while the HFD (predominately composed of soybean oil and lard) contains 45% calories from

fat and 4.73 kcal/g. We chose these diets because of their well-studied effects on metabolic and

behavioral changes in C57BL/6 mice (including our previous work) [11]. After 7–9 weeks,

mice were single housed (one week acclimation) then placed into homecage locomotor boxes

to quantify spontaneous activity (3 days continuous recording). We then randomized mice to

either consume the alternate diet (Diet Switch [DS]; RC!HFD or HFD! RC groups) or

maintenance on current diet (No Diet Switch [NoDS]; RC NoDS or HFD NoDS groups).

Food intake and body weight were measured daily between ZT2-3. On the 7th day Post-DS,

mice were kept awake from ZT3-6 using novel objects to control for behavioral state
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differences that may result from excessive sleepiness in HFD-fed mice compared to RC-fed

mice [11, 23]. All animals were sacrificed between ZT6-7 by cervical dislocation and decapita-

tion. Food and water were provided ad libitum at all times, including during the forced wake-

fulness prior to sacrifice.

All data is generated from two cohorts of animals. The first cohort (80 animals) represents a

novel data set which is the primary focus of this manuscript. Nine mice never completed the

protocol (due to fight wounds or dehydration by malfunctioning sipper tubes) and one mouse

lost ~10% body mass in the ‘positive energy balance’ group (RC!HFD); therefore, 70 mice

were used in total. The group sizes were: RC NoDS, n = 16; RC!HFD, n = 21; HFD! RC,

n = 19; HFD NoDS, n = 14. The second cohort of animals was from a previously published

manuscript observing EEG-recorded sleep behavior following the DS feeding paradigm; the

experimental methods are similar and are detailed in [11].

Homecage locomotor activity and sleep/wake estimation

Spontaneous activity patterns were recorded using infrared beam splitting locomotor boxes

(Omnitech Electronics, Columbus, OH). We recorded the number of beams broken in both x-

and y-planes, representing the total activity of the animal; Z-axis measurements were not mea-

sured. Total activity counts were exported into 10 second bins, which was used to quantify

activity and estimate sleep/wake architecture as previously described [22]. Briefly, 40-seconds

or longer of inactivity (0 beams broken) is defined as ‘sleep’ while everything else is defined as

‘wake’; this algorithm has>90% agreement with EEG-recorded sleep in healthy, lean mice

[22]. These calculations were performed in MATLAB.

Blood and brain collection

Immediately after sacrifice, blood was transferred to heparin-containing microtainers (365965,

Fisher Scientific, Waltham, MA) and spun at room temperature for 10 min at 10,000 rpm. The

supernatant was pipetted to clean Eppendorf tubes and stored at -80˚C. Brains were immedi-

ately dissected and flash frozen in dry ice-cold isopentane (2-mehtylbutane, Fisher Scientific).

Whole brains were stored at -80˚C until further use.

Ventral hypothalamus (VH) mRNA purification

Whole brains were mounted and sectioned using a cryostat. Beginning at -1.3 mm anteropos-

terior of bregma, three 400 μm sections were transferred to a cold RNAse-free microscope

slide. One punch (1.2 mm diameter) of the ventral hypothalamus (VH; enriched with ARC,

VMN, and PVN nuclei, but not the lateral hypothalamus [LH]) per section was transferred to

an RNAse-free 2.0 mL Eppendorf tube. The RNeasy mini prep (74104, Qiagen, Frederick,

MA) was used to isolate mRNA and the eluted mRNA product was DNAse treated (2224G1,

AM1931, Fisher Scientific) per the manufacturers’ protocol. Concentration of purified mRNA

was measured using the Nanodop v1.0 (Fisher Scientific). To ensure accuracy of punches, we

measured gene expression of two ARC genes (agouti-related peptide [agrp] and proopiomela-

nocortin [pomc]) and one LH gene (hypocretin/orexin, or hcrt). Punches that did not have

5-fold enrichment of average agrp and pomc compared to hcrt were omitted from RNA-seq

and future RT-qPCR validation studies. Of 70 brains sectioned, 8 punches did not meet these

quality standards.

Independent associations with diet/energy balance and body weight
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RNA-sequencing (RNA-seq)

To reduce technical and biological variability, two mRNA samples per condition were ran-

domly chosen and pooled equally (300 ng mRNA total). A total of 24 pools (n = 6 per condi-

tion) were ligated with unique sequencing adapters using the TruSeq Stranded mRNA kit

(RS-122-2101, Illumnia, San Diego, CA) following the manufacturer’s protocol for polyA

enrichment. Each sample was quality checked for concentration, molarity, and length distri-

bution using the Qubit (3.0, ThermoFisher), BioAnalyzer (2100, Agilent, Santa Clara, CA),

and Kapa (KK4873, Kapa Biosystems, Wilmington, MA), respectively. Three samples did not

meet quality control standards (one each from RC NoDS, HFD! RC, and HFD NoDS con-

ditions) and were not loaded onto the sequencer. The remaining 21 samples were equimo-

larly pooled and run thrice on the HiSeq 4000 system (Illumina, ~350 million reads per run,

100 bp read, single end). To merge fastq and BAM files from the three runs, we used Picard

Tools (v2.7.1, http://broadinstitute.github.io/picard/). Alignment of fastq files to the mouse

reference genome (mm9 build) was conducted with STAR (v2.5.1b) using gene models from

Ensembl v67 genome annotation [24, 25]. Over 95% of reads were aligned to the genome for

each sample. To normalize the data, we used the Pipeline of RNA-Seq Transformations, or

PORT (v0.8.2a-beta, https://github.com/itmat/Normalization) [26]. Briefly, PORT recog-

nizes potential confounding factors (e.g., ribosomal RNA and mitochondrial DNA) and

omits these reads from the normalization process. Importantly, our samples had normal

ranges and distributions of both ribosomal RNA (2.28–6.05%) and mitochondrial DNA (0.5–

1.8%; see S1 Table). Next, PORT identifies the input sample with the fewest number of gene-

mapping reads and randomly re-samples each of the other datasets down to this minimum

read count. This re-sampling approach accounts for batch effects and differences in sequenc-

ing depth between the samples, and allows for direct comparison between samples [26]. All

samples were re-sampled to 20.98 million reads; the original number of reads per sample is

shown in S1 Table. All data generated and analyzed are available in the Gene Expression

Omnibus repository (GSE104709; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=

GSE104709).

There were 21,517 unique genes detected, although many of these genes had very low

expression levels. Therefore, we implemented two filtering approaches to remove the least

expressed genes [27, 28]. The ‘low filter’ removed all genes averaging <5 reads per sample;

15,833 genes remained, accounting for 99.96% of total gene expression. The ‘high filter’

removed all genes averaging <50 reads per sample; 12,752 genes remained, accounting for

99.59% of total gene expression. The unfiltered and filtered data sets were then analyzed

using two distinct statistical approaches to discover differentially expressed genes. First, the

LimmaVoom package (v3.5, www.bioconductor.org/packages/limma) is a linear regression

modeling approach originally designed for microarrays and now adapted for RNA-seq.

Second, we used the microarray analysis of variance, or MAANOVA package (v3.5,

www.bioconductor.org/packages/release/bioc/html/maanova.html), which was also

originally designed for microarray analysis. For MAANOVA, we first log2-transformed

expression values to approximate normally distributed data and then used permutation

analysis (1000 total) to calculate p-values. Three distinct comparisons were tested: 1) RC

NoDS v HFD NoDS, to discover genes affected by obesity; 2) RC!HFD v HFD! RC, to

discover genes affected by diet/energy balance; and 3) all four groups simultaneously (only

possible with MAANOVA). Differentially expressed genes (DEG) were considered signifi-

cant at a false discovery rate (FDR, or q-value) < 0.15. Key findings were confirmed by RT-

qPCR.
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Gene set enrichment analysis (GSEA)

We used gene set enrichment analysis (GSEA, v3.0, http://www.broad.mit.edu/gsea) to dis-

cover differences in enriched pathways between DS conditions [29]. This approach considers

the entire matrix of gene expression data, ranks the genes based off the magnitude of differen-

tial expression, and identifies coherent expression patterns against pre-defined lists for estab-

lished biochemical pathways. We used the ‘high filter’ data set as input (see previous section).

GSEA annotations are based on human gene data sets, so all mouse gene symbols were con-

verted to human gene symbols using the Mouse Genome Informatics database from the JAX

labs website (HOM_MouseHumanSequence.rpt); 1495 genes did not have human homologs

and were omitted from GSEA. Therefore, gene expression data matrix for 11,257 genes were

input into GSEA and tested against the Hallmark Gene Set (v6.0, MSigDB) using ‘gene_set’

permutations (1000 total). We tested both raw and log2-transformed data, and used a family-

wise error rate (FWER) cut-off of p<0.05. Both raw and log2-transformed data returned the

same top six significantly enriched pathways (S2 Table).

RT-qPCR

Purified mRNA was converted to cDNA using the High-Capacity RNA-to-cDNA kit

(4387406, ThermoFisher). RT-qPCR was performed with pre-mixed Taqman primer/probes

(4331182, ThermoFisher; see S3 Table) and Taqman master mix (4369016, ThermoFisher)

using 4 ng cDNA per well (10 μL reactions). 384-well plates were robotically loaded using the

Biomek 3000 (Beckman Coulter, Indianapolis, IN) and analyzed using the 7900HT Fast Real-

Time PCR System (Fisher Scientific). Each gene of interest was normalized to the geometric

mean of three housekeeping genes (18s, rplp0, and actb); the Ct values of these housekeeping

genes did not differ between dietary conditions. Statistical tests and linear modeling were con-

ducted using ΔΔCt values to omit floor effects (normalized to RC NoDS) and data are pre-

sented as percent change from RC NoDS [30].

Blood biomarkers

Plasma was thawed on ice, with no more than 2 freeze-thaw cycles prior to all measurements.

Glucose was measured using the OneTouch Ultra Mini (LifeScan, Wayne, PA). Leptin and

insulin were measured using the Luminex multiplex kit (MMHMAG-44K-03, EMD Milli-

pore). The thyroid hormones T3 and T4 were also measured using the Luminex multiplex kit

(RTHYMAG-30K-02, EMD Millipore), and TSH was quantified with ELISA (EKU07683, Bio-

matik, Wilmington, DE).

Statistical methods

All statistical analyses and figures were conducted in PRISM (GraphPad, La Jolla, CA), except

linear regression, LimmaVoom, and MAANOVA analyses were conducted in R (v3.3.3, www.

R-project.org). To compare individual group differences across the four dietary conditions, we

used a one-way analysis of variance (ANOVA) with Tukey’s post-hoc correction. When data

were stratified across multiple time points (e.g., spontaneous activity), we used a repeated-

measure two-way ANOVA with ‘time’ as the within-subjects variable and ‘dietary condition’

as the between-subjects variable. In order to isolate ‘body weight’ from ‘diet and/or energy bal-

ance’ effects on the outcome metrics, we used two linear modeling approaches. First, we input

data only from the weight-matched DS conditions (RC!HFD and HFD! RC) with abso-

lute body weight (in grams) and an arbitrary categorical variable indicating condition (RC!

HFD = 0 and HFD! RC = 1) as the only two predictors. Second, we used acute weight

Independent associations with diet/energy balance and body weight
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changes (Δbody weight; percent weight change from Pre-DS to Post-DS) as an estimate for

diet/energy balance because positive energy balance (caloric consumption > energy expendi-

ture) causes weight gain while negative energy balance (caloric consumption < energy expen-

diture) causes weight loss [31]. Therefore, we used acute diet-induced weight changes as a

proxy for energy balance; the limitations of this assumption are discussed later. Along with

absolute body weight (Day 7 Post-DS, in grams) as a predictor, we made joint linear regression

models containing data from all animals. Primary results from linear regression models are

presented as estimated beta-coefficients (β) and standard errors, representing the expected

change in outcome for a 1 unit increase in predictor (e.g., 1 gram for body weight, or 1% for

Δbody weight). In addition, to provide comparable estimates between predictors, we calculated

standardized β estimates (Stdβxy) equal to the expected Z-score change in outcome for a 1 stan-

dard deviation increase in the predictor. Statistical significance in these analyses was based on

the β-coefficient of interest, testing the null hypothesis of no association (H0: β = 0 vs. HA: β 6¼
0). Significance was achieved at p<0.05, although trends towards significance and actual p-val-

ues were reported where appropriate. Detailed statistical results are shown in S4 Table. All

data used for analysis is publically available on Dryad (doi:10.5061/dryad.qm01v75).

Results

Diet Switch (DS) generates mice of similar body weight but opposing

energetic status

HFD consumption stimulates weight gain (positive energy balance) and eventually leads to

obesity, making it difficult to parse apart diet, energy balance, and body mass effects on meta-

bolic and behavioral metrics. Here, we use the DS feeding paradigm to isolate body mass

effects from diet and/or energy balance (Fig 1A). Briefly, all mice are fed either RC or HFD for

8–10 weeks, then subsets of mice are randomized to consume the opposite diet (RC!HFD

and HFD! RC) while other diet maintenance groups (RC ‘No Diet Switch’ [NoDS] and

HFD NoDS) are used as reference (Fig 1B and 1C). During the one week Post-DS, lean mice

switched to HFD (RC!HFD group) gain 12.5% body mass on average, while HFD-fed obese

mice switched to RC (HFD! RC group) lose 15.3% body mass (Fig 1D and 1E). At the study’s

conclusion (Day 7 Post-DS), the two DS groups have statistically similar weight (Fig 1C:

p = 0.17) while each DS group weighs more than RC NoDS and less than HFD NoDS controls.

Therefore, we can use linear models to compare these two DS groups to isolate body weight

effects from diet and/or energy balance effects on the reported metrics.

Caloric intake

RC and HFD drives weight changes, in part, by differences in caloric intake. Therefore, we

monitored daily caloric intake before the DS (Day 0) and every day Post-DS (Fig 1F). We

found that caloric intake was similar between RC NoDS and HFD NoDS groups at all time

points. RC!HFD animals increased caloric consumption the first day Post-DS, likely due to

a combination of increased palatability and greater caloric density (e.g., greater number of cal-

ories per gram consumed) of HFD compared to RC. However, energy intake returned to RC

NoDS and HFD NoDS levels by the seventh day (Fig 1F and 1G: p = 0.90 and p>0.99, respec-

tively). Conversely, HFD! RC animals drastically decreased intake the first day which

remained lower than all other groups by final day (Fig 1G: p<0.01 compared to RC NoDS,

p<0.05 compared to HFD NoDS, p<0.05 compared to RC!HFD). Linear modeling of

energy intake revealed a significant relationship to diet/energy balance (p<0.0001) but not

body mass (p = 0.35) when comparing the two DS groups. Therefore, diet/energy balance
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Fig 1. Diet Switch (DS) feeding paradigm isolates ‘body weight’ from ‘diet and/or energy balance’ factors. (A) Experimental design schematic. Mice consume

either RC or HFD for 8–10 weeks (Pre-DS), then are randomized to either continue consuming their respective diet (RC NoDS and HFD NoDS) or switched to the

alternate diet (RC!HFD and HFD! RC). All mice were sacrificed Day 7 Post-DS. (B) Absolute body weight across the study. (C) Absolute body weight at Day 7

Post-DS. (D) Percent change in body mass (ΔBody Weight) normalized to Pre-DS weights (Day 0 Post-DS). (E) ΔBody weight on Day 7 Post-DS (normalized to Pre-

DS weight). (F) Caloric intake from Pre-DS (Day 0) to Day 7 Post-DS. (G) Average caloric intake on Day 7 Post-DS. �p<0.05, ����p<0.0001 comparing RC!HFD vs

HFD! RC; a+: p<0.1, a: p<0.05, a’: p<0.01, a”: p<0.001, a”‘: p<0.0001 compared to RC NoDS; b+: p<0.1, b: p<0.05, b’: p<0.01, b”: p<0.001, b”‘: p<0.0001

compared to HFD NoDS. Sample sizes for B-E: [RC NoDS, n = 16; RC!HFD, n = 21; HFD! RC, n = 19; HFD NoDS, n = 14]. Sample sizes for F-G: [RC NoDS,

n = 15; RC!HFD, n = 21; HFD! RC, n = 18; HFD NoDS, n = 14].

https://doi.org/10.1371/journal.pone.0196743.g001
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effects may be mediated in part by caloric intake, but cannot explain associations with body

mass.

Locomotor activity

Our previous work found that RC!HFD mice exhibit profound hypersomnolence compared

to HFD! RC mice, even though these two groups had similar body weight at the time of the

recording [11]. Since locomotor activity and total sleep/wake amount are highly correlated

[22], we tested how spontaneous locomotor patterns would be affected by the DS feeding para-

digm. Prior to the DS, HFD-fed mice were significantly less active during the beginning of the

dark phase (Fig 2A), which coincides with the hypersomnolence phenotype observed in DIO

mice [11]. Next, we estimated total wakefulness from the locomotor data (using the ‘40-sec-

ond’ cut-off threshold; see Methods), but found that these robust differences disappeared

(Panel C in S1 Fig). We also tried different inactivity cut-off thresholds (20-seconds, 30-sec-

onds, and 50-seconds) to estimate wakefulness, but none of these estimates agreed with EEG-

measured data (S1 Fig). Therefore, we did not use locomotor-estimated sleep/wake metrics for

any further analyses.

One week Post-DS, RC NoDS mice were still significantly more active than HFD NoDS

mice (Fig 2B and 2C: p<0.05 for both). Furthermore, HFD! RC animals exhibited statisti-

cally greater locomotor activity compared to HFD NoDS mice (Fig 2C: p<0.05), indicating

that one week of RC is sufficient to normalize locomotor patterns. Surprisingly, RC!HFD

animals, which exhibit similar wake time compared to HFD NoDS mice [11], had significantly

greater spontaneous activity compared to HFD NoDS mice (Fig 2C: p<0.001), indicating a

decoupling of locomotor and sleep/wake patterns. Indeed, activity was not related to either

body mass or diet/energy balance (Table 1), whereas wake time was associated with both of

these metrics [11]. Therefore, two highly correlated behaviors—spontaneous activity and

sleep/wake patterns—show dissimilar associations with body mass and diet/energy balance as

tested by the DS feeding paradigm.

Fig 2. Spontaneous locomotor activity is only reduced in HFD NoDS compared to all other conditions. (A) Pre-DS locomotor activity shows HFD-fed mice are

less active compared to RC-fed controls. (B) Locomotor activity counts in 2-hour time bins on Day 7 Post-DS. (C) Aggregate (24-hour) locomotor activity counts Day

7 Post-DS. All conditions are significantly more active than HFD NoDS. Note that body weight and food intake were measured daily between 9–10 am (ZT2-3), so

locomotor data are omitted during the ZT2-4 time window. �p<0.05, ���p<0.001, ����p<0.0001 comparing RC v HFD at indicated time point; b: p<0.05, b”: p<0.001

compared to HFD NoDS. RC NoDS, n = 15; RC!HFD, n = 21; HFD! RC, n = 19; HFD NoDS, n = 14.

https://doi.org/10.1371/journal.pone.0196743.g002
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Ventral hypothalamus (VH) gene expression

RNA-sequencing results. The VH responds to circulating cues to affect energy expendi-

ture, locomotor activity, and sleep/wake behavior [19, 20]. Therefore, we used RNA-seq to per-

form unbiased quantification of all protein-coding transcripts within the VH. After acquiring

locomotor activity, mice were sacrificed between ZT6-7 and coding mRNA from the VH was

purified and sequenced (see Methods). There were 21,517 unique genes aligned, but low-

expressed transcripts were removed using two data filtering approaches: 1) a ‘Low Filter’,

Table 1. Linear modeling results comparing weight-matched DS conditions.

Metric Linear Regression Models

Only RC!HFD and HFD! RC groups

ANOVA Body Weight Diet/Energy Balance

F-value p-value β
(SEM)

p-value β
(SEM)

p-value

Animal Behavior
Caloric Intake

24 Hour

12.8 <0.0001 -0.187

(0.199)

0.35 4.52

(1.01)

<0.0001

Activity

Dark

2.33 0.11 -901.7

(573.9)

0.12 2908.9

(3284.3)

0.38

Activity

Light

0.67 0.52 -252.6

(243.6)

0.31 172.8

(1394.0)

0.90

Activity

24 Hour

2.35 0.11 -1154.3

(695.2)

0.11 3081.6

(3978.3)

0.44

VH Gene Expression
Agrp 12.4 0.0002 0.128

(0.040)

0.0033 1.163

(0.244)

<0.0001

Npy 25.1 <0.0001 0.108

(0.028)

0.0007 1.214

(0.174)

<0.0001

Cartpt 0.36 0.70 -0.027

(0.032)

0.41 -0.072

(0.199)

0.72

Pomc 1.88 0.17 0.066

(0.054)

0.24 -0.300

(0.335)

0.38

Trh 0.49 0.62 -0.004

(0.045)

0.93 0.237

(0.275)

0.40

Sbno2 0.69 0.51 0.0011

(0.252)

0.96 0.170

(0.156)

0.28

Serpina3n 0.25 0.78 -0.0019

(0.0319)

0.95 0.121

(0.197)

0.54

Blood Biomarkers
Glucose 29.6 <0.0001 4.71

(1.90)

0.018 83.78

(10.89)

<0.0001

Insulin 4.88 0.016 187.8

(113.6)

0.11 2045.2

(665.2)

0.0049

Leptin 1.6 0.22 216.7

(149.2)

0.16 1259.2

(869.9)

0.16

T4 0.83 0.45 -6939

(5395)

0.21 -1.2x104

(3.1x104)

0.71

Estimates are from joint regression models containing both weight factors. ANOVA: Indicates overall significance of linear model. β: β-estimate and standard error

indicates expected change in outcome for a 1 unit increase in predictor. SEM: Standard Error of the Mean. Highlighted cells indicate significance at p<0.05. Note that

VH gene expression values are modeled using RT-qPCR results from sequenced tissue of individual animals to maximize sample size. cartpt: cocaine- and amphetamine

regulated transcript; serpina3n: serine (or cysteine) peptidase inhibitor clade A member 3N; sbno2: strawberry notch homolog 2; trh: thyrotropin-releasing hormone;

agrp: agouti-related peptide; npy: neuropeptide y; pomc: proopiomelanocortin; T4: Thyroxine.

https://doi.org/10.1371/journal.pone.0196743.t001
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removing all genes averaging <5 reads per sample (15,833 remaining genes), and 2) a ‘High

Filter’, removing all genes averaging <50 reads per sample (12,752 remaining genes). We

then tested for DEG using two statistical packages: MAANOVA and LimmaVoom (Table 2).

MAANOVA results varied depending on the data input, reporting significance for some low-

expressed genes (e.g., tk1 and cldn2) and increasing the number of DEG as the number of mul-

tiple comparisons decreased. Conversely, LimmaVoom results were extremely consistent for

all three data inputs, reporting the same six genes as significantly different between RC NoDS

v HFD NoDS comparisons (Table 2). Interestingly, both MAANOVA and LimmaVoom

found the same six DEGs using the ‘High Filter’ data input. Therefore, we focused on these six

genes (trh, npy, cartpt, agrp, serpina3n, and sbno2) for follow-up analyses.

RT-qPCR validation of RNA-seq results. We validated RNA-seq results using RT-qPCR

both from VH tissue used for RNA-seq and from VH tissue from other animals which was not

sequenced (Fig 3 and S2 Fig). Overall, we found similar trends with RT-qPCR compared to the

RNA-seq. Specifically, agrp and npy were decreased in both RC!HFD and HFD NoDS

groups compared to both RC NoDS and HFD! RC groups (Fig 3A–3F) and linear models

showed that agrp and npy are significantly associated with both body weight and diet/energy

balance (Table 1). The other four genes—trh, cartpt, serpina3n, and sbno2—showed highest

expression in HFD NoDS, lowest expression in RC NoDS, and low to intermediate expression

in both DS groups (Fig 3G–3L and Panels A-F in S2 Fig). Since gene expression levels were

similar between DS groups (p>0.05 for all), linear models could not be fit for trh, cartpt,

Table 2. Differentially expressed genes (DEG) from RNA-sequencing analysis.

Statistical Approach Data Filtering Common

No Filter Low Filter High Filter

MAANOVA trh

npy

tk1
cldn2
atxn7l2

q¥ = 0.024

qϕ = 0.094

q¥ = 0.075

qϕ = 0.10

q§ = 0.14

q§ = 0.14

qϕ = 0.12

trh

npy

cartpt
sbno2
tk1

cldn2

ikzf3

atxn7l2
rbm3

q¥ = 0.005

qϕ = 0.023

q¥ = 0.036

qϕ = 0.032

q¥ = 0.133

q¥ = 0.133

q§ = 0.049

qϕ = 0.12

q§ = 0.049

qϕ = 0.12

q¥ = 0.075

qϕ = 0.059

qϕ = 0.059

qϕ = 0.12

trh

npy

cartpt

sbno2

serpina3n
c4b

atxn7l2
rbm3
agrp

q¥< 1x10-6

qϕ = 0.002

q¥ = 0.006

qϕ = 0.004

q¥ = 0.059

qϕ = 0.12

q¥ = 0.059

qϕ = 0.12

q¥ = 0.083

q¥ = 0.10

qϕ = 0.12

qϕ = 0.030

qϕ = 0.079

qϕ = 0.12

trh
npy

atxn7l2

Limma Voom trh
npy
cartpt
serpina3n
agrp
sbno2

q¥ = 1.5x10-5

q¥ = 6.4x10-5

q¥ = 0.002

q¥ = 0.004

q¥ = 0.007

q¥ = 0.12

trh
npy
cartpt
serpina3n
agrp
sbno2

q¥ = 1.9x10-5

q¥ = 7.7x10-5

q¥ = 0.002

q¥ = 0.004

q¥ = 0.008

q¥ = 0.12

trh
npy
cartpt
serpina3n
agrp
sbno2

q¥ = 2.1x10-5

q¥ = 8.7x10-5

q¥ = 0.002

q¥ = 0.004

q¥ = 0.008

q¥ = 0.11

trh
npy
cartpt

serpina3n
agrp
sbno2

Common trh
npy

trh
npy
cartpt
sbno2

trh
npy
cartpt

serpina3n
agrp
sbno2

trh
npy

Genes with false discovery rate (q-value) < 0.15 for the following comparisons: RC NoDS v HFD NoDS (designated by ¥); RC!HFD and HFD! RC groups (§); or,

all four groups (F; MAANOVA only). This analysis reveals 6 candidate genes: cartpt: cocaine- and amphetamine regulated transcript; serpina3n: serine (or cysteine)

peptidase inhibitor clade A member 3N; sbno2: strawberry notch homolog 2; trh: thyrotropin-releasing hormone; agrp: agouti-related peptide; npy: neuropeptide y.

https://doi.org/10.1371/journal.pone.0196743.t002
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serpina3n, and sbno2 genes (Table 1: p>0.05 for main effect). Last, we quantified expression of

two genes for which we did not expect expression differences, specifically proopiomelanocor-

tin (pomc) and hypocretin/orexin (hcrt). Co-expressed with cartpt in the ARC, pomc does not

exhibit altered expression patterns with prolonged HFD [32, 33], while the VH punches inten-

tionally omitted the hcrt-expressing neurons in the LH. Indeed, both genes were significantly

similar across all conditions (Panels G-L in S2 Fig), and did we not detect any significant main

Fig 3. RNA-seq results and RT-qPCR confirmation of VH-expressed genes is consistent between sequenced and non-sequenced tissue. (Top row) Normalized

read counts from RNA-seq analysis. (Middle row) RT-qPCR validation using tissue used for RNA-seq. (Bottom row) RT-qPCR validation using independent tissue

samples not used for RNA-seq. (A-C) Agrp and (D-F) npy gene expression is lowest in RC!HFD and HFD NoDS compared to HFD! RC and RC NoDS

conditions. (G-I) Cartpt and (J-L) trh gene expression is highest in HFD NoDS, lowest in RC NoDS, and low to intermediate in both DS conditions. agrp: agouti-

related peptide; npy: neuropeptide y; cartpt: cocaine- and amphetamine regulated transcript; trh: thyrotropin-releasing hormone. �p<0.05, ��p<0.01, ����p<0.0001

comparing RC!HFD vs HFD! RC; a+: p<0.1, a: p<0.05, a’: p<0.01, a”: p<0.001, a”‘: p<0.0001 compared to RC NoDS; b+: p<0.1, b: p<0.05, b’: p<0.01, b”:

p<0.001, b”‘: p<0.0001 compared to HFD NoDS. Sample sizes for top row: [RC NoDS, n = 5; RC!HFD, n = 6; HFD! RC, n = 5; HFD NoDS, n = 5]. Sample sizes

for middle row: [RC NoDS: n = 13; RC!HFD: n = 18; HFD! RC: n = 11; HFD NoDS: n = 7]. Samples sizes for bottom row: [RC NoDS: n = 5; RC!HFD: n = 8;

HFD! RC: n = 6; HFD NoDS: n = 3].

https://doi.org/10.1371/journal.pone.0196743.g003
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effects with linear modeling (Table 1). Altogether, RNA-seq discovered a short list of DEGs

that were validated in a separate experimental cohort. Of the genes that met the ‘filtering’

expression threshold, only two (agrp and npy) were differentially expressed between weight-

matched DS conditions.

GSEA to compare DS conditions. Since our analyses only found a short list of DEGs, we

used GSEA to discover differentially regulated biochemical signaling pathways because this

approach includes expression data from all genes (whether or not they were DEGs). We input

RNA-seq gene expression data only from RC!HFD and HFD! RC groups and tested for

differences against 50 gene sets representing common biochemical pathways. Of these 50 gene

sets, six pathways were determined significant at FWER < 0.05 (S2 Table). ‘Oxidative Phos-

phorylation’ showed the strongest significant difference, with enrichment in HFD! RC com-

pared to RC!HFD (S2 Table: p<0.0001).

Blood biomarkers

Glucose and insulin. Obesity is the greatest risk factor for type II diabetes, which is char-

acterized by hyperglycemia and hyperinsulinemia [4]. Therefore, we wanted to test how body

mass and diet/energy balance each affect glucose and insulin levels. Glucose levels were signifi-

cantly elevated in both HFD-consuming groups (RC!HFD and HFD NoDS) compared to

both RC-consuming groups (HFD! RC and RC NoDS; Fig 4A). Furthermore, glucose was

independently associated with both body weight (Table 1: p = 0.018) and diet/energy balance

(p<0.0001). Compared to basal insulin levels (RC NoDS mice), insulin was highest in HFD

NoDS mice, intermediate in RC!HFD mice, and unchanged in HFD! RC mice (Fig 4B).

Although some RC!HFD animals were hyperinsulinemic compared to HFD! RC animals,

these weight-matched DS conditions had statistically similar insulin levels following post-hoc

correction (Fig 4B: p = 0.25). Importantly, linear modeling revealed that insulin was strongly

associated with diet/energy balance (Table 1: p = 0.0049) but did not show a strong association

with body mass (p = 0.11).

Leptin. Leptin is synthesized and released from adipocytes, and circulating levels are

strongly correlated with body weight [34, 35]. Indeed, we found RC NoDS had the lowest,

Fig 4. Glucose, insulin, and leptin levels from trunk blood plasma (Day 7 Post-DS). (A) Glucose, (B) insulin, and (C) leptin levels measured from blood plasma,

which was collected immediately after sacrifice (ZT6-7). ����p<0.0001 comparing RC!HFD vs HFD! RC; a: p<0.05, a’: p<0.01, a”: p<0.001, a”‘: p<0.0001

compared to RC NoDS; b: p<0.05, b’: p<0.01, b”: p<0.001, b”‘: p<0.0001 compared to HFD NoDS. Sample sizes for glucose: [RC NoDS: n = 16; RC!HFD: n = 21;

HFD! RC: n = 19; HFD NoDS: n = 14]. Sample sizes for insulin: [RC NoDS: n = 13; RC!HFD: n = 17; HFD! RC: n = 12; HFD NoDS: n = 13]. Sample sizes for

leptin: [RC NoDS: n = 13; RC!HFD: n = 17; HFD! RC: n = 13; HFD NoDS: n = 13].

https://doi.org/10.1371/journal.pone.0196743.g004
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HFD NoDS had the highest, and both DS groups had intermediate, statistically similar leptin

levels (Fig 4C). Linear models for leptin levels could not be built from data comparing weight-

matched RC!HFD and HFD! RC animals (Table 1: p = 0.22).

Thyroid hormones. Using RNA-seq and RT-qPCR, we found trh expression in the VH

was highest in HFD NoDS mice and intermediate in both DS conditions compared to RC

NoDS animals (Fig 3J–3L). Since TRH initiates the hypothalamic-pituitary-thyroid (HPT) axis

[36], we wondered whether circulating thyroid factors would exhibit a similar increase. We

measured thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) in

the blood. Due to an unknown reason, TSH levels were highly variable between animals and

thus limited interpretation of the results (Panel A in S4 Fig: p = 0.97). Further, 59% of samples

could not measure plasma T3 above the detection threshold (not shown). However, T4 levels

were robustly detected in all samples, but were statistically similar across all groups (Panel B in

S4 Fig: p = 0.20). Since we were unable to reproduce known obesity-related HPT axis differ-

ences [37, 38], our interpretation of TSH, T3, and T4 measurements are limited.

Alternate linear modeling approach to examine diet/energy balance effects

independent from body weight

Linear models including all four groups can better estimate effects of ‘body weight’. In

the current report, we used linear modeling to isolate ‘body weight’ and ‘diet/energy balance’

effects by comparing the two weight-matched DS groups, as previously described [11]. While

this approach is able to parse apart their independent effects on each outcome metric, it is lim-

ited for two reasons. First, the model does not include data from RC NoDS and HFD NoDS

groups, which provide valuable information about the physiological range of these metrics in

obese animals and lean controls. Second, these models have difficulty quantifying associations

with body weight because body weight is similar between RC!HFD and HFD! RC condi-

tions. These shortcomings are evident, for example, when modeling plasma leptin levels (Fig

4C and Table 1). Despite the clear correlation between leptin levels and body weight (Fig 1C)

across all four groups, linear models including only RC!HFD and HFD! RC conditions

could not be built for leptin (Table 1: p = 0.22). To this end, we introduce a different linear

modeling approach that includes data from all four conditions and assumes that ‘diet/energy

balance’ can be approximated by acute weight changes (Δbody weight; % weight change from

Pre- to Post-DS; see Fig 1D). We believe this is a valid assumption because HFD-fed obesity

resistant rodents do not show stereotypical metabolic and behavioral abnormalities compared

to HFD-fed obesity prone rodents [39–41], suggesting HFD-induced weight changes (not

HFD per se) are required to induce pathophysiological conditions. Last, there is no correlation

between body weight and Δbody weight among all animals (S5 Fig: R2 = 8.8x10-5, p = 0.94),

and this variability helps to build statistically powerful linear associations for each output met-

ric. The results for these new models are shown in Table 3, along with reanalyzed data from

our previous manuscript, which focused on EEG-measured sleep/wake behavior following the

same DS feeding paradigm [11].

Reanalyzing previous results (EEG mice) to compare behavioral responses in the pres-

ent study. In the present study, caloric intake is positively related to Δbody weight (Table 3:

p<0.0001) but not actual body mass (p = 0.56; visualized in Figures A and B in S6 Fig), which

is similar to the results of the previous model showing an association with diet/energy balance

(Table 1: p<0.0001) but not body weight (p = 0.35). Therefore, significant associations with

‘Δbody weight’ may be mediated, in part, by caloric intake differences, which is similar to the

‘diet/energy balance’ predictor in the previous model. Regarding the EEG-mice, caloric intake

was similar across all conditions on Day 7 Post-DS [11], and statistically significant models for
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Table 3. Linear modeling results using body weight and Δbody weight as predictors from all animals.

Metric Linear Regression Models

All four groups

ANOVA Body Weight ΔBody Weight

F-value p-value β
(SEM)

Stdβxy p-value β
(SEM)

Stdβxy p-value

Locomotor Mice

Animal Behavior
Caloric Int.

24 Hour

17.18 <0.0001 0.04

(0.068)

0.059 0.56 0.21

(0.04)

0.583 <0.0001

Activity

Dark

11.45 <0.0001 -894.60

(188.35)

-0.504 <0.0001 49.71

(96.34)

0.055 0.61

Activity

Light

0.561 0.57 -86.47

(82.85)

-0.127 0.30 7.02

(42.38)

0.020 0.87

Activity

24 Hour

9.46 0.0002 -981.07

(227.38)

-0.468 0.0001 56.73

(116.30)

0.053 0.63

VH Gene Expression
Agrp 15.98 <0.0001 -0.066

(0.017)

-0.444 0.0003 -0.037

(0.008)

-0.496 0.0001

Npy 21.79 <0.0001 -0.067

(0.015)

-0.469 0.0001 -0.040

(0.008)

-0.553 <0.0001

Cartpt 7.22 0.0019 0.047

(0.012)

0.489 0.0004 0.003

(0.006)

0.072 0.58

Pomc 1.92 0.16 0.017

(0.018)

0.133 0.0004 0.016

(0.009)

0.254 0.081

Trh 6.29 0.0038 0.057

(0.016)

0.463 0.0009 -0.001

(0.008)

-0.008 0.95

Sbno2 4.14 0.022 0.023

(0.009)

0.353 0.010 -0.005

(0.005)

-0.142 0.30

Serpina3n 7.66 0.0013 0.045

(0.012)

0.494 0.0004 -0.002

(0.006)

-0.046 0.72

Blood Biomarkers
Glucose 40.73 <0.0001 3.72

(0.72)

0.427 <0.0001 2.76

(0.37)

0.609 <0.0001

Insulin 34.26 <0.0001 331.44

(43.07)

0.701 <0.0001 84.26

(25.92)

0.296 0.0020

Leptin 10.68 0.0001 268.09

(60.21)

0.516 <0.0001 45.49

(35.68)

0.148 0.21

T4 2.41 0.10 -3629

(1655)

-0.288 0.033 61.95

(980.6)

0.008 0.95

EEG Mice: Behavior

Caloric Intake
Caloric Int.

24 Hour

0.461 0.64 -0.050

(0.073)

-0.145 0.50 0.035

(0.042)

0.175 0.42

Total Time Spent in Each State
Wake

24 Hour

13.38 0.0001 -6.50

(1.99)

-0.481 0.003 -3.47

(1.15)

-0.443 0.006

NREM

24 Hour

11.33 0.0004 6.04

(1.93)

0.480 0.005 2.97

(1.12)

0.406 0.014

(Continued)
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energy intake could not be built (Table 3: p = 0.64). Thus, unexpected caloric intake differences

between the previous and current studies following the DS feeding paradigm may be due to

housing conditions (tethered EEG recording cables vs homecage locomotor boxes).

Next, we reanalyzed how body weight and Δbody weight are associated with EEG-measured

sleep/wake behavior and compared those results to the locomotor activity data presented

herein. We found that total wake and non-rapid eye movement sleep (Non-REM, or NREM)

time were significantly associated with both body weight (Table 3: p = 0.003 and p = 0.005,

respectively) and Δbody weight (p = 0.006 and p = 0.014, respectively); REM sleep was posi-

tively associated with Δbody weight (p = 0.047) but not body mass (p = 0.28). However, in the

present study, spontaneous activity is negatively correlated with body mass (p = 0.0001) but is

unrelated to Δbody weight (p = 0.63; visualized in Panels C and D in S6 Fig); this effect is

largely driven by the obese, hypoactive HFD NoDS mice (Fig 2C). Taken together, these linear

models highlight how body mass and acute weight changes differentially affect spontaneous

locomotor and sleep/wake behavior, and provide better estimates for body weight effects com-

pared to the models used earlier.

Relating blood metrics and VH gene expression to activity and sleep/wake behavior.

To this point, we have calculated how each metric relates to both body mass and Δbody weight

by using the DS feeding paradigm. Specifically, the relationship of each output measure to

both predictors (body weight and Δbody weight) was described by β-values, or slope of the lin-

ear fit. In general, if a predictor and outcome are strongly related, the magnitude of the slope

will increase (and the p-value will decrease). In order to compare these β-values directly, both

the x and y distributions (mean ± standard deviation) were normalized to Z-scores. This yields

a standardized score along both axes (Stdβxy) that can now be interpreted as the magnitude

increase (in standard deviations) of the output variable given a 1 standard deviation increase

in the predictor variable. Therefore, we calculated two Stdβxy scores for each metric (one each

for its relation to body weight and Δbody weight), and plotted these values in Fig 5.

We found that the data can be generally categorized into five groups. First, some metrics

are positively related to body weight without a relation to Δbody weight (plasma leptin and

VH expression of cartpt, trh, sbno2, serpina3n). Second, two metrics—total spontaneous activ-

ity and plasma T4 levels—are negatively associated with body weight and display no relation-

ship to Δbody weight (although the linear model for T4 only trends towards significance;

Table 3: p = 0.10). Third, caloric intake and total REM sleep are positively related to Δbody

Table 3. (Continued)

Metric Linear Regression Models

All four groups

ANOVA Body Weight ΔBody Weight

F-value p-value β
(SEM)

Stdβxy p-value β
(SEM)

Stdβxy p-value

REM

24 Hour

3.68 0.041 0.461

(0.416)

0.209 0.28 0.506

(0.241)

0.395 0.047

Estimates are from joint regression models containing both weight factors. ANOVA: Indicates overall significance of linear model. β: β-estimate and standard error

indicates expected change in outcome for a 1 unit increase in predictor. Stdβxy: Standardized β-estimate along both axes, indicating the standard deviation change for

the y-variable given a 1 standard deviation increase in the predictor. SEM: Standard Error of the Mean. Highlighted cells indicate significance at p<0.05. Note that VH

gene expression values are modeled using RT-qPCR results from sequenced tissue of individual animals (Fig 3 and S2 Fig: middle rows) to maximize sample size. REM:

Rapid eye movement sleep; NREM: Non-REM sleep; cartpt: cocaine- and amphetamine regulated transcript; serpina3n: serine (or cysteine) peptidase inhibitor clade A

member 3N; sbno2: strawberry notch homolog 2; trh: thyrotropin-releasing hormone; agrp: agouti-related peptide; npy: neuropeptide y; pomc: proopiomelanocortin; T4:

Thyroxine.

https://doi.org/10.1371/journal.pone.0196743.t003
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weight and unrelated to body weight. Fourth, some metrics are positively associated with both

increased body weight and acute weight gain, including plasma glucose and insulin and total

NREM sleep time. Last, total wakefulness and VH expression of agrp and npy are negatively

associated with both increased body weight and weight gain. Altogether, this approach allows

visualization of correlated metabolic and behavioral parameters which helps to inform how

peripheral and central processes may influence spontaneous activity and sleep/wake patterns.

Discussion

Using the DS feeding paradigm, we generated two groups of mice (RC!HFD and HFD!

RC) with similar body mass but opposite energetic status. Using two different linear modeling

approaches, we found that VH expression of agrp and npy, blood glucose and insulin levels,

and sleep/wake behavior were highly modified by diet and/or energy balance. Unlike total

wakefulness, spontaneous locomotor activity was not related to diet/energy balance; VH

Fig 5. Plotting standardized correlation coefficients to visualize how blood biomarkers, VH gene expression, and behavioral

data relate. For each output metric, standardized β coefficients (Stdβxy) were calculated for both weight metrics (body weight and

Δbody weight) and plotted together here. Any values to the right of the y-axis are positively associated with increased body

weight, while any values to the left of the y-axis decrease as body mass increases. Any values above the x-axis increase as Δbody

weight increases (positive energy balance), while points below the x-axis decrease as Δbody weight increases. Points in the shaded

area represent non-significant associations. Exact Stdβxy and p-values are shown in Table 3. REM: Rapid eye movement sleep;

NREM: Non-REM sleep; cartpt: cocaine- and amphetamine regulated transcript; serpina3n: serine (or cysteine) peptidase

inhibitor clade A member 3N; sbno2: strawberry notch homolog 2; trh: thyrotropin-releasing hormone; agrp: agouti-related

peptide; npy: neuropeptide y; T4: Thyroxine.

https://doi.org/10.1371/journal.pone.0196743.g005
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expression of cartpt, trh, sbno2, and serpina3n as well as plasma leptin and T4 show similar

associations to activity patterns. Taken together, our results reveal novel associations between

blood biomarkers, neural gene expression, and spontaneous activity and sleep/wake behavior,

which offers new insights into the genesis and reversibility of metabolic and behavioral abnor-

malities in DIO.

DIO animals are both profoundly hypoactive and hypersomnolent, spending an extra 1–2

hours asleep per day compared to lean controls [23]. Spontaneous activity and sleep/wake pat-

terns are highly correlated, since inactivity is a requirement for sleep. However, we found that

wakefulness and NREM sleep, but not spontaneous locomotor activity, were significantly asso-

ciated with Δbody weight (Table 3). These differences may be related to technical limitations

of the locomotor boxes or a real biological phenomenon. Regarding the former, locomotor

boxes track activity using infrared beams; when a beam is ‘broken’ by a moving animal, the

software registers an activity count. Since obese animals are physically wider, they will be able

to break more beams with less movement compared to lean mice. Other activity monitoring

approaches, such as video tracking, may provide a less biased approach to compare lean vs

obese animals’ activity patterns [42]. Second, the difference between locomotor activity and

wakefulness may be a natural phenomenon. Specifically, our previous work found that the

RC!HFD animals exhibit abnormal sleep behavior, with similar sleep/wake amounts and

fragmentation to HFD NoDS animals [11]. However, in the present study, RC!HFD animals

were hyperactive compared to HFD NoDS mice (Fig 2C: p<0.001). One interpretation is that

RC!HFD animals increase physical activity to counteract weight gain, but this leads to phys-

ical exhaustion, fatigue, and sleepiness. Indeed, obesity is associated with decreased endurance

and increased fatigue [43]. Furthermore, HFD-fed animals consume food throughout the day

[44], which may cause increased activity acutely (while eating) but post-prandial rest immedi-

ately afterwards [45]. Conversely, animals losing weight (HFD! RC) show similar wake and

activity patterns to RC NoDS animals, suggesting that the mechanisms that induce hypersom-

nolence may be separate from the mechanisms that rescue it. Lastly, REM sleep was positively

associated with Δbody weight, but not absolute body weight (Table 3). However, REM sleep

amounts are highly inconsistent between different mouse models of obesity [23], so it remains

unclear how diet, energy balance, and body weight relate to REM sleep. Future work that mea-

sures activity and sleep/wake behaviors simultaneously will be required to confirm their

uncoupling under these conditions. However, when we attempted to measure HFD-induced

changes to both EEG-recorded sleep/wake and infrared beam-based locomotor activity, mice

did not experience normal weight gain. We believe this was due to the combined stressors

required for each signal acquisition (tether cables for EEG; low bedding and no nestlet for

locomotor activity). This further highlights the need for advanced simultaneous tracking of

both behaviors (e.g., telemetry-based EEG recordings with video tracking).

The present study used RNA-seq to discover VH genes and pathways which were differen-

tially affected by body weight and/or diet/energy balance. Of the short list of DEGs, many

genes encoded neuropeptides with known roles in energy balance, locomotor activity, and

sleep/wake behavior. Specifically, we detected thyrotropin-releasing hormone (trh) as gene of

interest. Since trh initiates the hypothalamus-pituitary-thyroid (HPT) axis, we measured thy-

roid hormone levels in the blood, but an unknown source of variability in TSH and T3 mea-

surements limited the overall interpretation of our results. Nonetheless, VH expression of trh
and blood T4 correlated with body mass independent of Δbody weight, although trh was posi-

tively associated with body weight while T4 was negatively associated. Similar trends are

observed in both sleep disturbed and obese animals, including obese humans losing weight

via caloric restriction [38, 46, 47]; however, since sleep differences were controlled for prior to

sacrifice, we believe these associations with body weight are not confounded by behavioral
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differences. Thus, our work suggests that obesity-related HPT dysfunctions are related to body

weight independent of acute diet or weight changes and sleep/wake differences, although reli-

able TSH and T3 measurements are still required.

In addition to trh, neuropeptide y (npy), agouti-related peptide (agrp), and cocaine- and

amphetamine regulated transcript (cartpt) were all found to be differentially expressed by

RNA-seq. All three genes are enriched in the ARC with well-known roles in maintaining

energy balance [18]. Furthermore, obese animals have decreased npy and agrp expression and

increased cartpt expression [21, 32]. Here, we show that npy and agrp are not only decreased in

obese (HFD NoDS) animals, but also in HFD! RC animals; therefore, npy and agrp are nega-

tively associated with both increased body mass and acute weight gain. However, while cartpt
is positively related to body weight, it is not affected by Δbody weight. These observations are

interesting for a few reasons. First, there is a negative association between VH gene expression

and known downstream effects of the encoded neuropeptide. For example, HFD NoDS ani-

mals have augmented expression of cartpt, but suffer from the hypersomnolence and frag-

mented sleep/wake bouts [23]. However, exogenous CARTPT neuropeptide potently increases

wakefulness and consolidates sleep/wake bouts [48]. Therefore, it is possible that endogenous

CARTPT levels are decreased (despite elevated transcript levels) and/or activation of down-

stream signaling pathways are blunted. Indeed, resistance to anorexigenic signaling pathways

are well-characterized in obesity (e.g., leptin and insulin), including neuropeptides such as

CARTPT [49]. Second, out of all of VH genes measured, only genes that promote food intake

(agrp and npy) responded to acute body weight changes. While it remains unclear if this has a

functional consequence, this suggests that the VH senses and responds to weight loss by

increasing expression of orexigenic genes, but during weight gain, anorexigenic gene expres-

sion does not immediately elevate. This asymmetry between anorexigenic and orexigenic path-

ways would also perpetuate weight gain. Taken together, we recapitulate known associations

with npy, agrp, and cartpt with obesity, but show that only the orexigenic genes (npy and agrp)
are related to acute weight changes.

RNA-seq has the advantage of quantifying all mRNA transcripts in the tissue sample,

revealing understudied genes or pathways beyond putative VH neuropeptides. First, RNA-seq

analysis revealed upregulation of serpina3n and sbno2 in HFD NoDS animals, demonstrating a

positive correlation with body weight with no relation to Δbody weight. Sbno2 is a pro-inflam-

matory factor in the CNS expressed predominately in astrocytes [50], while serpina3n is an

astrogliosis marker with elevated expression in the hypothalamus of DIO mice [51, 52]. Obe-

sity is known to induce hypothalamic inflammation [53, 54], and reducing this inflammation

can protect against HFD-induced weight gain [55, 56]. While we did not directly quantify

astrogliosis and VH inflammation in our studies, we found that these inflammatory markers

do not increase acutely and are only elevated in DIO mice. Future work directly measuring

hypothalamic inflammation (via gene and protein expression assays of many biomarkers) will

be required to fully establish the link to diet/energy balance. Second, we ran RNA-seq results

through GSEA to discover biochemical pathways that may differ between DS groups. While

this approach is prone to false-positives, ‘Oxidative Phosphorylation’ was identified twice as

significantly enriched in HFD! RC animals compared to RC!HFD (S3 Table: p<0.0001).

This potentially implicates differential energy production between weight-matched DS ani-

mals, which could be due to alternate sources of energy (e.g., anaerobic pathways) or indicate

differences in mitochondrial functioning. Regarding the latter, obesity has known associations

with abnormal mitochondrial biogenesis, morphology, and ATP production [57]. However,

the influence of diet and/or energy balance on mitochondria, independent of body weight,

remains unclear. Taken together, RNA-seq is a powerful hypothesis-generating tool that pro-

vides unbiased expression of all transcripts in a given tissue sample.
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RNA-seq, however, does have limitations, especially when measuring heterogeneous tissues

such as the brain. Like other gene expression assays (microarrays and RT-qPCR), RNA-seq is

most powerful with homogenous samples [58]. The VH, however, contains many neural cell

types (e.g., neurons, astrocytes, microglia), distinct neuronal nuclei (e.g., ARC, PVN, and

VMN), and the ARC alone contains as many as 50 transcriptionally-distinct cell types [59].

Thus, assessing gene expression changes in VH punches will dilute relevant ‘signal’ with the

‘noise’ of other cell types. Indeed, RNA-seq of purified pomc+ and agrp+ ARC neurons from

lean, ad lib-fed mice found hundreds of DEG [60]. However, this purification process requires

3+ hours of cell manipulation before cell lysis and RNA extraction, which may have unin-

tended effects on expression profiles. Importantly, our approach did identify genes with robust

expression differences, which was confirmed using RT-qPCR of tissue samples from an inde-

pendent animal cohort.

In addition to the VH, the brainstem contains nuclei critical for sensing and integrating

peripheral and central signals to influence metabolic and behavioral phenotypes. Specifically,

the dorsal vagal complex (DVC) is a heterogeneous hindbrain region that responds to changes

in blood glucose, insulin, and leptin, and projects to many other brain regions (including the

hypothalamus) to regulate food intake [61–64]. Furthermore, many gut-derived hormones

(such as cholecystokinin and glucagon-like peptide-1) can reduce food intake by acting on the

DVC directly (via receptor activation) or indirectly (via vagal afferents) [12, 64]. Future work

could measure how other gut-derived hormones and brain regions (specifically the DVC)

respond to changes in diet/energy balance vs body weight.

Gene expression assays (such as RNA-seq and RT-qPCR) do not provide information

about downstream processes (e.g., protein translation/cleavage/degradation), which may be

uncoupled from mRNA expression levels. For example, hypothalamic pomc transcript levels

are unchanged in DIO [32, 33], but the encoded POMC peptide is decreased in obese rats [65].

Furthermore, POMC is cleaved into multiple peptide hormones (e.g., adrenocorticotropic hor-

mone and α-melanocyte-stimulating hormone), and individual hormones can be affected by

fasting/overfeeding and directly influence metabolic and behavioral phenotypes [18, 66–68].

Future studies measuring neuropeptide and hormone levels following the DS feeding para-

digm may implicate other signaling pathways not identified by RNA-seq.

The present study uses two linear regression approaches to determine independent ‘body

weight’ and ‘diet/energy balance’ effects on measured parameters. The first model only uses

data from the two weight-matched DS groups (RC!HFD and HFD! RC) and uses an arbi-

trary categorical variable as the ‘diet/energy balance’ predictor. By modeling ‘diet/energy bal-

ance’ with a categorical variable, all confounding factors between with the different DS groups

(e.g., caloric intake, macronutrient composition, energy balance, etc.) are included in this sole

variable. Therefore, this model can isolate ‘body weight’ effects independent of these other fac-

tors. However, this approach does have its disadvantages, particularly when quantifying associ-

ations that appear to correlate with ‘body weight’ (e.g., leptin levels). To this end, we used a

second modeling approach that estimates ‘diet/energy balance’ with acute weight changes

(Δbody weight). This has a few unique advantages. First, the DS feeding paradigm generates

large variability between groups for both body weight (min / median / max:: 26.5 / 33.8 / 50.7;

in grams) and Δbody weight (-20.5 / 1.70 / 22.0; in %) which is normally distributed around

the mean. Second, the animals with the most extreme body weight differences (RC NoDS and

HFD NoDS) have the smallest changes in Δbody weight, and vice versa for the DS groups.

Third, this approach uses real data for all input and output metrics, as opposed to the arbitrary

categorical values, thus capturing interanimal variability associated with RC and HFD con-

sumption. Last, since all animals are included in the analysis, estimated β-coefficients for body

weight are more powerful, and standardized β-coefficients (Stdβxy) for body weight and Δbody
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weight can be directly compared. To this end, we scatter-plotted the calculated Stdβxy values

for each metric together, allowing for a snapshot of how blood biomarkers, VH gene expres-

sion, and behavior correlate, which revealed novel associations between these parameters.

The main drawback to this linear modeling approach, however, is that it assumes the

majority of diet-induced metabolic effects are due to weight gain/loss. Therefore, this model

cannot capture pure diet effects (due to differences macronutrient composition) or differences

in caloric intake. In order to fully disassociate ‘diet’ from ‘energy balance’, future work could

repeat the DS with different hypercaloric diets (that vary by carbohydrate, fat, and protein con-

tent), alter the duration of post-DS exposure (both less than and greater than one week), and/

or use other approaches to affect acute weight changes (e.g., access to a running wheel). In

addition, future studies that measure basal metabolic rate and energy expenditure may help

disassociate ‘diet’ and ‘energy balance’ effects on metabolic and behavioral outcomes. Finally,

this modeling approach may overestimate body weight effects, since RC NoDS and HFD

NoDS conditions have the most extreme body weight and metabolic/behavioral differences.

Indeed, longer exposure to HFD would further augment body mass, thus changing the linear

model coefficient estimates or the overall association (e.g., logarithmic relationship) between

body weight and the outcome of interest. Nonetheless, we believe this modeling approach suc-

cinctly estimates trends across all groups, allowing each output metric to be compared to one

another.

It is important to acknowledge the limitations of this research. First, we did not quantify

amount of lean and fat mass in these mice. Obesity is typically classified by BMI because it is

easy to measure, but visceral abdominal fat is a better predictor for long term health out-

comes in humans [69, 70]. In mice, previous studies have found HFD greatly increases both

fat mass and body weight, with little to no effect on lean mass, and that body weight correlates

with fat mass (but not lean mass) after DIO mice are switched to RC (HFD! RC) [71, 72].

Therefore, since body weight and fat mass correlate following RC and HFD challenges, we

believe building linear models based on body fat would produce similar associations to out-

come metrics (compared to body weight). Furthermore, since fat and lean mass is typically

quantified either by dual energy X-ray absorptiometry (which requires anesthesia) or post-

mortem in mice [69], it would be difficult to quantify within-animal changes from Pre- to

Post-DS, which was an important predictor in the linear models. Nonetheless, relating these

metrics to fat mass instead of body mass may reveal some unexpected and interesting differ-

ences. Second, we chose to sleep deprive, but not fast mice, prior to sacrifice. Sleep depriva-

tion controlled for known differences in behavior between lean and obese mice [11, 23],

allowing us to measure VH genes that may be upstream of sleep/wake changes. Furthermore,

we chose to maintain ad lib feeding conditions to prevent all animals from losing weight

prior to sacrifice. Indeed, fasting normally-weighted mice can reduce lean mass and result in

torpor, which is characterized by decreased metabolic rate, hypoactivity, and hypothermia

[73, 74]; therefore, we wanted to avoid these potential confounds. Importantly, we found no

evidence of torpor in our studies, since spontaneous activity levels were elevated in all groups

(including HFD! RC animals, which were rapidly losing weight) compared to HFD NoDS

animals. While we acknowledge that random feeding increases variability in VH genes and

blood biomarkers compared to fasting [73, 75], we still found robust differences among these

metrics (e.g., VH agrp, npy, cartpt, trh; blood glucose, insulin, leptin) which had unique

expression patterns from one another. Therefore, it is unlikely that random feeding greatly

influenced these group-wide differences, although it is possible fasting would further aug-

ment these effects.

Collectively, our results reveal how distinct aspects of DIO (diet/energy balance and body

weight) can independently affect many metabolic and behavioral outcomes. We found many
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metrics were highly modified by changes to diet/energy balance, including glucose and insulin,

VH expression of npy and agrp, and sleep/wake behavior. This suggests that these parameters

are more related to one another compared to factors with no association with diet/energy bal-

ance. Furthermore, the physiological changes which are modified by diet/energy balance nec-

essarily precede changes associated with body weight. For example, even though DIO mice are

both hypersomnolent and hypoactive, RC!HFD animals are profoundly hypersomnolent

but paradoxically hyperactive one week Post-DS [11]. Therefore, our work reveals that obe-

sity-related sleep/wake abnormalities present rapidly (within 1 week) while locomotor activity

differences require longer to manifest. Identifying the directionality of obesity-related changes

(e.g., sleep/wake changes are upstream of activity changes) may help elucidate the genesis and

reversibility of DIO comorbidities.

Supporting information

S1 Fig. Activity-based estimates for sleep/wake behavior are unreliable for DIO mice.

Obese mice sleep ~1–2 hours more per day and exhibit increased sleep/wake fragmentation

compared to lean animals [23]. Fig 2A shows that DIO mice are hypoactive compared to lean

mice during the dark period, when these sleep effects are most pronounced. An activity-based

algorithm to estimate wake differences has been developed and validated in lean mice; this

‘40-second’ rule agrees >90% with simultaneous EEG-recordings [22]. We find that this algo-

rithm does not recapitulate stereotypical sleep/wake abnormalities observed in DIO mice (C,

G). Further, alternate algorithms using (A,E) 20, (B,F) 30, or (D,H) 50 seconds of inactivity as

a cut-off threshold for sleep shows similar inadequacies. RC NoDS, n = 16; RC!HFD,

n = 21; HFD! RC, n = 19; HFD NoDS, n = 14.

(TIF)

S2 Fig. RT-qPCR validation of RNA-seq results including neuropeptide genes for which

differential expression was not expected. (Top row) Normalized read counts from RNA-seq

analysis. (Middle row) RT-qPCR validation using tissue used for RNA-seq. (Bottom row) RT-

qPCR validation using independent tissue samples not used for RNA-seq. (A-C) Sbno2 and

(D-F) serpina3n showed highest expression level in HFD NoDS, lowest in RC NoDS, and low

to intermediate expression in both DS groups. (G-I) Pomc and (J-L) hcrt expression was simi-

lar across all groups, as expected. serpina3n: serine (or cysteine) peptidase inhibitor clade A

member 3N; sbno2: strawberry notch homolog; pomc: proopiomelanocortin; hcrt: hypocretin/

orexin. a’: p<0.01, a”: p<0.001, a”‘: p<0.0001 compared to RC NoDS; b: p<0.05, b’: p<0.01,

b”: p<0.001, b”‘: p<0.0001 compared to HFD NoDS. Sample sizes for top row: [RC NoDS,

n = 5; RC!HFD, n = 6; HFD! RC, n = 5; HFD NoDS, n = 5]. Sample sizes for middle row:

[RC NoDS: n = 13; RC!HFD: n = 18; HFD! RC: n = 11; HFD NoDS: n = 7]. Samples sizes

for bottom row: [RC NoDS: n = 5; RC!HFD: n = 8; HFD! RC: n = 6; HFD NoDS: n = 3].

(TIF)

S3 Fig. RNA-seq results of remaining DEGs discovered by any RNA-seq analysis approach

(see Table 1). Note the low expression counts for izfk3, tk1, and cldn2. Ikfz3: IKAROS family

zinc finger 3; tk1: thymidine kinase 1; cldn2: claudin 2; atxn7l2: ataxin 7 like 2; rbm3: RNA-

binding protein 3; c4b: complement 4b. ��p<0.01, ���p<0.001 comparing two DS conditions;

a: p<0.05, a’: p<0.01, a”: p<0.001, a”‘: p<0.0001 compared to RC NoDS; b: p<0.05, b’:

p<0.01, b”: p<0.001, b”‘: p<0.0001 compared to HFD NoDS. RC NoDS, n = 5; RC!HFD,

n = 6; HFD! RC, n = 5; HFD NoDS, n = 5.

(TIF)
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S4 Fig. Thyroid hormone measurements. (A) Thyroid-stimulating hormone (TSH) showed

highly variable expression levels across samples, contributing to non-significant group effects

(p = 0.9658). (B) Thyroxine (T4) levels were not robustly different between dietary conditions.

Triiodothyronine (T3) levels were also measured, but most samples were below detection

threshold and not quantifiable (not shown). TSH sample sizes: [RC NoDS, n = 11; RC!

HFD, n = 14; HFD! RC, n = 11; HFD NoDS, n = 11]. T4 sample sizes: [RC NoDS, n = 13;

RC!HFD, n = 17; HFD! RC, n = 13; HFD NoDS, n = 13].

(TIF)

S5 Fig. Body weight and Δbody weight are not correlated across all dietary conditions.

Scatter plot of absolute body weight (Post-DS, in grams) vs Δbody weight (percent change in

body weight from Pre- to Post-DS). There is no correlation between body weight and Δbody

weight for these mice across all groups (R2 = 8.8x10-5, p = 0.94). RC NoDS, n = 16; RC!

HFD, n = 21; HFD! RC, n = 19; HFD NoDS, n = 14.

(TIF)

S6 Fig. Linear regression analysis for caloric intake and locomotor activity. (A) Caloric

intake is not related to body weight. (B) Energy intake is positively related to acute weight

changes (Δbody weight). (C) Activity patterns are negatively associated with body weight.

(D) Locomotor activity is not related to Δbody weight.

(TIF)

S7 Fig. Immunofluorescence localization of the VH. One mouse was deeply anesthetized

and transcardially perfused with ice-cold 4% paraformaldehyde (pH = 7.5). The brain was left

in 4% PF overnight, and then switched to 30% sucrose the following day. A cryostat was used

to coronally section the brain (50 μm) and free-floating sections were placed into blocking

buffer (4% normal donkey serum and 0.4% Triton-X in 1x PBS) overnight. The following day,

anti-NeuN (1:1000, MAB377, EMD Millipore) was diluted in blocking buffer. Brain slices

were incubated in primary antibody at 4˚C on a shaker for 3 days. The primary was then

washed off thrice with 1X PBS, and the secondary antibodies (A21206, Invitrogen, Carlsbad,

CA) was applied (1:500 in 50% blocking buffer:50% 1X PBS) for 1 hour. Image was taken at

20x magnification.

(TIF)

S1 Table. RNA-seq total read counts and contamination from ribosomal RNA and mito-

chondrial DNA.

(DOCX)

S2 Table. Gene set enrichment analysis (GSEA) results. Using the ‘High Filter’ data set of

RNA-seq results (see Methods), GSEA reveals significantly enriched pathways in HFD! RC

animals compared to RC!HFD. Using both raw and log2-transformed data, we found the

same six enriched pathways at an FWER < 0.05. FDR: False discovery rate; FWER: Family

wise error rate; PPARg: Peroxisome proliferator-activated receptor gamma.

(DOCX)

S3 Table. Gene name, NCBI reference sequence, and catalog number of Taqman primer/

probes used for RT-qPCR experiments.

(DOCX)

S4 Table. Details statistical results reporting adjusted p-values. Only comparisons that

reached overall significance (ANOVA: p<0.05) are shown.

(DOCX)

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 23 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196743.s011
https://doi.org/10.1371/journal.pone.0196743


Acknowledgments

We would like to thank Raymond Galante, Joseph Baur, Glenn Doyle, Xiaofeng (Sophie) Guo,

Ron Anafi, Jonathon Schug (Next Generation Sequencing Core, UPenn), and Heather Collins

(Biomarkers Core, UPenn) for their advice and/or assistance.

Author Contributions

Conceptualization: Isaac J. Perron, Sigrid C. Veasey.

Data curation: Isaac J. Perron, Karthikeyani Chellappa, Nicole L. Yohn.

Formal analysis: Isaac J. Perron, Brendan T. Keenan, Nicholas F. Lahens, Keith R. Shockley.

Funding acquisition: Isaac J. Perron, Allan I. Pack, Sigrid C. Veasey.

Investigation: Isaac J. Perron, Brendan T. Keenan.

Methodology: Isaac J. Perron, Brendan T. Keenan, Karthikeyani Chellappa, Nicholas F.

Lahens, Nicole L. Yohn, Keith R. Shockley.

Project administration: Isaac J. Perron.

Resources: Isaac J. Perron, Nicholas F. Lahens, Nicole L. Yohn, Allan I. Pack, Sigrid C. Veasey.

Software: Isaac J. Perron, Nicholas F. Lahens.

Writing – original draft: Isaac J. Perron.

Writing – review & editing: Isaac J. Perron, Brendan T. Keenan, Karthikeyani Chellappa,

Nicholas F. Lahens, Nicole L. Yohn, Keith R. Shockley, Allan I. Pack, Sigrid C. Veasey.

References
1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United

States, 2011–2012. JAMA. 2014; 311(8):806–14. https://doi.org/10.1001/jama.2014.732 PMID:

24570244.

2. Panossian LA, Veasey SC. Daytime sleepiness in obesity: mechanisms beyond obstructive sleep

apnea—a review. Sleep. 2012; 35(5):605–15. https://doi.org/10.5665/sleep.1812 PMID: 22547886.

3. Berenson GS, Bogalusa Heart Study g. Health consequences of obesity. Pediatr Blood Cancer. 2012;

58(1):117–21. https://doi.org/10.1002/pbc.23373 PMID: 22076834.

4. Pi-Sunyer X. The medical risks of obesity. Postgrad Med. 2009; 121(6):21–33. https://doi.org/10.3810/

pgm.2009.11.2074 PMID: 19940414.

5. Varela JE, Hinojosa MW, Nguyen NT. Resolution of obstructive sleep apnea after laparoscopic gastric

bypass. Obes Surg. 2007; 17(10):1279–82. https://doi.org/10.1007/s11695-007-9228-6 PMID:

18000730.

6. Kashyap SR, Gatmaitan P, Brethauer S, Schauer P. Bariatric surgery for type 2 diabetes: weighing the

impact for obese patients. Cleve Clin J Med. 2010; 77(7):468–76. https://doi.org/10.3949/ccjm.77a.

09135 PMID: 20601620.

7. Narath SH, Mautner SI, Svehlikova E, Schultes B, Pieber TR, Sinner FM, et al. An Untargeted Metabo-

lomics Approach to Characterize Short-Term and Long-Term Metabolic Changes after Bariatric Sur-

gery. PLoS One. 2016; 11(9):e0161425. https://doi.org/10.1371/journal.pone.0161425 PMID:

27584017.

8. Joris PJ, Plat J, Kusters YH, Houben AJ, Stehouwer CD, Schalkwijk CG, et al. Diet-induced weight loss

improves not only cardiometabolic risk markers but also markers of vascular function: a randomized

controlled trial in abdominally obese men. Am J Clin Nutr. 2017; 105(1):23–31. https://doi.org/10.3945/

ajcn.116.143552 PMID: 27881395.

9. Berk KA, Mulder MT, Verhoeven AJ, van Wietmarschen H, Boessen R, Pellis LP, et al. Predictors of

Diet-Induced Weight Loss in Overweight Adults with Type 2 Diabetes. PLoS One. 2016; 11(8):

e0160774. https://doi.org/10.1371/journal.pone.0160774 PMID: 27494531.

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 24 / 28

https://doi.org/10.1001/jama.2014.732
http://www.ncbi.nlm.nih.gov/pubmed/24570244
https://doi.org/10.5665/sleep.1812
http://www.ncbi.nlm.nih.gov/pubmed/22547886
https://doi.org/10.1002/pbc.23373
http://www.ncbi.nlm.nih.gov/pubmed/22076834
https://doi.org/10.3810/pgm.2009.11.2074
https://doi.org/10.3810/pgm.2009.11.2074
http://www.ncbi.nlm.nih.gov/pubmed/19940414
https://doi.org/10.1007/s11695-007-9228-6
http://www.ncbi.nlm.nih.gov/pubmed/18000730
https://doi.org/10.3949/ccjm.77a.09135
https://doi.org/10.3949/ccjm.77a.09135
http://www.ncbi.nlm.nih.gov/pubmed/20601620
https://doi.org/10.1371/journal.pone.0161425
http://www.ncbi.nlm.nih.gov/pubmed/27584017
https://doi.org/10.3945/ajcn.116.143552
https://doi.org/10.3945/ajcn.116.143552
http://www.ncbi.nlm.nih.gov/pubmed/27881395
https://doi.org/10.1371/journal.pone.0160774
http://www.ncbi.nlm.nih.gov/pubmed/27494531
https://doi.org/10.1371/journal.pone.0196743


10. Agardh CD, Ahren B. Switching from high-fat to low-fat diet normalizes glucose metabolism and

improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J

mice. Pancreas. 2012; 41(2):253–7. https://doi.org/10.1097/MPA.0b013e3182243107 PMID:

22158067.

11. Perron IJ, Pack AI, Veasey S. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body

Weight. Sleep. 2015; 38(12):1893–903. https://doi.org/10.5665/sleep.5236 PMID: 26158893.

12. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control

of energy balance. Cell Metab. 2012; 16(3):296–309. https://doi.org/10.1016/j.cmet.2012.06.015 PMID:

22902836.

13. Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav

Brain Res. 2010; 209(1):1–12. https://doi.org/10.1016/j.bbr.2009.12.024 PMID: 20035790.

14. Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insu-

lin resistance. Diabetes. 2001; 50(12):2786–91. Epub 2001/11/28. PMID: 11723062.

15. White CL, Purpera MN, Ballard K, Morrison CD. Decreased food intake following overfeeding involves

leptin-dependent and leptin-independent mechanisms. Physiol Behav. 2010; 100(4):408–16. Epub

2010/04/14. https://doi.org/10.1016/j.physbeh.2010.04.006 PMID: 20385158.

16. Gao Q, Horvath TL. Neuronal control of energy homeostasis. FEBS Lett. 2008; 582(1):132–41. https://

doi.org/10.1016/j.febslet.2007.11.063 PMID: 18061579.

17. Coll AP, Yeo GS. The hypothalamus and metabolism: integrating signals to control energy and glucose

homeostasis. Curr Opin Pharmacol. 2013; 13(6):970–6. https://doi.org/10.1016/j.coph.2013.09.010

PMID: 24075719.

18. Leibowitz SF, Wortley KE. Hypothalamic control of energy balance: different peptides, different func-

tions. Peptides. 2004; 25(3):473–504. Epub 2004/05/12. https://doi.org/10.1016/j.peptides.2004.02.

006 PMID: 15134868.

19. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness.

Trends Neurosci. 2001; 24(12):726–31. PMID: 11718878.

20. Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci. 2008;

1129:275–86. https://doi.org/10.1196/annals.1417.027 PMID: 18591488.

21. Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, et al. Peroxisome proliferation-associated

control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med.

2011; 17(9):1121–7. https://doi.org/10.1038/nm.2421 PMID: 21873987.

22. Pack AI, Galante RJ, Maislin G, Cater J, Metaxas D, Lu S, et al. Novel method for high-throughput phe-

notyping of sleep in mice. Physiol Genomics. 2007; 28(2):232–8. https://doi.org/10.1152/

physiolgenomics.00139.2006 PMID: 16985007.

23. Mavanji V, Billington CJ, Kotz CM, Teske JA. Sleep and obesity: a focus on animal models. Neurosci

Biobehav Rev. 2012; 36(3):1015–29. https://doi.org/10.1016/j.neubiorev.2012.01.001 PMID:

22266350.

24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. 2013; 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID:

23104886.

25. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, et al. Ensembl 2012. Nucleic Acids

Res. 2012; 40(Database issue):D84–90. https://doi.org/10.1093/nar/gkr991 PMID: 22086963.

26. Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential

expression in RNA-Seq data. Stat Methods Med Res. 2013; 22(5):519–36. https://doi.org/10.1177/

0962280211428386 PMID: 22127579.

27. Sha Y, Phan JH, Wang MD. Effect of low-expression gene filtering on detection of differentially

expressed genes in RNA-seq data. Conference proceedings: Annual International Conference of the

IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society

Annual Conference. 2015; 2015:6461–4. Epub 2016/01/07. https://doi.org/10.1109/EMBC.2015.

7319872 PMID: 26737772.

28. Lahens NF, Ricciotti E, Smirnova O, Toorens E, Kim EJ, Baruzzo G, et al. A comparison of Illumina and

Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genomics. 2017;

18(1):602. Epub 2017/08/12. https://doi.org/10.1186/s12864-017-4011-0 PMID: 28797240.

29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl

Acad Sci U S A. 2005; 102(43):15545–50. https://doi.org/10.1073/pnas.0506580102 PMID: 16199517.

30. Yuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real-time PCR data. BMC bioinformat-

ics. 2006; 7:85. Epub 2006/03/01. https://doi.org/10.1186/1471-2105-7-85 PMID: 16504059.

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 25 / 28

https://doi.org/10.1097/MPA.0b013e3182243107
http://www.ncbi.nlm.nih.gov/pubmed/22158067
https://doi.org/10.5665/sleep.5236
http://www.ncbi.nlm.nih.gov/pubmed/26158893
https://doi.org/10.1016/j.cmet.2012.06.015
http://www.ncbi.nlm.nih.gov/pubmed/22902836
https://doi.org/10.1016/j.bbr.2009.12.024
http://www.ncbi.nlm.nih.gov/pubmed/20035790
http://www.ncbi.nlm.nih.gov/pubmed/11723062
https://doi.org/10.1016/j.physbeh.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20385158
https://doi.org/10.1016/j.febslet.2007.11.063
https://doi.org/10.1016/j.febslet.2007.11.063
http://www.ncbi.nlm.nih.gov/pubmed/18061579
https://doi.org/10.1016/j.coph.2013.09.010
http://www.ncbi.nlm.nih.gov/pubmed/24075719
https://doi.org/10.1016/j.peptides.2004.02.006
https://doi.org/10.1016/j.peptides.2004.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15134868
http://www.ncbi.nlm.nih.gov/pubmed/11718878
https://doi.org/10.1196/annals.1417.027
http://www.ncbi.nlm.nih.gov/pubmed/18591488
https://doi.org/10.1038/nm.2421
http://www.ncbi.nlm.nih.gov/pubmed/21873987
https://doi.org/10.1152/physiolgenomics.00139.2006
https://doi.org/10.1152/physiolgenomics.00139.2006
http://www.ncbi.nlm.nih.gov/pubmed/16985007
https://doi.org/10.1016/j.neubiorev.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/22266350
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1093/nar/gkr991
http://www.ncbi.nlm.nih.gov/pubmed/22086963
https://doi.org/10.1177/0962280211428386
https://doi.org/10.1177/0962280211428386
http://www.ncbi.nlm.nih.gov/pubmed/22127579
https://doi.org/10.1109/EMBC.2015.7319872
https://doi.org/10.1109/EMBC.2015.7319872
http://www.ncbi.nlm.nih.gov/pubmed/26737772
https://doi.org/10.1186/s12864-017-4011-0
http://www.ncbi.nlm.nih.gov/pubmed/28797240
https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1186/1471-2105-7-85
http://www.ncbi.nlm.nih.gov/pubmed/16504059
https://doi.org/10.1371/journal.pone.0196743


31. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its

components: implications for body weight regulation. Am J Clin Nutr. 2012; 95(4):989–94. Epub 2012/

03/22. https://doi.org/10.3945/ajcn.112.036350 PMID: 22434603.

32. Harrold JA, Williams G, Widdowson PS. Changes in hypothalamic agouti-related protein (AGRP), but

not alpha-MSH or pro-opiomelanocortin concentrations in dietary-obese and food-restricted rats. Bio-

chem Biophys Res Commun. 1999; 258(3):574–7. https://doi.org/10.1006/bbrc.1999.0675 PMID:

10329427.

33. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity

causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007; 5

(3):181–94. Epub 2007/03/07. https://doi.org/10.1016/j.cmet.2007.02.004 PMID: 17339026.

34. Al Maskari MY, Alnaqdy AA. Correlation between Serum Leptin Levels, Body Mass Index and Obesity

in Omanis. Sultan Qaboos Univ Med J. 2006; 6(2):27–31. PMID: 21748132.

35. Benoit SC, Clegg DJ, Seeley RJ, Woods SC. Insulin and leptin as adiposity signals. Recent Prog Horm

Res. 2004; 59:267–85. PMID: 14749506.

36. Boelen A, Wiersinga WM, Fliers E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis.

Thyroid. 2008; 18(2):123–9. Epub 2008/01/30. https://doi.org/10.1089/thy.2007.0253 PMID: 18225975.

37. Longhi S, Radetti G. Thyroid function and obesity. Journal of clinical research in pediatric endocrinol-

ogy. 2013; 5 Suppl 1:40–4. Epub 2012/11/15. https://doi.org/10.4274/jcrpe.856 PMID: 23149391.

38. Perello M, Cakir I, Cyr NE, Romero A, Stuart RC, Chiappini F, et al. Maintenance of the thyroid axis dur-

ing diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab.

2010; 299(6):E976–89. Epub 2010/09/23. https://doi.org/10.1152/ajpendo.00448.2010 PMID:

20858755.

39. Choi JY, McGregor RA, Kwon EY, Kim YJ, Han Y, Park JH, et al. The metabolic response to a high-fat

diet reveals obesity-prone and -resistant phenotypes in mice with distinct mRNA-seq transcriptome pro-

files. Int J Obes (Lond). 2016; 40(9):1452–60. https://doi.org/10.1038/ijo.2016.70 PMID: 27146467.

40. Xia SF, Duan XM, Hao LY, Li LT, Cheng XR, Xie ZX, et al. Role of thyroid hormone homeostasis in obe-

sity-prone and obesity-resistant mice fed a high-fat diet. Metabolism. 2015; 64(5):566–79. https://doi.

org/10.1016/j.metabol.2014.12.010 PMID: 25669855.

41. Mavanji V, Teske JA, Billington CJ, Kotz CM. Elevated sleep quality and orexin receptor mRNA in obe-

sity-resistant rats. Int J Obes (Lond). 2010; 34(11):1576–88. https://doi.org/10.1038/ijo.2010.93 PMID:

20498657.

42. Fisher SP, Godinho SI, Pothecary CA, Hankins MW, Foster RG, Peirson SN. Rapid assessment of

sleep-wake behavior in mice. J Biol Rhythms. 2012; 27(1):48–58. https://doi.org/10.1177/

0748730411431550 PMID: 22306973.

43. Mehta RK, Cavuoto LA. The effects of obesity, age, and relative workload levels on handgrip endur-

ance. Applied ergonomics. 2015; 46 Pt A:91–5. Epub 2014/08/05. https://doi.org/10.1016/j.apergo.

2014.07.007 PMID: 25088026.

44. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts

behavioral and molecular circadian rhythms in mice. Cell Metab. 2007; 6(5):414–21. https://doi.org/10.

1016/j.cmet.2007.09.006 PMID: 17983587.

45. Ishii Y, Blundell JE, Halford JC, Rodgers RJ. Palatability, food intake and the behavioural satiety

sequence in male rats. Physiol Behav. 2003; 80(1):37–47. Epub 2003/10/22. PMID: 14568306.

46. Everson CA, Nowak TS, Jr. Hypothalamic thyrotropin-releasing hormone mRNA responses to

hypothyroxinemia induced by sleep deprivation. Am J Physiol Endocrinol Metab. 2002; 283(1):E85–93.

https://doi.org/10.1152/ajpendo.00558.2001 PMID: 12067847.

47. Kok P, Roelfsema F, Langendonk JG, Frolich M, Burggraaf J, Meinders AE, et al. High circulating thyro-

tropin levels in obese women are reduced after body weight loss induced by caloric restriction. J Clin

Endocrinol Metab. 2005; 90(8):4659–63. Epub 2005/05/26. https://doi.org/10.1210/jc.2005-0920 PMID:

15914521.

48. Keating GL, Kuhar MJ, Bliwise DL, Rye DB. Wake promoting effects of cocaine and amphetamine-regu-

lated transcript (CART). Neuropeptides. 2010; 44(3):241–6. https://doi.org/10.1016/j.npep.2009.12.013

PMID: 20116848.

49. Larsen PJ, Vrang N, Petersen PC, Kristensen P. Chronic intracerebroventricular administration of

recombinant CART(42–89) peptide inhibits and causes weight loss in lean and obese Zucker (fa/fa)

rats. Obes Res. 2000; 8(8):590–6. Epub 2001/01/13. https://doi.org/10.1038/oby.2000.76 PMID:

11156435.

50. Grill M, Syme TE, Nocon AL, Lu AZ, Hancock D, Rose-John S, et al. Strawberry notch homolog 2 is a

novel inflammatory response factor predominantly but not exclusively expressed by astrocytes in the

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 26 / 28

https://doi.org/10.3945/ajcn.112.036350
http://www.ncbi.nlm.nih.gov/pubmed/22434603
https://doi.org/10.1006/bbrc.1999.0675
http://www.ncbi.nlm.nih.gov/pubmed/10329427
https://doi.org/10.1016/j.cmet.2007.02.004
http://www.ncbi.nlm.nih.gov/pubmed/17339026
http://www.ncbi.nlm.nih.gov/pubmed/21748132
http://www.ncbi.nlm.nih.gov/pubmed/14749506
https://doi.org/10.1089/thy.2007.0253
http://www.ncbi.nlm.nih.gov/pubmed/18225975
https://doi.org/10.4274/jcrpe.856
http://www.ncbi.nlm.nih.gov/pubmed/23149391
https://doi.org/10.1152/ajpendo.00448.2010
http://www.ncbi.nlm.nih.gov/pubmed/20858755
https://doi.org/10.1038/ijo.2016.70
http://www.ncbi.nlm.nih.gov/pubmed/27146467
https://doi.org/10.1016/j.metabol.2014.12.010
https://doi.org/10.1016/j.metabol.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25669855
https://doi.org/10.1038/ijo.2010.93
http://www.ncbi.nlm.nih.gov/pubmed/20498657
https://doi.org/10.1177/0748730411431550
https://doi.org/10.1177/0748730411431550
http://www.ncbi.nlm.nih.gov/pubmed/22306973
https://doi.org/10.1016/j.apergo.2014.07.007
https://doi.org/10.1016/j.apergo.2014.07.007
http://www.ncbi.nlm.nih.gov/pubmed/25088026
https://doi.org/10.1016/j.cmet.2007.09.006
https://doi.org/10.1016/j.cmet.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/17983587
http://www.ncbi.nlm.nih.gov/pubmed/14568306
https://doi.org/10.1152/ajpendo.00558.2001
http://www.ncbi.nlm.nih.gov/pubmed/12067847
https://doi.org/10.1210/jc.2005-0920
http://www.ncbi.nlm.nih.gov/pubmed/15914521
https://doi.org/10.1016/j.npep.2009.12.013
http://www.ncbi.nlm.nih.gov/pubmed/20116848
https://doi.org/10.1038/oby.2000.76
http://www.ncbi.nlm.nih.gov/pubmed/11156435
https://doi.org/10.1371/journal.pone.0196743


central nervous system. Glia. 2015; 63(10):1738–52. https://doi.org/10.1002/glia.22841 PMID:

25903009.

51. Guillemot-Legris O, Mutemberezi V, Cani PD, Muccioli GG. Obesity is associated with changes in oxy-

sterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma. Sci Rep. 2016;

6:19694. https://doi.org/10.1038/srep19694 PMID: 26795945.

52. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astroglio-

sis. J Neurosci. 2012; 32(18):6391–410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012 PMID:

22553043.

53. Jais A, Bruning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;

127(1):24–32. https://doi.org/10.1172/JCI88878 PMID: 28045396.

54. Dorfman MD, Thaler JP. Hypothalamic inflammation and gliosis in obesity. Curr Opin Endocrinol Diabe-

tes Obes. 2015; 22(5):325–30. https://doi.org/10.1097/MED.0000000000000182 PMID: 26192704.

55. Wisse BE, Schwartz MW. Does hypothalamic inflammation cause obesity? Cell Metab. 2009;

10(4):241–2. Epub 2009/10/08. https://doi.org/10.1016/j.cmet.2009.09.003 PMID: 19808014.

56. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, et al. MyD88 signaling in

the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity.

Cell Metab. 2009; 10(4):249–59. Epub 2009/10/08. https://doi.org/10.1016/j.cmet.2009.08.013 PMID:

19808018.

57. Nasrallah CM, Horvath TL. Mitochondrial dynamics in the central regulation of metabolism. Nat Rev

Endocrinol. 2014; 10(11):650–8. https://doi.org/10.1038/nrendo.2014.160 PMID: 25200564.

58. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of

best practices for RNA-seq data analysis. Genome Biol. 2016; 17:13. https://doi.org/10.1186/s13059-

016-0881-8 PMID: 26813401.

59. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, et al. A molecular census

of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017; 20(3):484–96. https://

doi.org/10.1038/nn.4495 PMID: 28166221.

60. Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. Cell type-specific transcriptomics of hypotha-

lamic energy-sensing neuron responses to weight-loss. Elife. 2015; 4. https://doi.org/10.7554/eLife.

09800 PMID: 26329458.

61. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brain-

stem is a target for the inhibitory effect of leptin on food intake. Endocrinology. 2002; 143(1):239–46.

Epub 2001/12/26. https://doi.org/10.1210/endo.143.1.8589 PMID: 11751615.

62. Ritter S, Dinh TT, Zhang Y. Localization of hindbrain glucoreceptive sites controlling food intake and

blood glucose. Brain Res. 2000; 856(1–2):37–47. Epub 2000/03/10. PMID: 10677609.

63. Filippi BM, Bassiri A, Abraham MA, Duca FA, Yue JT, Lam TK. Insulin signals through the dorsal vagal

complex to regulate energy balance. Diabetes. 2014; 63(3):892–9. Epub 2013/11/26. https://doi.org/10.

2337/db13-1044 PMID: 24270985.

64. Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013; 14(4):387–

407. Epub 2013/08/31. https://doi.org/10.1007/s11154-013-9261-9 PMID: 23990408.

65. Pritchard LE, Oliver RL, McLoughlin JD, Birtles S, Lawrence CB, Turnbull AV, et al. Proopiomelanocor-

tin-derived peptides in rat cerebrospinal fluid and hypothalamic extracts: evidence that secretion is regu-

lated with respect to energy balance. Endocrinology. 2003; 144(3):760–6. Epub 2003/02/15. https://doi.

org/10.1210/en.2002-220866 PMID: 12586751.

66. D’Agostino G, Diano S. Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med

(Berl). 2010; 88(12):1195–201. Epub 2010/07/10. https://doi.org/10.1007/s00109-010-0651-0 PMID:

20617297.

67. Sainsbury A, Cooney GJ, Herzog H. Hypothalamic regulation of energy homeostasis. Best Pract Res

Clin Endocrinol Metab. 2002; 16(4):623–37. Epub 2002/12/07. PMID: 12468411.

68. Pasquali R, Vicennati V. Activity of the hypothalamic-pituitary-adrenal axis in different obesity pheno-

types. Int J Obes Relat Metab Disord. 2000; 24 Suppl 2:S47–9. Epub 2000/09/21. PMID: 10997608.

69. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical

review of methods for visceral adipose tissue analysis. The British journal of radiology. 2012; 85

(1009):1–10. Epub 2011/09/23. https://doi.org/10.1259/bjr/38447238 PMID: 21937614.

70. Tomiyama AJ, Hunger JM, Nguyen-Cuu J, Wells C. Misclassification of cardiometabolic health when

using body mass index categories in NHANES 2005–2012. Int J Obes (Lond). 2016; 40(5):883–6.

https://doi.org/10.1038/ijo.2016.17 PMID: 26841729.

71. Kowalski GM, Hamley S, Selathurai A, Kloehn J, De Souza DP, O’Callaghan S, et al. Reversing diet-

induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 27 / 28

https://doi.org/10.1002/glia.22841
http://www.ncbi.nlm.nih.gov/pubmed/25903009
https://doi.org/10.1038/srep19694
http://www.ncbi.nlm.nih.gov/pubmed/26795945
https://doi.org/10.1523/JNEUROSCI.6221-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22553043
https://doi.org/10.1172/JCI88878
http://www.ncbi.nlm.nih.gov/pubmed/28045396
https://doi.org/10.1097/MED.0000000000000182
http://www.ncbi.nlm.nih.gov/pubmed/26192704
https://doi.org/10.1016/j.cmet.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19808014
https://doi.org/10.1016/j.cmet.2009.08.013
http://www.ncbi.nlm.nih.gov/pubmed/19808018
https://doi.org/10.1038/nrendo.2014.160
http://www.ncbi.nlm.nih.gov/pubmed/25200564
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
http://www.ncbi.nlm.nih.gov/pubmed/26813401
https://doi.org/10.1038/nn.4495
https://doi.org/10.1038/nn.4495
http://www.ncbi.nlm.nih.gov/pubmed/28166221
https://doi.org/10.7554/eLife.09800
https://doi.org/10.7554/eLife.09800
http://www.ncbi.nlm.nih.gov/pubmed/26329458
https://doi.org/10.1210/endo.143.1.8589
http://www.ncbi.nlm.nih.gov/pubmed/11751615
http://www.ncbi.nlm.nih.gov/pubmed/10677609
https://doi.org/10.2337/db13-1044
https://doi.org/10.2337/db13-1044
http://www.ncbi.nlm.nih.gov/pubmed/24270985
https://doi.org/10.1007/s11154-013-9261-9
http://www.ncbi.nlm.nih.gov/pubmed/23990408
https://doi.org/10.1210/en.2002-220866
https://doi.org/10.1210/en.2002-220866
http://www.ncbi.nlm.nih.gov/pubmed/12586751
https://doi.org/10.1007/s00109-010-0651-0
http://www.ncbi.nlm.nih.gov/pubmed/20617297
http://www.ncbi.nlm.nih.gov/pubmed/12468411
http://www.ncbi.nlm.nih.gov/pubmed/10997608
https://doi.org/10.1259/bjr/38447238
http://www.ncbi.nlm.nih.gov/pubmed/21937614
https://doi.org/10.1038/ijo.2016.17
http://www.ncbi.nlm.nih.gov/pubmed/26841729
https://doi.org/10.1371/journal.pone.0196743


glycerolipid synthesis. Sci Rep. 2016; 6:27541. Epub 2016/06/09. https://doi.org/10.1038/srep27541

PMID: 27273128.

72. Williams LM, Campbell FM, Drew JE, Koch C, Hoggard N, Rees WD, et al. The development of diet-

induced obesity and glucose intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases.

PLoS One. 2014; 9(8):e106159. Epub 2014/08/30. https://doi.org/10.1371/journal.pone.0106159

PMID: 25170916.

73. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, et al. Standard operating proce-

dures for describing and performing metabolic tests of glucose homeostasis in mice. Disease models &

mechanisms. 2010; 3(9–10):525–34. Epub 2010/08/18. https://doi.org/10.1242/dmm.006239 PMID:

20713647.

74. Melvin RG, Andrews MT. Torpor induction in mammals: recent discoveries fueling new ideas. Trends

Endocrinol Metab. 2009; 20(10):490–8. Epub 2009/10/30. https://doi.org/10.1016/j.tem.2009.09.005

PMID: 19864159.

75. Jensen TL, Kiersgaard MK, Sorensen DB, Mikkelsen LF. Fasting of mice: a review. Laboratory animals.

2013; 47(4):225–40. Epub 2013/09/13. https://doi.org/10.1177/0023677213501659 PMID: 24025567.

Independent associations with diet/energy balance and body weight

PLOS ONE | https://doi.org/10.1371/journal.pone.0196743 May 10, 2018 28 / 28

https://doi.org/10.1038/srep27541
http://www.ncbi.nlm.nih.gov/pubmed/27273128
https://doi.org/10.1371/journal.pone.0106159
http://www.ncbi.nlm.nih.gov/pubmed/25170916
https://doi.org/10.1242/dmm.006239
http://www.ncbi.nlm.nih.gov/pubmed/20713647
https://doi.org/10.1016/j.tem.2009.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19864159
https://doi.org/10.1177/0023677213501659
http://www.ncbi.nlm.nih.gov/pubmed/24025567
https://doi.org/10.1371/journal.pone.0196743

