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Abstract: Increased interest in natural antioxidants has brought to light the fucoidans (sulfated
polysaccharides present in brown marine algae) as highly valued nutrients as well as effective
and safe therapeutics against several diseases. Based on their satisfactory in vitro antioxidant
potency, researchers have identified this molecule as an efficient remedy for neuropathological as
well as metabolic disorders. Some of this therapeutic activity is accomplished by upregulation
of cytoprotective molecular pathways capable of restoring the enzymatic antioxidant activity and
normal mitochondrial functions. Sirtuin-3 has been discovered as a key player for achieving the
neuroprotective role of fucoidan by managing these pathways, whose ultimate goal is retrieving
the entirety of the antioxidant response and preventing apoptosis of neurons, thereby averting
neurodegeneration and brain injuries. Another pathway whereby fucoidan exerts neuroprotective
capabilities is by interactions with P-selectin on endothelial cells, thereby preventing macrophages
from entering the brain proper. Furthermore, beneficial influences of fucoidan have been established
in hepatocytes after xenobiotic induced liver injury by decreasing transaminase leakage and
autophagy as well as obtaining optimal levels of intracellular fiber, which ultimately prevents fibrosis.
The hepatoprotective role of this marine polysaccharide also includes a sirtuin, namely sirtuin-1
overexpression, which alleviates obesity and insulin resistance through suppression of hyperglycemia,
reducing inflammation and stimulation of enzymatic antioxidant response. While fucoidan is very
effective in animal models for brain injury and neuronal degeneration, in general, it is accepted that
fucoidan shows somewhat limited potency in liver. Thus far, it has been used in large doses for
treatment of acute liver injuries. Thus, it appears that further optimization of fucoidan derivatives
may establish enhanced versatility for treatments of various disorders, in addition to brain injury
and disease.
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1. Introduction

The increasing prevalence of multiple chronic diseases has triggered massive exploration of novel
pharmaceuticals for their proper management [1,2]. However, therapies are often accompanied by side
effects. Given that the impaired homeostasis of reactive oxygen species (ROS) is often the source for
these illnesses, extensive efforts are being made to produce synthetic antioxidants that are beneficial and
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lack undesired side effects [3,4]. In addition, research for natural antioxidants has led to the promotion
of macro algae (more commonly known as seaweeds) as natural remedies against various disorders,
due to their rich content of biologically active compounds [5,6]. Initial research concerning the in vitro
antioxidant properties of bioactive compounds from different classes of algae together with analyses
conducted using cell cultures revealed that a fucose containing a sulfated polysaccharide, fucoidan,
showed satisfactory results concerning radical scavenging, chelating properties, and lipid peroxidation
inhibiting potential, which further endorsed them as potential therapies for diseases associated with
ROS overproduction [7,8]. Moreover, recent studies mentioned the relevance of the sulfate content as
well as molecular weight of the isolated fucoidans for the its beneficial antioxidant features. Thus,
research is ongoing to optimize isolation and extraction [9,10]. Furthermore, the dissimilarities of the
chemical structure of high yielding fucoidan sources, such as marine brown algae Fucus vesiculosus,
Undaria pinnatifida, or Laminaria japonica, additionally promoted investigations regarding the effects of
fucoidans with different structural characteristics [10,11]. Various research endeavors also have led
to the commercial production of fucoidan food supplements. In this review, we also briefly note our
preliminary results regarding antioxidant effects of fucoidan and some of its derivatives.

The encouraging results about the biological activity of fucoidan have incited screening of in vivo
antioxidant and therapeutic properties of this algal polysaccharide. At the outset, utilizing the
anti-inflammatory, anti-proliferative, pro-apoptotic, cytotoxic, antifungal, antiviral, and antibacterial
features of fucoidan, it was used as a therapy for malignancies and organ damage in animal models [12].
The above characteristics and effects are described in further detail in this review in correlation with
pre-clinical and translation research for treatment of mental disorders, and brain damage due to disease
and injury. Indeed, there is substantial evidence regarding its protective and beneficial actions in the
central nervous system (CNS), both at whole organ and cellular levels, which is a plausible starting
point for developing novel therapies for severe neurodegenerative and neurocognitive disorders such
as Alzheimer Disease (AD), Parkinson Disease (PD), and others [13,14]. Furthermore, another line of
research confirmed the beneficial influence of fucoidan in preserving cellular integrity and inhibition
of fibrosis in drug-induced liver injury and hepatocellular carcinoma [15,16]. In addition to brain
and liver disorders, fucoidan has been used as an effective therapy against ulcerative colitis, Crohn’s
disease, and arthritis [17,18]. These curative effects, together with the non-toxic, biocompatible nature
of fucoidan, provides a solid basis for its preclinical and translational research.

2. In Vitro Antioxidant Activity of Fucoidan from Marine Algae and Commercial Supplements

Very encouragingly, fucoidan has shown satisfactory results concerning in vitro scavenging and
reducing and antioxidant potentials [19]. Since the areal of distribution of the brown algae F. vesiculosus,
U. pinnatifida, or L. japonica is restricted to various separated regions distributed worldwide, efforts are
being made to uncover additional natural sources (algae species) suitable for exploitation, including
extraction of satisfactory amounts of biologically active polysaccharides and polyphenols from the
species in question [20]. A search is on for “optimal fucoidan sources,” with the idea to expand the
present pool of commercially available supplements, and add potent prophylactics [21]. Differences
in the antioxidant potency, and sulfate or polyphenol content, of the various fucoidan extracts can
depend on the type and/or quality of algal species used, the different extraction methods, methods
of fractionation of extracts, and purity and yield of the polysaccharides attained. Sulfate content
vs. molecular weight and uronic acid percentage of the isolated polysaccharides also contribute to
alteration in their antioxidant profiles [22,23]. These reported observations emphasize the importance
for the analysis of the in vitro antioxidant profiles of commercially available seaweeds and comparing
them with fucoidan supplements.

In general, it is accepted that the seaweed fucoidan is a modest 2.2 diphenyl-1-picrylhydrazyl
(DPPH) inhibitor, when compared to radical scavenging rates of ascorbic acid or other synthetic
antioxidants [23]. Studies have indicated that a high sulfate content does not necessarily invoke high
DPPH quenching and established the relevance of the monosaccharide distribution as a contributing
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factor [24,25]. High inhibitory concentrations (IC50) of fucoidan supplements manufactured by
Marinova (SupaFuco), together with crude fucoidan extracted from purple laver (Porphyra sp.) and
nori (P. tennera) (ranging from 2.5 ± 0.18 mg/mL for SupaFuco and 12.59 ± 1.13 and 22.54 ± 2.68 mg/mL
for purple laver and nori; summarized in Table 1), also endorsed these claims (own unpublished
data). High polyphenol and chelating properties of purple laver significantly contribute to the
DPPH neutralization rates (own unpublished data). Fortunately, according to the Food and Drug
Administration (FDA), fucoidan has been recognized as safe ingredient with no side effects; the
treatment should be able to intensify its primary antioxidant response in vivo by application of large
doses of it [26].

Table 1. IC50 values of radical scavenging activity and chemical content of fucoidans isolated from
dried algae and commercial supplements.

Specimen DPPH1 Scavenging
(mg/mL)

NO2 Scavenging
(mg/mL)

O2− Scavenging
(mg/mL)

Fucoidan (%) 2 Sulfate
Content (%)

Marinova Fucoidan 2.50 ± 0.18 a,3 3.58 ± 0.33 a 1.41 ± 0.38 a 25.00 ± 0.03 a 27.04 ± 0.92 a

Daiso Fucoidan 4.10 ± 0.53 b 5.76 ± 0.35 b 3.83 ± 0.58 c 4.26 ± 0.68 b 2.89 ± 0.32 d

Porphyra sp. 12.59 ± 1.13 c 7.86 ± 0.12 c 4.56 ± 0.51 c 1.35 ± 0.17 c 0.36 ± 0.06 e

P. tenera 22.54 ± 2.68 d 43.69 ± 6.18 d 2.80 ± 0.33 b 0.81 ± 0.01 d 3.88 ± 0.26 c

U. pinnatifida 42.77 ± 1.09 e 34.17 ± 0.75 d 2.29 ± 0.09 b 2.14 ± 0.15 e 5.48 ± 0.68 b

1 IC50, Concentration of the sample at which the inhibition rate is equal to 50 %; 2 % Indicates g/100 g dry weight;
3 Results are presented as mean ± SD from three parallel measurements. Different small letters within a column
represent statistical significance of p < 0.05 between the samples.

There is consensus that fucoidan also possesses nitric oxide (NO) scavenging capabilities, but little
information is available. For example, it was reported that fucoidan from Sigma Aldrich exhibits
high NO scavenging potential [21]. In another study, fucoidan isolated from S. polycystum, showed
complete neutralization of NO free radical at concentration of 1 mg/mL [27]. A recent study by
us, comparing the in vitro antioxidant profiles of isolated fucoidan from commercially obtained
algae, versus fucoidan supplements, acknowledged that commercial dietary supplements were
relatively potent in inhibiting difenylpicrylhydrazine (DPPH) radicals and NO radical scavengers (own
unpublished data). In particular, pills containing fucoidan manufactured by Marinova Ltd. showed
approximately two times and 10 times lower IC50 values than the algae of purple laver and wakame,
respectively (own unpublished data, summarized in Table 1). Furthermore, while lower than the
supplements from Marinova, Daiso fucoidan supplements still present higher antioxidant activity than
extracted polysaharides, independent of low sulfate content.

In parallel, isolated fucoidans from the algae shown significantly higher radical scavenging activity
for superoxide radicals (IC50 values of 2.29 ± 0.61 for wakame and 2.80 ± 0.33 mg/mL, reached for
nori algae, summarized in Table 1), which demonstrated that the isolated fucoidan from commercially
procured algae are relative efficient scavengers of moderately potent oxidants (own unpublished
data). Nonetheless, it was found that fucoidan supplement from Marinova Ltd. showed the highest
scavenging rates for this super oxide radical (IC50 value 1.41 ± 0.38), with approximately two times
lower IC50 value than both of the abovementioned algal species (wakame and nori). Interestingly,
investigations of Qu et al. confirmed higher superoxide scavenging activity of crude fucoidans obtained
from L. japonica and E. maxima than those from ascorbic acid used as standard [28]. The effectiveness of
Marinova Fucoidan may simply relate to its high fucoidan content (25%) (Table 1). Thus, it appears
that anti-oxidant activities of fucoidan and their derivatives can be further optimized.

The established positive correlation between the superoxide (O2
−) scavenging activity and the

sulfate content of the polysaccharides of all the investigated specimens (Table 1, own unpublished
data), corroborated other studies [22,29]. High fucoidan contents of commercial supplements
followed by wakame, could be crucial for their high (O2

−) scavenging rates (own unpublished
data). Adequate hydroxyl radical (OH−) scavenging abilities were also published regarding
marine algae polysaccharides, appointing that multiple factors such as the reducing power,
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sulfate or the polysaccharide content could contribute to the OH− free radical inhibition [10,22].
Taken together, the in vitro antioxidant potentials encouraged pharmacologic studies about fucoidan’s
prophylactic properties.

3. Digestion and Absorption of Fucoidan

In the light of the positive, curative effects of fucoidans on various form of brain disorders it is
becoming interesting to gain further insights in the behavior of fucoidans in the organism. Relevant for
clinical application, few studies have been done to determine the efficiency of uptake of fucoidan
via the digestive system. It can be assumed that the complexity of the fucoidan structure also affects
its permeability and absorption rates through the gastrointestinal tract, mostly due to the limited
enzymatic potentials of the human organism. In accordance with this hypothesis, earlier studies
considered the sulfated polysaccharide molecule with high molecular weight and rich content of
dietary fiber as “indigestible” given the partial in vitro degradation of the chemical constituents of
different brown algae such as laminarans to monosaccharide units, and complete resistance to digestion
of sulfated fucans and alginates by human fecal bacteria [30]. On the other hand, ELISA quantification
of fucoidan levels in blood circulation, as a more reliable method for determining the digestibility
of this molecule, showed that after a 12-day dosing of galactofucan capsules from U. pinnatifida to
human individuals, only 0.6% persisted in plasma [31]. High urinary levels of fucoidan and low
permeability coefficient concerning its transport across Caco-2 cells reported by newer studies also
support the findings about low uptake of fucoidan by the gastrointestinal system [32,33]. With regards
to the mechanism of absorption of fucoidan, a study in 2014 suggested the involvement of the
round mononuclear cells of the jejunum given the higher concentration of fucoidan observed by
immunochistochemistry methods in rats fed standard chow containing 2% fucoidan for one or two
weeks. Increased accumulation of fucoidan in the sinusoidal non-parenchymal cells together with the
Kupffer cells also indicated these as crucial players in the internalization of fucoidan in the liver [32].
N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) was found to enhance fucoidan uptake in the small
intestine and liver [32]. Since its intracellular transport hardly can be completed by simple diffusion,
it is highly possible that transporters are involved in its cellular influx. Researchers predict that the
sodium glucose transporter (SGLT2) and/or the glucose transporter (GLUT2) might be involved in
fucoidan uptake over the blood-brain barrier (BBB), given their affinity to polysaccharides and phenols
with sugar substitutes [32,34,35]. The latest research has confirmed that fucoidan enters in Caco-2 cells
through clathrin-mediated endocytosis because its influx is modified by chemical inhibitors of this
process [36].

4. Molecular Biological Pathways Modulated by Fucoidan

To stipulate very briefly, fucoidan appears to interact with selectin on endothelial cells, preventing
leukocytes from entering the brain from the blood vessels via the blood brain barrier (BBB), i.e., closing
the BBB. This of course reduces inflammatory responses inside the brain tissue proper. Intracellularly,
fucoidan interacts with sirtuin 3 (SIRT3) in brain cells, which in turn modulates mitochondria activity
and cell nuclear gene expression, which, for example, reduces oxidative stress, ROS generation,
and mitochondrial apoptosis (via mitochondrial activity modulation), and inflammatory responses,
regeneration, angiogenesis, and wound healing (via cell nuclear gene expression modulation). This will
be discussed in the following sections in more detail below.

4.1. Fucoidan—Selectin Interactions

Fucoidan binds to P-selectin with high affinity and exerts antagonism of selective function [37].
P-selectin is found on the cell surface of endothelial cells of the BBB. It binds to glycoprotein on the cell
surface of leukocytes; P-selectin is involved in rolling and arresting leukocytes on the endothelium
prior to leukocyte migration into the extravascular space [38–41]. Thus, the permeability of the BBB for
leukocytes can be affected by P-selectin; for example, enhanced levels of P-selectin leads to a higher BBB
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permeability, while decreased levels of P-selectin leads to lower permeability of the BBB. Thus, briefly,
by binding to P-selectin on endothelial cells of the BBB, fucoidan can inhibit the entry of leukocytes
into the brain proper, and thereby, reduce the inflammatory response [37].

4.2. Fucoidan—Sirtuin 3 Interactions

Another major pathway for fucoidan to ameliorate brain damage due to injury and disease
appears to be its interaction with SIRT3 (Figure 1). SIRT3 is a protein that in humans is encoded by
the SIRT3 gene (sirtuin (silent mating type information regulation 2 homolog) 3 (S. cerevisiae)) [42].
SIRT3 is a member of the mammalian sirtuin family of proteins. SIRT3 exhibits NAD+ dependent
deacetylase activity. The human sirtuins present an interesting range of molecular functions and have
emerged as important proteins in aging, stress resistance, and metabolic regulation. In addition to
protein deacetylation, studies have shown that the human sirtuins may also function as intracellular
regulatory proteins including mono ADP ribosyltransferase activity.
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Figure 1. Mechanism of action of fucoidan in traumatic brain injury (TBI). Fucoidan alleviates brain
injury through upregulation of sirtuin, which decreases reactive oxygen species (ROS) overproduction
by inhibiting the mitochondrial permeability transition pore (mPTP) opening, and restores normal
mitochondrial function via stimulation of ATP synthesis, and attenuates mitochondria-initiated
apoptosis by decreasing leakage of cytochrome c from the mitochondria into the cytosol. Additionally,
fucoidan stimulates expression of FOXO3A and Nrf-2-ARE genes, thus increasing glutathione (GSH)
production and Mn-SOD and Cat activity.

Endogenous SIRT3 is a soluble protein located in the mitochondrial matrix (Figure 1) [43].
Overexpression of SIRT3 in cultured cells increases respiration and decreases the production of ROS.
Interestingly, there is a strong association between SIRT3 alleles and longevity in males. In addition to
controlling metabolism at the transcriptional level, sirtuins also directly control the activity of metabolic
enzymes. The presence of the sirtuin deacetylase SIRT3 in the mitochondrial matrix suggests the
existence of lysine acetylated mitochondrial proteins. Indeed, SIRT3 deacetylates and activates the
mammalian mitochondrial acetyl-coA synthetase (AceCS2). Furthermore, SIRT3 and AceCS2 are found
complexed with one another, suggesting a critical role for control of AceCS2 activity by SIRT3 [43].
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In addition to its reported mitochondrial function, some researchers have proposed a very small
pool of active SIRT3 exists in the cell nucleus (Figure 1). This pool is reported to consist of the long form
of SIRT3 and has been suggested to have histone deacetylase activity [44]. The observation that SIRT3
has cell nuclear activity came from a report that SIRT3 protected cardiomyocytes from stress mediated
cell death and that this effect was due to deacetylation of a nuclear factor, Ku-70 [45]. Presently,
not many brain research studies have linked Fucoidan with SIRT3, thus, the question of potential
fucoidan-SIRT interactions is worthwhile to address. The most clear-cut fucoidan-SIRT interaction is
established in a traumatic brain injury (TBI) model, see Section 5, here below.

5. Fucoidan and Traumatic Brain Injury (TBI)

As said, with regard to brain damage, to date there is only one study of brain injury and
neurodegeneration directly targeting the link between fucoidan and SIRT3.

Depending on its severity, TBI can lead to death and/or disabilities. Outcomes of TBI are mainly
characterized by disturbances in the normal physiology and structure of the brain caused by extrinsic
mechanical insults due to assault or other accidents [46,47]. Mechanical forces can inflict direct neuronal
and astrocytic death, axonal degeneration, and vascular damage, also known as primary injuries [48].
Subsequently, the death and damage of neurons and activation of astrocytes are accompanied by
additional systemic and intracranial complications, typically involving microglial activation, cytokine
release, oxidative stress, and inflammation, which eventually lead towards apoptosis and necrosis [49].
This heterogenic and diverse nature of human TBI, together with the limited success of bringing
adequate treatment to the patients, further emphasizes the need for broadening the research for efficient
yet safe therapeutic treatments for this condition [50].

Earlier reports about successful implementation of fucoidan treatment for cardiac dysfunction or
renal ischemia reperfusion injury, disorders with similar molecular response as TBI, encouraged the
exploitation of this polysaccharide component as efficient therapy [51,52]. Regarding TBI itself, Wang
et al. conducted a thorough study concerning the effects of this novel therapeutic as prevention or
treatment for brain injuries and discovered that low molecular weight fucoidan (LWMF) at doses of 10
and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume [53]. Importantly for
clinical considerations, LMWF was effective even when administered up to 4 h after TBI. Given prior to
TBI, fucoidan prevented contusion injuries and tissue loss in the cortex and hippocampus, which was
associated with positive outcomes of behavioral tests [53]. This protection was associated with
reduced neuronal apoptosis, as evidenced by TUNEL staining. Moreover, administration of fucoidan
significantly reduced oxidative stress as confirmed by the decreased levels of MDA, 4-hydroxynonenal
(4-HNE), protein carbonyls levels, and ROS levels, as well as reversed glutathione peroxidase (GPx),
catalase (Cat), and SOD activity accompanied by restoration of mitochondrial cytochrome c levels [53]
(for illustration, see Figure 1).

Finally, and importantly to understand better the workings of fucoidan, the authors reported
significantly elevated levels of SIRT3 after TBI (Figure 1). The expression of SIRT3 was detected by
RT-PCR and Western blot. SIRT3, as mentioned above, is a protein involved in the activation of
enzymatic ROS quenching mechanisms. Fucoidan treatment of TBI further enhanced SIRT3 levels,
which might be part of one of the regulatory pathways that triggered the restoration of GPx, SOD,
and Cat levels [53]. Application of intracerebroventricular injection of small interfering RNA (siRNA)
to induce knockdown of SIRT3 partially prevented the therapeutic effects of LMWF. Another study
presented similar results after administration of commercial fucoxanthine in in vitro and in vivo TBI
models, further revealing that these protective effects are only enabled through Nrf 2-induced activation
of the antioxidant response element (ARE) [54]. In summary, it appears that fucoidan achieves its
neuroprotective role via “triple impact.” Namely, rather than depending solely on its own chelating and
radical scavenging properties, fucoidan further protects neuronal integrity by stimulating important
genetic/molecular pathways capable of retrieving the entirety of the cellular antioxidant mechanisms.
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Furthermore, as mentioned, by interacting with P-selectin, fucoidan prevents the entry of leukocytes
from the blood stream into the brain tissue proper (Figure 2).
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Figure 2. Effects of fucoidan on brain disease. Fucoidan reduces inflammatory response in brain
diseases by inhibiting microglial activation, thus resulting in significantly decreased neuronal and
astrocyte degeneration due to diminishing production of pro-apoptotic agents and improving
antioxidant responses of the cell. Furthermore, fucoidan prevents leukocyte adhesion to the brain by
blocking P-selectin.

6. Fucoidan and Neurodegeneration

Neurodegeneration is commonly defined as progressive atrophy and loss of function of neurons
reflected in neurodegenerative diseases such as AD or PD [55]. In particular, neurodegenerative
disorders are characterized by a progressive decline of motor and/or cognitive functions caused by
the selective degeneration and loss of neurons within the CNS [56]. While substantial progress has
been made in revealing the cellular and molecular pathways causing these conditions, which mostly
involve dysregulation of genetic expression indubitably accompanied by synthesis of truncated protein
triggering neuroinflammatory response [57], they still pose a significant threat for human health in
general, mainly because of their severe and aggressive symptomatology, and a pathophysiology that is
still a diagnostic challenge [58]. For treatment, or rather, for the alleviation of symptoms, AD patients
mostly rely on cholinesterase inhibitors, while PD is mainly treated with dopamine precursors; however,
to this date, no decisive progress achieved AD, PD, and other neurodegenerative disease, including
neurodegeneration following brain injury [59]. Giving hope, however, favorable results in treatment of
neurodegeneration have been reported with fucoidans, fucoxanthins, and other bioactive compounds
from various algal sources, associated with characteristics such as: (i) scavenging potentials, which
can avert neuronal damage given the linkage of this condition to neuronal ROS imbalance caused
by mitochondrial dysfunction [60]; (ii) reported acetylcholinesterase (AcHE) or butyrilcholinesterase
(BcHE) inhibitory activity of polyphenol rich extracts [61,62]; (iii) reported beta secretase (BACE-1)
inhibitory activities of crude extracts and polysaccharides, which may preclude amyloid beta (Aβ)
accumulation [61,63]. (see also Figure 2)

Newer reports about the molecular pathways involved in fucoidan neuroprotective effects on
dopaminergic nerve precursor cells (MN9D) treated with 1-methyl-4-phenyl pyridine (MPP+) suggest
its involvement in increasing superoxide dismutase (SOD) activity and reduced glutathione (GSH)
concentration and decreasing the apoptosis levels by downregulation of Bax expression [13]. A study
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by Zhang et al. demonstrated that acute high dose co-treatment with fucoidan isolated from L. japonica
significantly reduced rotenone-induced loss of substantia nigra pars compacta and striatal neurons [14].
This resulted in a significant improvement of the animals’ behavior and alleviation of PD symptoms
by increasing mitochondrial respiratory function together with the inhibition of malondialdehyde
(MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 3-nitrotyrosine (3-NT) formation in rat ventral
midbrain [14]. These authors also reported that fucoidan treatment resulted in restoring the normal
expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and
nuclear transcription factor 2 (Nrf-2), thereby rescuing the mitochondrial functioning [14]. A study by
Park et al. confirmed that pretreatment with fucoidan extracted from E. cava also showed antioxidant
effects and protection of mitochondrial health in mice with cognitive dysfunction caused by trimethyltin
injection [64]. It was also reported that fucoidan has a beneficial influence on inhibiting Bax expression
and cytochrome c release, in accordance with previously reported in vitro findings [64]. (see also
Figure 2) Finally, these same authors found significant decreases in Aβ formation and phosphorylation of
Tau protein suggesting that fucoidan could be an efficacious agent for prevention for neurodegenerative
disorders [64].

Fucoidan, Neurodegeneration, and Sirtuin 3

As mentioned above, fucoidan may exert its beneficial effects via SIRT3 (as seen with TBI),
and it appears that SIRT3 commonly presents a component of neurodegenerative diseases, as for
example discussed by Meng et al. [56]. The most common neurodegenerative diseases are AD,
PD, and Huntington Disease (HD). In the wake of several recent failures of AD therapies targeting
beta-amyloid in plaques, growing evidence has suggested that infection with the herpes simplex virus
(e.g., (HSV)-1) may play a role in AD. It is known that HSV-1 induces formation of beta-amyloid,
and abnormally phosphorylated, AD-like tau (P-tau), which are the characteristic abnormal molecules
of AD brains [65]. Furthermore, it has been found that SIRT3 may be a relevant therapeutic target
in ALS. This suggests that SIRT3 may present a target for treatment of various neurodegenerative
disorders [66]. Neurons have high energy demands, and dysregulation of mitochondrial quality and
function is an important cause of neuronal degeneration (See also Figure 1). Meng et al. discussed that
the mitochondrial deacetylase SIRT3 has been found to have a large effect on mitochondrial function [56].
Recent studies have also shown that SIRT3 has a role in mitochondrial quality control, including
the refolding or degradation of misfolded/unfolded proteins, mitochondrial dynamics, mitophagy,
and mitochondrial biogenesis, all of which are part and parcel of neurodegenerative diseases. Thus,
the finding that fucoidan appears to interact with SIRT3, as seen with neurodegeneration due to TBI,
may be very relevant

To recapitulate a bit, sirtuins are highly conserved NAD+ dependent class III histone deacetylases
and catalyze deacetylation and ADP ribosylation of a number of non-histone proteins [67]. In the
recent past, clusters of protein substrates for SIRT3 were identified in mitochondria and are now
considered to be in association with protection from stress induced mitochondrial integrity and energy
metabolism (Figure 1). In this way, SIRT3 may be protective regarding the pathogenesis of almost
all neurodegenerative diseases. Some recent findings demonstrated that SIRT3 overexpression could
prevent neuronal derangements in certain in vivo and in vitro models of aging and neurodegenerative
brain disorders, including AD, PD, HD, TBI, stroke, etc. Similarly, loss of SIRT3 has been found
to accelerate neurodegeneration in the brain challenged with excitotoxicity, which may explain the
increase of SIRT3 levels found in the Wang’s et al. study [51] of TBI and its treatment with fucoidan,
described above.

7. Fucoidan is Anti-inflammatory

Fucoidan treatment of meningitis in rats reduced all inflammatory changes, while fucoidan
treatment of animals without meningitis increased blood white cell count [68]. This study also
validated that selectins are involved in the early phase of pneumococcal meningitis and, possibly, are a
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target for adjunctive therapy with fucoidan [68]. In a rabbit meningitis model based on intracisternal
injection of live Streptococcus pneumoniae, inhibition of leukocyte rolling by i.v. application of the
polysaccharide fucoidan prevented the enhanced leukocyte extravasation into the subarachnoid space
(SAS) and also attenuated the leakage of plasma proteins over the BBB [69]. Thus, fucoidan’s ability to
block leukocyte rolling via binding to P-selectin presents the potential to reduce leukocyte-dependent
CNS damage in bacterial meningitis. In addition, in C6 glioma cells it was found that fucoidan can
suppress TNF-α and IFN-È-induced NO production and iNOS expression, another way whereby
fucoidan can attenuate inflammatory responses (See Figure 2). (Furthermore, fucoidan can inhibit:
(1) TNF-α and IFN-È-induced AP-1, IRF-1, JAK/STAT activation; (2) p38 mitogen-activated protein
kinase (MAPK) activation; and (3) induced scavenger receptor B1 (SR-B1) expression [70]. In support,
in vitro experiments with primary microglia indicated that the excessive production of TNF-α and ROS
in LPS-induced primary microglia was significantly inhibited by fucoidan administration [71]. Finally,
in animal studies, it was found in LPS treated rats that fucoidan significantly improved the behavioral
functioning, prevented the loss of dopaminergic neurons, and inhibited the deleterious activation of
microglia in the substantia nigra pars compacta [71]. These studies indicate the anti-inflammatory
properties of fucoidan at cellular as well as systemic levels.

8. Fucoidan and Brain Infections (Prion and Virus)

Creutzfeldt-Jakob disease is a serious and lethal brain damaging condition. It has been
demonstrated that sulfated glycans such as fucoidan and pentosan polysulfate, as well as amyloidophilic
compounds such styrylbenzoazole derivatives, and phenylhydrazine derivatives present efficacies
in prion-infected animals [72]. Wozniak et al. moved on to investigate the antiviral activity of
sulfated fucans from five brown algae (Scytothamnus australis, Marginariella boryana, Papenfussiella
lutea, Splachnidium rugosum, and Undaria pinnatifida) in relation to the HSV1-induced formation of
beta-amyloid, and AD-like tau [65]. Four sulfated fucan extracts each prevented the accumulation
of HSV1-induced beta-amyloid and AD-like tau in HSV1-infected Vero cells [65]. Thus, knowledge
regarding fucoidan as an antiviral agent, beyond anti-inflammatory effects, may be relevant for
brain disorders.

9. Fucoidan as Antiviral Agent

As the burden of viral infections is increasing, culminating with highly contagious new corona
viruses displaying heterogeneous structures, complicating the design of targeted therapy, it is valuable
to consider novel and safe antiviral agents [73,74]. In light of these notions, we assume that together
with its antiviral and anti-inflammatory properties, fucoidan may deliver protective effects against
many illnesses, including neurodegenerative and hepatic disorders, as reported and reviewed here and
elsewhere. These effects of polysaccharides are mostly achieved by stimulating the production of viral
antibodies and upregulation of interleukins (particularly IL-1 and IL-2), hence increasing the activation
of macrophages and natural killer (NK) cells and promoting phagocytosis. In support of the above, it is
assumed that the sulfate groups in fucoidan molecule may also contribute to the antiviral activity by
acting as polyanions, and inhibiting cell surface interactions of positively charged viral domains with
the host cells, thus preventing their penetration and/or adsorption. Boosting the humoral immune
response by increased immunoglobulin synthesis has also been acknowledged as one of the antiviral
effects of polysaccharides [74]. Early in vitro reports suggested that algal polysaccharides successfully
inhibited the herpes simplex virus (HSV1 and HSV2), human cytomegalovirus, and bovine viral
diarrhea virus [75,76], which may also have implications for brain diseases, including Alzheimer [65].
A study conducted by Hidari et al. placed the dengue virus type 2 (DEN 2), in the list of successfully
inhibited viral species by fucoidan extracted from C. okamurans in the BHK-21 cell line, additionally
defining glucuronic acid and the sulfated fucose contents as key elements involved in antiviral activity
of this macromolecule [77]. These authors also established the significance of arginine-323 as a vital
region in the envelope glycoprotein (EPG), which enables the interactions of glucuronic acid with the
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virus, while its possible substitution or “mispositioning” may decrease the antiviral effects of fucoidan
as shown for DEN-1 and DEN-3 viruses [77]. Conversion of the complex structure of polysaccharides
into monosaccharides could also diminish their virucidal activity [78].

From recent published results, Sun et al. verified these findings by establishing the inhibitory
activities of two low molecular fractions of fucoidan isolated from L. japonica against influenza A,
adenovirus, and parainfluenza virus type 1 (HPIV1) in Hep-2, Hela, and MDCK cells [79]. These authors
also reported that acute intraperitoneal treatment with these fucoidan fractions prolonged the average
survival time and increased the viability of lung, thymus, and spleen cells [79]. Similar research
conducted by Wang et al. revealed the inhibition of neuraminidase and epidermal growth factor cellular
pathway (EGFR) of fucoidan as crucial molecular mechanisms for preventing the penetration of
influenza H1N1 virus into host cells [80]. Another study showed the inhibitory properties of crude
fucoidans obtained from the brown algae D. bartayesiana and T. decurrens of the human immunodeficiency
virus (HIV) in infected peripheral blood mononuclear cells (PBMCs) at the extremely low inhibitory
concentrations of 1.56 µg/mL and 3 µg/mL, respectively, thus exhibiting significantly higher antiviral
effects than ribavirin [78,81]. Prokofjeva et al. also acknowledged fucoidans as potent anti-HIV agents
irrespective of their degree of sulfation and carbohydrate structure [82].

Since fucoidan has been proven quite successful in inhibiting single stranded RNA (ssRNA)
respiratory viruses such as influenza A and HPIV1, in addition to virucidal activity against DEN
(positive ssRNA virus), we are also led to believe that it could be influential in treating coronaviruses
induce diseases such as COVID-19, given COVID-19’s similarities with the genetic material and
symptomatology of the virus species mentioned here [83]. The variety of the cellular mechanisms by
which this polysaccharide achieves its antiviral effects probably contributes to its potency.

10. Fucoidan and Brain (Excito)toxicity

Fucoidan was shown to suppress increased oxidative stress in bovine brain microvessel endothelial
cells (BBMECs) in culture after exposure to diesel exhaust particles (DEPs) [84]. In addition, permeability
of BBMECs induced by DEP exposure was decreased by fucoidan treatment. This study provides
evidence that fucoidan might protect the CNS against toxic effects of DEP exposure [84]. In cultured
cortical neurons from one-day old Wistar rats, fucoidan suppressed NMDA induced Ca2+ responses
by 100% [85]. However, the Ca2+ responses of hippocampal neurons induced by glutamate, ACPD,
or adrenaline showed only slight decreases following fucoidan treatment. Nonetheless, in cortical as
well as hippocampal neurons, fucoidan treatment significantly decreased mRNA expression of the
NMDA-NR1 receptor and the primer pair for l-type Ca2+ channels, namely, PR1/PR2. In this way,
fucoidan may counteract excitotoxicity, at least in the cerebral cortex [85].

Previous work showed that the glycosaminoglycan (GAG) dextran sulfate (500 kDa) altered
the binding and channel properties of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)-type glutamate receptors [86]. Dextran sulfate was more potent in inhibiting high-affinity
AMPA binding to solubilized receptors (EC (50) of 7 nM) than fucoidan, another GAG (EC(50) of
124 nM). Additionally, dextran sulfate (2 nM), produced a three- to four-fold increase in open channel
probability and a three-fold increase in mean burst duration of channel activity elicited by 283 nM
AMPA. Fucoidan produced similar effects, but at a concentration several times higher than that of
dextran sulfate [86]. These findings suggest that GAG components of proteoglycans can interact with
and alter the binding affinity of AMPA receptors and modulate their functional properties. Thus,
in addition to NMDA receptors, fucoidan can also prevent excitotoxity by altering the affinity of AMPA
receptors. We hope that these fucoidan effects can be optimized, for example, by producing more
efficacious fucoidan derivatives.

11. Fucoidan and Alzheimer Disease (AD)

As mentioned above, fucoidan can counteract AD-like adverse effects of HSV1 infection, such as
the formation of beta-amyloid and abnormal P-tau. Other studies showed with rat behavioral tests



Mar. Drugs 2020, 18, 242 11 of 26

that fucoidan can ameliorate Aβ (1-40)-induced learning and memory impairments [87]. Furthermore,
fucoidan reversed the decreased activity of choline acetyl transferase (ChAT), superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), and acetylcholine (Ach) content, as well as the inhibitory
effects on malondialdehyde (MDA) synthesis in hippocampal tissue of Aβ-injected rats [87]. Moreover,
these effects were accompanied by an increase of Bcl-2/Bax ratio and a decrease of caspase-3 activity [87].
Thus, apparently, by regulating the cholinergic system, reducing oxidative stress, and inhibiting
apoptosis, fucoidan can ameliorate Aβ-induced AD.

Park et al. investigated the sea weed Ecklonia cava (E. cava) for the effects of fucoidan extract
on cognitive function [64]. They applied Y-maze, passive avoidance, and a Morris water maze to a
trimethyltin (TMT)-induced cognitive dysfunction model. This demonstrated that the fucoidan extract
promoted learning and memory improvements. In mouse brain tissue taken after such behavioral tests,
fucoidan extract was shown to provide inhibitory effects on lipid peroxidation and improvement of
cholinergic system activity. Mitochondrial activity was improved as seen from associated mitochondrial
ROS content and mitochondrial membrane potential (MMP, ∆Ψm) levels, and was also detected by
mitochondria-mediated protein (BAX, cytochrome C) analysis for apoptosis induction. It appeared
that the fucoidan-rich substances from E. cava could improve cognitive functions by downregulating
amyloid-β production and tau hyperphosphorylation [64].

Jhamandas et al. showed that fucoidan reduced cell death rates otherwise induced by A beta
(25-35) or A beta (1-42) to rat cholinergic basal forebrain cultures [88]. In this study, it was also
found that fucoidan attenuated A beta-induced downregulation of phosphorylated protein kinase C.
Furthermore, A beta (1-42)-induced generation of ROS was blocked by prior exposure of the cultures
to fucoidan. Regarding apoptosis, A beta activation of caspases 9 and 3 is blocked by pretreatment of
cultures with fucoidan [88]. Caspases 9 and 3 are well known components of the signaling pathways
of apoptotic cell death induction. These results show that fucoidan has neuroprotective effects against
A beta-induced neurotoxicity in basal forebrain neuronal cultures, which may have implications for
AD and other neurodegenerative diseases

Sirtuin and Alzheimer Disease (AD)

As fucoidan can affect SIRT3 function, it is interesting to know what SIRT3 may do in AD.
Lee et al. have discussed mitochondrial dysfunction in connection with the pathogenesis of AD [89].
In particular, SIRT3 mRNA and protein levels are significantly decreased in AD cerebral cortex,
and Ac-p53 K320 is significantly increased in AD mitochondria. In this context, SIRT3 prevented
p53-induced mitochondrial dysfunction and neuronal damage in a deacetylase activity-dependent
manner. Notably, mitochondrial targeted p53 (mito-p53), directly reduced mitochondria DNA-encoded
ND2 and ND4 gene expression, resulting in increased ROS and reduced mitochondrial oxygen
consumption. Interestingly, ND2 and ND4 gene expressions are significantly decreased in patients
with AD and increased p53 occupancy in mitochondrial DNA in AD. Lee et al. further found that
SIRT3 overexpression restored the expression of ND2 and ND4 and improved mitochondrial oxygen
consumption by repressing mito-p53 activity [89]. These results indicate that SIRT3 dysfunction leads
to p53-mediated mitochondrial and neuronal damage in AD. Therapeutic modulation of SIRT3 activity
may ameliorate mitochondrial pathology and neurodegeneration in AD. In the light that fucoidan can
modulate SIRT3 activity, it emphasizes that fucoidan may present an agent to ameliorate AD.

12. Fucoidan and Parkinson Disease (PD)

The effects of fucoidan has been studied intensively on several PD models, for example: (i) in
cell culture of dopaminergic nerve cells; (ii) MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)
application to mice; and (iii) application of 6-hydroxydopamine and rotenone application to rats,
as given in some detail below.

In a study by Liang et al. on a cultured dopaminergic nerve precursor cell line (MN9D), cell viability
decreased by 50% within 24 h of 100 µM MPP+ application [13]. 1-methyl-4-phenylpyridinium (MPP+),
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the toxic bioactivation product of MPTP, is a toxic compound that via the dopamine transporter is
brought into neurons, in which it initiates neuronal death by inhibiting complex I of the mitochondria.
Pretreatment with 100 µM fucoidan in this paradigm reversed the reduction of SOD and GSH, as well
as the decreased cell viability and induced apoptotic cell death, otherwise brought about within 6 h by
MPP+. Furthermore, preceding this fucoidan reduced cellular expression of LC3-II and CatD within
3 h and suppressed the induction of Bax protein. Thus, Liang et al. suggested that fucoidan may have
a positive, curative effect regarding PD [13].

Regarding animals, Luo et al. applied MPTP to C57/BL mice [90]. When fucoidan was administered
prior to MPTP, behavioral deficits were reduced, and levels of striatal dopamine and its metabolites
were enhanced, cell death was reduced, and a marked increase in tyrosine hydroxylase expression
relative to mice treated with MPTP alone was also observed. Furthermore, as in the Liang et al.
study [13], it was found that fucoidan inhibited MPTP-induced lipid peroxidation and reduction of
antioxidant enzyme activity. In addition, pre-treatment with fucoidan significantly protected against
MPP(+)-induced damage in MN9D cells [90].

In a 6-hydroxydopamine (6-OHDA) rat model of PD, chronic fucoidan administration mitigated
the motor dysfunction otherwise induced by 6-OHDA [91]. Similarly, fucoidan reduced the loss of
DA neurons in the SNc and DA fibers in the striatum in 6-OHDA-lesioned rats. Moreover, fucoidan
inhibited the 6-OHDA-stimulating expression of Nox1 in both tyrosine hydroxylase (TH)-positive
neurons as well as non-TH-positive neurons, and prevented Nox1-sensitive oxidative stress and cell
damage in SNc neurons. Finally, fucoidan also effectively inhibited nigral microglial activation [91].

In a rotenone-induced PD rat model, it was found that chronic treatment with fucoidan significantly
reversed the loss of nigral dopaminergic neurons, striatal dopaminergic fibers, and reduction of striatal
dopamine levels [14]. Fucoidan also alleviated rotenone-induced behavioral deficits. Interestingly,
in the substantia nigra of these PD rats, the reduced mitochondrial respiratory function, detected by the
mitochondrial oxygen consumption and the expression of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) and nuclear transcription factor 2 (NRF2), was markedly reversed
by fucoidan [14]. Furthermore, oxidative products induced by rotenone were significantly reduced by
fucoidan. These results thus also suggest some functional pathways modulated by fucoidan in relation
to the neurodegenerative disease of PD.

Taken together, these studies indicate that fucoidan attenuates PD characteristics induced in
various animal and cell culture models for PD. Thus, fucoidan provides a promising venue for treatment
of PD by modulating its various underlying molecular biological mechanisms.

Sirtuin and Parkinson Disease (PD)
It may be that as in TBI, and also suggested for AD, fucoidan exerts its ameliorating

effects regarding PD via interactions with SIRT3. Interestingly, while it was shown that SIRT3
null mice do not exhibit motor and non-moto deficits compared with wild-type controls, SIRT3
deficiency dramatically exacerbated the degeneration of nigrostriatal dopaminergic neurons in
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice [92]. SIRT3 null mice exposed
to MPTP also exhibited decreased SOD 2, a specific mitochondrial antioxidant enzyme, and reduced
glutathione peroxidase expression compared with wild-type controls [92]. Taken together, these findings
strongly support that SIRT3 has a possible role in MPTP-induced neurodegeneration via preserving free
radical scavenging capacity in mitochondria. Thus, it would be worthwhile to study fucoidan-SIRT3
interactions in models for PD. It indeed is very tempting to assume that fucoidan also interacts with
SIRT3 in PD.

13. Fucoidan and Stroke

Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have
beneficial effects in treating stroke, but their underlying mechanism remains unclear [93].

The potential of fucoidan to ameliorate stroke injury in the brain has been of interest for more than
two decades now. Because intracerebral hemorrhage (as induced by injection of bacterial collagenase
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into the caudate nucleus) is associated with more inflammation than seen with ischemic stroke,
this stroke model attracted early interest for fucoidan treatment testing, as fucoidan can counteract
inflammatory responses [94]. Fucoidan-treated rats exhibited evidence of impaired blood clotting
and hemodilution, had larger hematomas, and tended to have less inflammation in the vicinity of
the hematoma after three days. Interestingly, fucoidan-treated rats showed significantly more rapid
improvement of motor function in the first week following hemorrhage and better memory retention
in the passive avoidance test, as compared to untreated controls [94]. This early study from 1999
stated that investigations of more specific anti-inflammatory agents and hemodiluting agents would
be warranted in intracerebral hemorrhage [94].

As it was also understood that leukocyte-endothelial adhesion is a key step to initiate post-ischemic
reperfusion injury in many organs, this potential contribution to stroke, including fucoidan interference,
was also studied. Uhm et al. found that the expressions of P-selectin mRNA and protein were
increased in the ipsilateral hemisphere with a peak at 8 h after hypoxia-ischemia in immature brain [95].
Such temporal profiles of P-selectin expression followed by hypoxia-ischemia are consistent with a role
in the subsequent brain injury. Because fucoidan is known to inhibit P/L-selectin mediated leukocyte
adhesion, it was examined whether the treatment of fucoidan attenuates hypoxia-ischemia-induced
neural damages [95]. Indeed, fucoidan presented a substantial neuroprotective effect, including
significant inhibition of the leukocyte adhesion, as revealed by myeloperoxidase activity. These results
suggest that anti-adhesion strategy as can be provided by fucoidan may be an effective therapeutic
application for perinatal hypoxic-ischemic encephalopathy [95].

The following study presented further interest in fucoidan as an anti-inflammatory agent. Fucoidan
treatment inhibited the expressions of some brain cytokine or chemokine mRNA, such as IL-8, TNF-α,
and iNOS in the brain of the rats treated only with LPS [96]. Moreover, fucoidan treatment dramatically
decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment. In addition,
the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation,
was distinctively decreased in the ischemic brain of the fucoidan-treated rat. In brief, the results of Kang
et al. [96] indicated that fucoidan provides a neuroprotective effect on LPS accelerated cerebral ischemic
injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments [96].

Intracerebral hemorrhage (ICH) is the most fatal stroke subtype, with no effective therapies [97].
Additionally, fucoidan did not have effects on brain water content, neurological deficits, and hemoglobin
content after ICH. The authors suggested that this may be so because crude fucoidan was used in this
study, and high-molecular-weight fucoidans (HMWF) are reported to have less therapeutic potential
than LMWF’s [97].

The effects of fucoidan on cerebral ischemia-reperfusion injury (IRI) including the inflammatory
and other underlying mechanisms were further explored in Sprague-Dawley (SD) rats [98]. The results
showed that administration of fucoidan significantly reduced the neurological deficits and infarct
volume in a dose-dependent manner. Additionally, fucoidan significantly decreased the levels of:
(i) inflammation-associated cytokines (interleukin (IL)-1β, IL-6, myeloperoxidase (MPO), and tumor
necrosis factor (TNF)-α); (ii) oxidative stress-related proteins malondialdehyde (MDA) and SOD;
(iii) apoptosis (in particular, apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2));
and (iv) the MAPK pathway mitogen-activated protein kinase (MAPK) pathway (in particular,
phosphorylation-extracellular signal regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK),
and p-p38). Thus, fucoidan’s protective role in cerebral IRI includes anti-inflammatory effects,
anti-apoptotic effects, anti-oxidative stress affects, and potentially gene expression regulation [98].

Studies directed at better determining the stroke-fucoidan interaction in various brain cell types,
at systemic, in situ levels, showed that pretreatment with fucoidan confers neuroprotection against
transient global cerebral ischemic injury in the gerbil hippocampal CA1 area via reducing of glial cell
activation and oxidative stress [99]. In some detail, the neuroprotective effect of fucoidan against
transient global cerebral ischemia (tGCI) included inhibition of activation of astrocytes and microglia in
the ischemic CA1 area. Furthermore, it significantly reduced otherwise increased 4-hydroxy-2-noneal
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and superoxide anion radical production in the ischemic CA1 area with subsequent increased
expressions of SOD1 and SOD2 in the CA1 pyramidal neurons before and after tGCI [99]. Additionally,
in obese gerbils, fucoidan treatment attenuated acceleration and exacerbation of tGCI-induced neuronal
death in the CA1-3 hippocampal areas, and levels of oxidative stress indicators (dihydroethidium,
8-hydroxyguanine, and 4-hydroxy-2-nonenal) were significantly reduced, while levels of antioxidant
enzymes (SOD1 and SOD2) were significantly increased in pre- and post-ischemic phases [100].
These findings indicate that pretreatment with fucoidan can relieve the acceleration and exacerbation of
ischemic brain injury in an obese state via the attenuation of obesity-induced severe oxidative damage,
and related factors.

Sirtuin and Stroke

As mentioned at a few occasions above, SIRTs are a family of NAD+ dependent histone deacetylase
(HDAC) proteins implicated in aging, cell cycle regulation, and metabolism. These proteins are involved
in the epigenetic modification of neuromodulatory proteins after stroke via acetylation/deacetylation.
The specific role of SIRT3, a mitochondrial sirtuin, in post-stroke injury has been relatively unexplored.
Nonetheless, Verma et al. [101] showed that SIRT3 knockout (KO) mice show significant neuroprotection
at 3 days after ischemia/reperfusion (I/R) or stroke injury. The deacetylation activity of SIRT3, measured
as the amount of reduced acetylated lysine, was increased after stroke [101]. In male SIRT3 KO mice
and wild-type littermates (WT), stroke-induced increases in liver kinase 1 (LKB1) activity were also
appeared reduced in KO mice at 3 days after stroke.

Yin et al. investigated whether mitochondrial SIRT3 could mediate the neuroprotective effects
of ketone bodies after ischemic stroke. The ketone treatment did enhance mitochondrial function,
reduced oxidative stress, and probably in this way reduced infarct volume. This was associated
with improved neurologic function after ischemia, including the neurologic score, the performance
in rotarod, and in open field tests. They further presented that ketones’ effects were achieved by
upregulating SIRT3 and its downstream substrates forehead box O3a (FoxO3a) and superoxide
dismutase 2 (SOD2) in the penumbra region. This appeared likely, since knocking down SIRT3 in vitro
diminished ketones’ beneficial effects [93]. It also indicates that upregulation of SIRT3 after stroke is
beneficial for amelioration of brain damage caused by stroke. These results provide us a foundation to
develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway. Of course, in the framework
of this review, we would like to suggest the potential of fucoidan, based on its known modes of action
and its efficaciousness.

On further investigation, Verma et al. found that the levels of SIRT1, another important member
of the Sirtuin family, were increased in the brains of Sirt3 KO mice after stroke [101]. To determine
the translational relevance of these findings, they tested the effects of pharmacological inhibition of
SIRT3. They found no benefit of SIRT3 inhibition despite clear evidence of deacetylation. Overall,
it was concluded that SIRT3 KO mice show neuroprotection by a compensatory rise in SIRT1 rather
than the loss of SIRT3 after stroke [101]. Further analysis will determine the importance of using both
pharmacological and genetic methods in pre-clinical stroke studies to better understand molecular
biological pathways [101]. Additionally, it is important to further investigate the interaction between
SIRT1 and SIRT3.

More studies approached the question of SIRT3 involvement in brain damage due to stroke.
The role of SIRT3 in microglial cell migration and invading macrophages in ischemic stroke was
studied. The middle cerebral artery occlusion (MCAO) animal model of focal ischemia was used [102].
Lentivirus-packaged SIRT3 overexpression was applied, and also knock down in microglial N9 cells in
culture, to investigate the underlying mechanism driving microglial cell migration. More microglial cells
appeared in the ischemic lesion side after MCAO. The levels of SIRT3 were increased in macrophages
invading after ischemia. CX3CR1 levels were increased with SIRT3 overexpression. Furthermore,
SIRT3 promoted microglial N9 cells migration by upregulating CX3CR1 in both normal and glucose
deprived culture media [102]. These effects were G protein-dependent. Thus, SIRT3 promotes microglia
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migration by upregulating CX3CR1. This appears counter intuitive, finding that SIRT3 promotes
microglia migration, while the consensus appears to be that SIRT3 acts anti-inflammatory. However,
as mentioned, it would be nice also to further investigate interaction between SIRT1 and SIRT3.

After transient middle cerebral artery occlusion (tMCAO) in adult male SIRT3 KO and wild-type
(WT) mice, it was found that the level of SIRT3 in infarct region is decreased after ischemic stroke [103].
In addition, it was found that SIRT3 KO mice showed worse neurobehavioral outcome compared with
WT mice, accompanied by decreased neurogenesis and angiogenesis, as shown by the reduction in
number of DCX+/BrdU+ cells, NeuN+/BrdU+ cells, and CD31+/BrdU+ cells in the perifocal region
during the recovery phase after ischemic stroke [103]. Furthermore, SIRT3 deficiency reduced the
activation of vascular endothelial growth factor (VEGF), AKT, and extracellular signal-regulated
kinases (ERK) signaling pathways [103]. These results indicate that SIRT3 is beneficial to neurovascular
and functional recovery following chronic ischemic stroke. As a concluding remark, as TBI and stroke
are brain injuries, it could be very fruitful to investigate fucoidan–sirtuin interactions in stroke models,
and see whether similarities with TBI models will be seen.

14. Fucoidan and Liver Injury

Regarding the previously mentioned conclusions about antioxidant, anti-inflammatory,
and anti-cell death impact of fucoidan, it can be deduced that this polysaccharide could have a
significant therapeutic effect against systemic and whole organism disorders and inflammations
rather than just impairments of tissues. It could also have a significant impact on regenerating the
antioxidant potentials of more dynamic cells with significantly higher levels of ROS production such as
hepatocytes [104]. We will discuss fucoidan-liver interactions here. An additional point, not to be dwelt
on, may be the effect of liver damage on brain health, as for example with hepatic encephalopathy,
or maybe also atherosclerosis associated with impaired liver functions. Importantly, restricting ourselves
to the liver, hepatocytes are easily prone to structural alterations, cellular deterioration, and damage,
given their rates of metabolic activity; thus they are ideal models for confirming the protective effects of
fucoidan [104]. Indeed, fucoidan has shown cytoprotective effects against the hepatotoxicity of several
xenobiotics, such as acetaminophen (APAP) [105] or carbon tetrachloride (CCl4) [106] (Figure 3). Li et al.
also confirmed the effects of fucoidan, extracted from F. vesiculosus, against liver fibrosis induced by
acute CCl4 treatment (Figure 3) or bile duct ligation (BDL) through decreasing serum transaminase
activity and hydroxyproline concentration; however, relative large doses of fucoidan were needed to
restore normal levels of serum transaminase activity and hydroxyproline concentration [15] (see also
Figure 3). Moreover, they discovered that fucoidan significantly reduced synthesis of collagen type 1
and alpha smooth muscle actin (α-SMA) proteins, which are typically upregulated in hepatocyte injury
stimulating liver fibrosis by transformation of hepatic stellate cells (HSCs) to myofibroblasts [107].
Furthermore, the authors proved the inhibitory effect of fucoidan on transforming growth factor beta
(TGF-β)/Smad molecular pathways, by the decreased expression of Beclin-1, a transcription factor
activated by this pathway which influences autophagosome occurrence, which was considerably
increased in the CCl4 or BDL injured hepatocytes (Figure 3) [15,108]. A recent study confirmed these
findings with fucoidan extracted from S. fluitans on Wistar rats [109]. Thus, it can be concluded that
fucoidan exerts its hepatoprotective effects through the alteration of pathways directly included in
modification of liver microenvironment.
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Figure 3. Effects of fucoidan on liver injury. Damaging agents at the top left side, APAP and carbon
tetrachloride (CCl4), and protective fucoidan at the top right side. Fucoidan averts liver fibrosis by
inhibiting HSCs production through optimal synthesis of collagen and alpha smooth muscle actin
and prevents tissue damage by reducing transaminase release and restoring antioxidant potentials of
cells. It decreases CYP2E1 activity, which reduces levels of toxic metabolites and inhibits TGF-β/Smad
pathway, thereby hindering the occurrence of autophagosomes. Fucoidan also stimulates expression of
sirtuin-1 in the liver, which activates AMPK and alleviates insulin resistance.

The contribution of sulfate content for the beneficial effects of this algal polysaccharide on hepatic
injury has also been studied. Namely, Liu et al. reported more significantly decreased levels of serum
lactate dehydrogenase (LDH) levels in mice with acute CCl4 treatment after co-treatment with more
sulphated fractions of fucoidan (24.65% and 29.31%) isolated from K. crassifolia [110] (see also Figure 3).
However, the authors did not find major differences in the inhibition of lipid peroxidation and GSH
restoration in animals treated with different doses of fucoidan fractions [110]. Similar results were
also found for diminishing AST and MDA levels during treatment with high sulphated fraction of
fucoidan (27.08%) from S. japonica, supported by histopathological analyses, which revealed a complete
inhibition of liver necrosis by this fraction of fucoidan, with a mega dose applied [111]. Findings
about the dependence of sulphate content on the biological potency of algal polysaccharides are in
corroboration with those published by Wang et al., who reported that low sulphate fraction (1%) of
fucoidan from C. costata did not achieve suppression of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels [112].

Recent investigations about fucoidan hepatoprotective effects against drug induced liver
injury also provided promising results. A study by Abdel-Daim et al. has shown that
acute treatment of rats with high quantity of fucoidan efficiently restores transaminase levels,
creatine kinase, and acetylcholinesterase activity, as well as cholesterol and creatinine serum
concentrations, after diazinon-induced hepatic injury, together with the dose dependent decrease of
inflammatory biomarkers, such as TNF-α and IL-6 [113]. Similarly, neurons, hepatocytes, renal cells,
and cardiomyocytes also exhibited improvement of the enzymatic antioxidants via the restoration of
cellular Cat, SOD, and GPx activities and a significant decrease in lipid peroxidation and nitric oxide
levels (Figure 3) [113]. The same results were obtained using mice as animal models for microcystin-
LR injury [114]. Discoveries of Wang et al. suggested that fucoidan exerts its protective effects
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against APAP liver injury mostly through activating the Nrf2-ARE molecular pathway in addition
to suppressing cytochrome 450 member CYP2E1, responsible for metabolizing acetaminophen to its
toxic product N-acetyl-p-benzoquinoneimine (NAPQI) and triggering GSH depletion [16,115] (see also
Figure 3). However, large doses of fucoidan were able to increase the antioxidant response of liver cells
and suppress serum ALT, AST, and LDH levels only at the early stages of injury (up to 2 h after of
APAP injection) [16] (see also Figure 3).

14.1. Sirtuin and Liver Injury

Reminiscent of neurons, fucoidan also stimulates expression of sirtuin molecules (SIRT1) in
hepatocytes, mostly involved in regulation of glucose and lipid metabolism in the liver, thus being
one of the crucial factors included in the pathophysiology of the metabolic syndrome (MetS) and
insulin resistance [116]. Considering the severity of these illnesses and the increasing trend of obesity
worldwide, it is of great importance to discover safe therapeutics that would decrease these alarming
rates [117]. In this context, a study by Zheng et al. reported significant reduction of plasma and
liver cholesterol and triglycerides in db/db mice after sub-chronic treatment with low molecular
fucoidan isolated from L. japonica, but failed to acknowledge reduction in fasting glucose levels [118].
Hepatoprotective effects were confirmed by inhibition of transaminase release, but only at the highest
dose applied. As expected, the anti-inflammatory and antioxidant effects of fucoidan in vivo were
underlined by the significant decreases in the cytokines and ROS markers, which was confirmed by the
reduced expression of NF-κB in the fucoidan treated mice [118]. Most importantly, the authors reported
significantly elevated levels of SIRT1 and 5’ adenosine monophosphate-activated protein kinase
(AMPK), whose activation is typically associated with increased glucose uptake, fatty acid oxidation,
and glycolysis, which certainly explains these antilipotoxic effects of fucoidan (Figure 3) [118]. Treatment
with F. vesiculosus fucoidan on palmitate induced insulin resistant HepG2 cells also resulted in increased
expression of AMPK, additionally confirmed by their increased glucose consumption and decreased
lipid profile [119]. Furthermore, sub-chronic administration of fucoidan isolated from the same species
also affected Low-Density Lipoprotein Cholesterol (LDL-C) and High-Density Lipoprotein Cholesterol
(LDL-C). In particular, this fucoidan application also resulted in reduction of LDL-C and elevation of
HDL-C levels in high fat diet fed mice, thus showing similar results with metformin in most of the
analyzed parameters both in vivo and in vitro (except for HDL-C), including body weight decreases,
which additionally promotes fucoidan as an efficient remedy for metabolic disorders, considering
the ongoing controversies of the effects of metformin [119,120]. Another study dealt with aspects
of homeostasis, including glucose metabolism, influenced by fucoidans [121]. Briefly, the effects
of low-molecular-weight fucoidan (LMWF) in terms of antihyperglycemic, antihyperlipidemic,
and hepatoprotective activities, were investigated in a mouse model of type II diabetes. Blood sugar
levels and increased serum adiponectin levels, were lowered by LMWF intake; thus they are relatively
effective at improving hepatic glucose metabolism [121].

14.2. Liver Injury, Cholesterol, Atherosclerosis, and Fucoidan

From the findings about hypolipidemic effect of fucoidans, the possible suppression of
atherosclerosis by this molecule can be derived from complex pathology of atherosclerosis, which
combines dyslipidemia, inflammation, and atherothrombosis, mostly affected by increased levels of
plasma LDL and its oxidative transformations as a trigger for occlusion of peripheral arteries [122].
In parallel, the explained hepatoprotective features of fucoidan also go in favor of this hypothesis
considering the impacts of impaired hepatic functioning on lipid homeostasis, regulation of metabolic
pathways and lipoprotein uptake [123]. The revealed contribution of ROS in the development of
atherosclerotic plaques, as confirmed by increased lipid peroxidation, glutathione depletion, and plasma
and tissue protein carbonylation levels, also endorsed investigations of fucoidan as suitable therapeutic
for this disease [124–126]. A study by Park et al. reported the significant decreases in plasma lipid
profiles in fucoidan-treated mice with chemically-induced hyperlipidemia, which were comparable
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with statin effects [127]. Furthermore, it was concluded that this marine derived polysaccharide
influences significant reduction in the development of aortic lesions in chronic atherosclerosis model
and reduced expression of lipogenic enzymes fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC)
in HepG2 cells [127]. This study also confirmed the significant changes in the expression of SREBP-2
and the LDL receptor, which makes them the probable molecular targets for hypolipidemic effects
of fucoidan [127]. These findings were confirmed on apolipoprotein E deficient mice (ApoE−/−) in
the study of Yin et al., using fucoidan isolated from A. nodosum [128]. Beside the amelioration of the
lipid profiles and transaminase activity in the high fat diet treated mice, the sub-chronic treatment
with fucoidan favored cellular cholesterol efflux by upregulation of ATP-binding cassette transporters
(ABCA1 and ABCG8) and suppressed SREBP1 and peroxisome proliferator-activated receptor gamma
(PPARγ), thereby inhibiting fatty degeneration in the liver. However, the treatment did not influence
changes in LDL-R expression in ApoE−/−, in contrast with the effects of fucoidan isolated from
F. vesiculosus, thus suggesting the disparity of the effects of polysaccharides with different structures as
well as the chemical composition [128].

14.3. Summary, Liver and Fucoidan

To summarize, fucoidan averts hepatic injury and necrosis by: (i) inhibiting the profibrotic
pathways in the extracellular matrix that promote HSCs production; (ii) modulating the cytochrome
p450 enzyme activity and influencing the expression of Nrf-2 transcription factor, which stimulates
the antioxidant response of hepatocytes; (iii) increasing the expression of SIRT1 and other molecules
involved in regulation of lipoprotein metabolism. While fucoidan research is still in its early stages,
even though it exhibits versatile molecular response in liver cells, thus far, research only proved that
fucoidan can alleviates acute injury at relatively large doses. Thus, it would be worthwhile to go the
road of optimizing fucoidan effects by enhancing the efficaciousness of its derivatives. Furthermore,
possibly with its protective functions in the liver, fucoidan can suppress atherosclerosis, which of
course would also present a beneficial factor regarding reduction of the incidence of stroke and explain
some of its healing effects.

15. Differences in Physiological Activity of HMWF vs. LMWF, Contribution of the
Sulfate Content

Another question arises: which type of fucoidan in general would be relatively advantageous to
use—high molecular weight fucoidan (HMWF) or low molecular weight fucoidan (LMWF).

The bioactivity of fucoidan is primarily dependent on its molecular weight and sulfate content.
In general, it is accepted that the therapeutic potentials of HMWF are limited due to its lower cellular
uptake and bioavailability, as reported by several studies [9,129]. These limitations derive mainly
from the difficulties of HMWF to cross lipid bilayers, thereby suggesting superior effects of LMWF
regarding their anticancer and antioxidant activity, simply deriving from their relatively efficacious
membrane permeability [74,130]. In one study, the structure/function relationships of fucoidans from
Ascophyllum nodosum regarding their pro-angiogenic effect and cellular uptake in human endothelial
cells were investigated [131]. It was evidenced that LMWF have relatively high pro-angiogenic and
pro-migratory potential. This may be interesting knowledge for the potential application LMWF to
vascular repair in ischemia. In contrast, HMWF seems to have greater immunostimulatory effects than
LMWF in the spleen, as indicated by the increased activation of natural killer NK cells in addition to
the higher levels of interleukins and TNF-α [132]. In accordance with the latter, a study of Liu et al.
revealed that the HMWF exhibited more significant neuroprotective effect than the LMWF in SH-SY5Y
cells, thereby suggesting that the amount of sulfate is an important factor for improving therapeutic
properties of fucoidan [133]. This study also uncovered the advantageous efficient blockage of HMWF,
which further reveals the complexity of its steric configuration providing more binding sites to the
complementary factors [133].
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In addition to distinctions in molecular weight also differences in presence of sulfated groups may
contribute to the beneficial effects of fucoidans. Overall, a positive correlation exists between the sulfate
content and antioxidant capability, which generally implies increased therapeutic impact of more
sulfated fucoidans against diseases whose etiologies include oxidative damage [74]. More specifically,
highly sulfated fucoidans have shown significant attenuation of lipid accumulation and antitumor
activity [134,135]. In one review focusing on bone tissue regeneration, it was concluded that sulfated
polysaccharides, including fucoidans, have exceptional properties in terms of hydrogel-forming ability,
scaffold formation, mimicking the extracellular matrix, alkaline phosphatase activity, biomineralization
ability, and stem cell differentiation [136].

16. Potential Mitochondrial Involvement in the Curative Effects of Fucoidans and Sirtuins

In a recent review by us, we discussed the potential involvement of a mitochondrial protein (the
18 kDa Translocator Protein; TSPO ) in brain disorders [137]. It is acknowledged that TSPO can serve
to maintain homeostasis at organism, tissue, and cellular levels, including curative effects. Thus, in
general, it is interesting to further investigate the potential of targeting mitochondria for curative
effects on various aspects of brain disorders, including liver issues. As discussed throughout this
review (indicated in Figures 1 and 3), fucoidans via their interactions with Sirtuins 1 and 3, can affect
mitochondrial functions. This includes homeostasis and metabolism, which are essential components
for maintaining brain and liver health, including curative responses to injury and disease. In this
respect, a study of Nogueiras et al. [138] recognized that by deacetylating a variety of proteins that
induce catabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately
maintain cellular energy homeostasis. It is also known that effects in the pathways controlled by
Sirtuins 1 and 3 can result in various metabolic disorders [138]. Thus, our study suggests that studying
the interactions of fucoidans with sirtuins can elicit multiple metabolic benefits regarding various
forms of brain disorders and liver injuries.

17. Concluding Remarks

Fucoidan presents beneficial effects in brain and liver damage, due to injury and disease.
An interesting consideration is that it is possible to modify fucoidan derivatives to modulate fucoidan
effects. Additionally, it appears that fucoidan can interact with sirtuins; in the brain (SIRT3), this appears
to be associated with mitochondrial function and modulation cell nuclear gene expression. In the liver
(SIRT1), this appears to be associated with the regulation of glucose and lipid metabolism. Finally,
in the brain, in particular the BBB, fucoidan interacts with P-selectin, thereby blocking macrophages
from crossing and thus attenuating the inflammatory response in the brain proper. In this context,
to emphasize here, it is becoming more and more recognized that prion, viral, and bacterial infections
can induce neurodegeneration, as for example observed with Alzheimer Disease (AD) [139]. Thus,
fucoidans’ anti-prion, anti-viral, and anti-bacterial functions may become relevant in this respect.
We believe that since fucoidans have demonstrable curative effects on various brain disorders (and
also other diseases not discussed in this review) it would be worthwhile to deepen research of the
various effects of fucoidans at molecular and cellular levels and the whole organism in general.
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