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Abstract
Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in

saline and alkaline land, salt tolerance study of cotton is particularly important. In our experi-

ment, four salt-tolerance varieties with different salt tolerance indexes including CRI35

(65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well

as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xin-

yan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials

were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton

SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of

the same seedling pre- and after- salt stress) in different varieties were screened; polymor-

phic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis

of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton

materials with different salt tolerance index was different, in which the induction efficiency

on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The

induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may

be related to the methylation changes under salt stress. (3) SNPr may influence salt toler-

ance of plants by affecting the expression of salt-tolerance related genes.

Introduction
Salinity stress is a major abiotic factor that affects crop output [1], and exploring the mecha-
nism of salt tolerance of plants is of great importance for improving their salt tolerance and
creating salt tolerant germplasms. As a pioneer crop in saline and alkaline land, salt tolerance
study of cotton is particularly important.

SNP (Single nucleotide polymorphism) is genetic polymorphism caused by variation of sin-
gle bases in different alleles at the same locus in the genome, and commonly SNP refers to con-
version or transversion of single bases. Compared with other types of mutations, SNPs stand
out by their high absolute numbers, biallelic nature, relatively low mutation rates and amenably
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automation, which allows high-throughput analyses of large numbers of samples [2]. With
fully sequenced genomes are available, SNPs have been found in many species and microarrays
with SNP markers (SNP-chip) have been developed for many plants [3–5]. These will contrib-
ute to the application of SNP markers in plants. Based on the location of occurrence, SNP
could be divided into non-coding region SNP and coding region SNP (cSNP). A small portion
of non-coding region SNP is located in gene control region, which is known as regulatory SNP
(rSNP). According to their different effects on genetic traits, cSNP can be divided into two
types: one is synonymous cSNP, which will not change the amino acid sequence of the protein
being translated; another is non-synonymous cSNP, which refers to that changes in nucleotide
sequence will cause the changes of downstream protein sequence. And SNP affecting the gene
functions is called functional SNP (fSNP). In organisms, expression of the genes is a complex
process. According to the central dogma, genetic information within the gene is transcribed to
mRNA, translated and then transmitted to the polypeptide chain; after folding and assembly,
polypeptide chain forms protein and play its functions. In this process, mutation of fSNP at
certain key locus may cause changes in single chain folding [6], or lead to changes in the down-
stream amino acid sequence and nature, or make some restriction loci disappear or reappear,
or change the gene structure and regulatory loci, and ultimately affect the phenotype.
Researches also showed that certain link was found between SNP and methylation and epige-
netic inheritance; documents also showed that 5mC at methylated CpG loci was prone to spon-
taneously deaminize and turned into thymine, and ultimately generated C/T or G/A mutation
point after DNA replication [7]. Researches have shown that SNP can contribute to a pheno-
type directly or be associated with a phenotype [8].

Currently, a large number of fSNP associated with phenotypic traits have been found in ani-
mals and humans, and they have been comprehensively studied, while there are few studies on
such fSNP in plants. A SNP was found on CmOr gene of orange flesh watermelon and green/
white flesh watermelon and it caused an evolutionarily conserved arginine in CmOr protein to
mutate into histidine, and studies found that the mutation would cause the accumulation of β-
carotene, thus affecting the flesh colors of orange flesh watermelon and non-orange flesh
watermelon [9]. Promoter region of TaGW2-6A gene of 207 Indian wheat varieties was
sequenced and a new SNP site SNP -494 was discovered, which is related to grain weight and
other agronomic traits such as ear length, protein content and so on. And this SNP is located in
"CGCG" domain, which plays a key role in Ca2+/calmodulin mediated gene regulation [10]. A
rare SNP was found on qph1 gene in maize and it may affect plant height and was considered
to possibly enhance the potential maize yield [11]. Plant nutrition-related SNP was also found.
A nonsynonymous SNP was found on a 1.5kb DNA fragment containing NRT1.1B gene in
rice, and numerous studies showed that this SNP could explain the differences of Indian rice
and japonica rice in uptake activity of nitrate and the use efficiency of nitrogen [12]. Discovery
of these fSNP showed that inheritance and variation of certain phenotypes takes SNP as a unit,
thus to study these phenotypes through SNP is inevitable.

As for stress resistance, a series of stress-tolerance related SNP have been screened from
stress-resistance related genes. Manish Roorkiwal et al. chose 10 abiotic stress related genes in
chickpea as research subjects, and screened 79 SNPs and 41 indels from 9 genes [13]. Bharti
Garg et al. screened a synonymous SNP that was related to dehydration stress at 458bp of
TaMYB2 gene in wheat [14]. These SNP finding in abiotic stress suggested that SNP played an
important role in some complex quantitative traits, providing new methods and ideas for the
study of stress resistance of plants. Plant salt tolerance was a complex quantitative trait, but
there were few studies on salt tolerance-related SNP, and fSNP that impact salt tolerance was
rarely reported. In our study, Illumina Cotton SNP 70K Chip (chip) was used to analyze SNPv
in different varieties with different salt tolerance index pre- and after- salt stress and different
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SNP between four typical salt-tolerant materials and four typical salt-sensitive materials was
screened so as to obtain potential SNP related to salt tolerance.

Materials and Methods

Preparation of materials and samples
Four typical salt-tolerant upland cotton (Gossypium hirsutum L.) varieties: CRI35, Kanghuang-
wei164, Zhong9807, CRI44 and four salt-sensitive varieties: Hengmian3 GK50, Xinyan96-48,
ZhongS9612 from Institute of Cotton Research of CAAS were employed in this study. These
varieties have been detected using 0.4% salinity stress method [15]. Based on the identification
for years, the salt tolerance indexes of eight varieties in the study were shown in S1 Table. Seed-
lings were cultured in sand in the greenroom in Institute of Cotton Research of Chinese Acad-
emy of Agricultural Sciences. In three-leaf stage, seedlings were treated with 0.4% (1000g sand
treated with 4g NaCl) of NaCl. Leaves were harvested from each plant of pre-salt stress and
48h after salt stress, frozen in liquid nitrogen and preserved at -80°C.

Plant DNA extraction kit (Bioteke, China) was used to extract DNA [16], according to the
instruction of manufacturer. 1% agarose gel electrophoresis and nucleic acid analyzer (Nano-
drop_2000) were used to detect quality and concentration of DNA. In detection of gel electro-
phoresis the gel hole was clean and free of residue, without smearing or severe degradation.
DNA concentration was above 100ng/μl, which is in line with the chip testing requirements.

SNP detection and genotyping
Cotton SNP 70K Chip (Illumina, USA) was used to detect SNP [17]. Samples of leaf tissues
were collected from four salt-tolerant varieties and four salt-sensitive varieties pre- and after-
salt treatments. Three biological replicates of every treatment were collected separately and 48
SNP chips were used in the study, finally. With the instruction of manufacturer, fragments of
genome DNA were hybridized with the prepared SNP Chip. During hybridization, fragmented
DNA complementarily paired with 50 bases which were connected to bead on the chip. With
the captured DNA as the template, extension reaction of single base was carried out on the
chip; detectable fluorophores were added to the chip so as to distinguish different SNP geno-
types of the samples. GenomeStudio software was used to obtain SNP genotyping data of each
sample.

Screening and analysis of SNPv and SNPr
Screening of SNPv: eight materials were divided into salt tolerant group (ST) and salt sensitive
group (SS). SNPv was obtained through comparison of SNP genotypes of single plant pre- and
after- salt stress, and the same SNPv in ST group and SS group was taken as the ST-SNPv and
SS-SNPv.

Screening of SNPr: Remove loci with different SNP types or more than two failing types in
three biological replicates of each material, and the genotypes that appeared more than twice
within three biological replicates were taken as the SNP genotype of the material. The SNP loci
that have different SNP genotypes in different materials was the polymorphic SNP loci, upon
which the SNP loci with the genotypes that were same within the group but different between
the SS group and ST group (genotyping failure was allowed once in each group) were chosen as
the potential SNPr.

Locations of SNP in genome were determined by alignment of probe of chip and the refer-
ence genome with bowtie (http://www.plob.org/2011/12/13/932.html). Qhysical map of SNP
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was constructed by Mapchart software, AgriGO (http://bioinfo.cau.edu.cn/agriGO/) was used
for GO annotation of genes.

Results and Analysis

Statistics and analysis of SNPv pre- and after- salt stress
Statistics of SNPv in varieties with different salt tolerance index. SNPv that appeared in

three replicates were screened. The results showed that the number of SNPv in salt-tolerant
materials was generally lower than that of salt-sensitive materials. The larger the salt tolerance
index, the stronger the salt tolerance, the less SNPv (Fig 1). Further analysis showed that 429
SNPv appeared in three replicates of every variety in ST group, and among of them 414
appeared only in ST group; 1,365 SNPv appeared in three replicates of every variety in SS
group, and among of them 1,350 appeared only in SS group (Table 1). In this experiment, three
biological replicates significantly reduced SNP detection and genotyping errors, and results of
SNPv loci appearing in three replicates are reliable.

Distribution of SNPv sites on chromosomes in different varieties. Bowtie software was
used to determine the location of SNPv in different varieties. SNPv numbers and proportion
on different chromosomes were in statistics, and compared with those of SNP chips. As is
shown in Fig 2, SNPv of eight varieties have significant differences with SNP chip in distribu-
tion on the chromosomes, suggesting that SNPv did not occur randomly. There is a similarity
of SNPv distribution on chromosomes within salt-tolerant group and salt-sensitive group, and
a difference of that between salt-tolerant group and salt-sensitive group. So the occurrence of
SNPv may be associated with genetic background or salt tolerance of cotton. Fig 2 showed that
the proportions of SNPv site on At_chr4,At_chr11,Dt_chr2,Dt_chr8 in salt-tolerant varieties
are significantly different from those in salt-sensitive varieties.

Statistics of ST-SNPv and SS-SNPv. SNPv statistics of ST group and SS group showed
that SNPv was mainly about A/G and C/T mutation, accounting for two-thirds of the four con-
version types (Table 1).

Fig 1. Salt tolerance index and numbers of SNPv in different varieties.

doi:10.1371/journal.pone.0158142.g001
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GO analysis of genes containing chip-SNP, SS-SNPv and ST-SNPv. Bowtie software was
used to align the probe sequence of chip SNP, SS-SNPv and ST-SNPv to the reference genome,
to determine the chromosomal location of the SNP. The results showed that among 63,058
chip-SNP loci, 39,603 were aligned to the upland cotton genome, 1,025 and 310 out of SS-SNPv
and ST-SNPv were aligned to the genome, respectively. BEDTools software (www.plob.org/
2012/09/26/3748.html) was used for annotation and analysis of SNP, and results showed that
12,077 chip-SNP were aligned to 9,164 genes, 236 out of 1,025 SS-SNPv were on the genes, 79
out of 310 ST-SNPv were aligned to the genes.

GO annotation of genes containing chip-SNP, SS-SNPv and ST-SNPv was performed, and
5,743, 140 and 43 genes were annotated on the GO terms, respectively. Statistical mapping
using BGI WeGO (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) found that in most GO
terms, there is no significant difference between the percentages of these three groups of genes
(Fig 3). But in binding (p = 0.029), ion binding (p = 0.021), nitrogen compound metabolic pro-
cess (p = 0.002), there is a significant difference in the gene percentage of chip-SNP and
SS-SNPv, and there is a significant difference in hydrolase activity (p = 0.024) of gene of chip-
SNP and gene of ST-SNPv, indicating that SNPv was significantly enriched in genes in these
terms. These above differences showed that in the test SNPv did not occur randomly, but with

Table 1. Statistics of SNPv numbers of different types.

SNPv types SNPv in SS Percents in SS/% SNPv in ST Percents in ST/%

A/C 137 9.45 46 11.11

G/A 555 38.28 179 43.24

C/T 514 35.45 151 36.47

T/G 144 9.93 38 9.18

Specific SNPv 1350 414

SNPv 1365 429

doi:10.1371/journal.pone.0158142.t001

Fig 2. Distribution on the chromosomes of SNPv of eight varieties and chip SNP. 1~4: the salt sensitive
varieties: Hengmian3, GK50, Xinyan96-48, ZhongS9612; 5~8: the salt tolerant varieties: CRI35, Zhong9807,
CRI 44, Kanghuangwei164; 9: Illumina Cotton SNP 70K Chip.

doi:10.1371/journal.pone.0158142.g002
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a certain bias, and this bias was different in salt-tolerant and salt-sensitive materials. SNPv in
salt-tolerant materials tends to occur in the genes of hydrolase activity entries, while SNPv in
salt-sensitive materials tends to occur in the genes of binding, ion binding and nitrogen com-
pound metabolic process.

Comparison of methylation in SNPv rich region. Combined with the DNA methylation
immunoprecipitation data from the laboratory, the methylation status of SNPv enrichment
region in the salt-tolerant material Zhong9807 was analyzed. According to the physical map
obtained by Mapchart software, 10 relatively concentrated SNPv areas were screened (S2
Table), and they were located on 5 chromosomes. DNAmethylation immunoprecipitation
results showed that methylation distribution on the chromosome was quite different, and the
number of methylation reads ranged from 0 to a few hundred per 10kb. Frequency of methyl-
ated reads in SNPv enrichment region was relatively stable, with methylation reads number
being 30 or so per 10kb, which was relatively low, but close to the average level of the whole
genome. Pre- and after- the salt stress, the frequency of methylation reads in SNPv rich region
all changed (Fig 4), indicating that the occurrence of SNPv may be related to methylation.
However, in the test, the frequency changes of methylation reads in SNPv rich region were not
significant. Only SNP existing in the chip can be detected, so some SNPv consistent with the
methylation enrichment may not be detected. Therefore the relationships between SNPv and
methylation enrichment may require further experimental verification.

Screening and analysis of SNPr
Screening of SNPr. The results showed that in eight materials, over 50,000 loci have been

successfully genotyped. Remove the monomorphic loci (i.e. loci with the same genotypes in 8

Fig 3. GO analysis of genes containing chip-SNP, SS-SNPv and ST-SNPv.

doi:10.1371/journal.pone.0158142.g003
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materials, allowing for genotyping failure of two materials), and 7,087 polymorphic SNP loci
were obtained, of which 4971 were annotated in the genome and covered all 26 chromosomes
and 322 scaffolds. 1,804 SNP loci that may be related to salt tolerance were screened, of which
1,282 can be aligned to the upland cotton genome.

Distributions of SNPr on chromosomes. Bowtie software was used to align probe of
SNPr to the genome so as to determine its position on the chromosome, and their distribution
on chromosomes was gathered. Mapchart mapping found that the distribution of SNPr on
chromosome was uneven, and At_chr4 and Dt_chr1 had the largest distribution of SNPr (Fig
5).

GO analysis of genes in the rich region of SNPr. According to enrichment status of SNPr
on chromosomes, 16 enriched zones of SNPr were found (Fig 5A and S3 Table), and 433 genes
were found around the 16 enriched zones by BEDTools software, in which 198 genes were suit-
able for GO annotations. GO analysis found that they are mainly concentrated in GO terms
including binding, metabolic process, primary metabolic processes, etc (Fig 6). Among them
75 genes in the membrane system, transcription factor activity, oxidoreductase, response to
stimulus, transport, and ion binding were found in GO terms relevant to root’s response to salt
tolerance [18], accounting for 43.46% of all annotated genes. Combined with the transcriptome
of CRI35 subjected to salt, 278 differentially expressed genes in leaves were screened from 433
genes in SNPr enriched zones, accounting for 64.20%. In conclusion, there were 291 genes
related to salt tolerance in 16 enriched zones of SNPr, acounting for 67.20%. This indicated
that in the rich region of SNPr, salt tolerance-related genes were also relatively concentrated.
These SNPr may regulate the salt tolerance of plants by regulating the expression of salt toler-
ance-related genes.

Discussion
Under abiotic stress conditions, stoma closes, and CO2 uptake is inhibited and produces reac-
tive oxygen species (ROS) such as H2O2, superoxide and single electron oxygen in chloroplasts,
mitochondria and peroxisomes [19]. When the concentration of ROS exceeds the antioxidant
defense capacity of organisms, it will produce oxidative stress, thereby damaging macromole-
cules such as proteins, lipids, carbohydrates and DNA [20]. It has been reported that both the

Fig 4. Numbers of methylation reads in SNPv rich region.

doi:10.1371/journal.pone.0158142.g004
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Fig 5. Locations (a) and distribution (b) of SNPr in different chromosomes. The boxes in Fig 5A are the rich region of SNPr.

doi:10.1371/journal.pone.0158142.g005
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purine and pyrimidine bases could be damaged by OH�, while 1O2 primarily attacks guanine
[21]. DNA damage from ROS results in base deletion, pyrimidine dimers, cross-links, strand
breaks and base modification [22]. What was more, polyunsaturated fatty acid (FUFA) perox-
ide will form some aldehydes, such as 4-hydroxy-2-nonenal (HNE) and malondialdehyde
(MDA), hydroxyl and keto fatty acids. Lipid hydroperoxide will also decompose some active
substances, such as lipid alkoxyl radicals, aldehydes, alkanes, lipid epoxides and alcohols [23,
24]. Most of these substances are high mutagen that will caused transversion or conversion of
single bases through a series of physiological and biochemical processes [25]. These oxidation
induced DNA damage was mainly repaired by base excision repair enzymes, and prior to cell
replication, most damage has been repaired, while the damage that was not repaired becomes
mutation [16]. So ROS may be one of the reasons why SNPv occurs under salinity stress.

Moreover, previous researches showed that the MDA accumulation at roots of salt-tolerant
rice under salt stress was lower than that of salt-sensitive rice, indicating that ROS induced by
salinity stress can cause higher rate of lipid peroxidation in salt-sensitive rice [26], which may
be the reason why the numbers of SNPv in salt-sensitive cotton varieties were larger than those
in salt-tolerant varieties in our study.

Studies had found that after salt stress, the methylation of salt-sensitive materials were
higher than those of salt-tolerant materials [27], so did the SNPv in this study. 5mC at the
methylated CpG site was prone to spontaneous deamination to form thymine, facilitating C/T
or G/A mutation [28]. According to the statistics of the four kinds of SNPv types in this experi-
ment, the variation types of G/A and C/T accounted for the highest proportion, which was in
line with the conclusion above. Moreover, according to the results of the present experiment,
we noted that there was a change in methylation reads number pre- and after- salt stress in
SNPv-rich area, suggesting a potential link between methylation and SNPv. But more evidences
were still needed to verify the association of SNPv and DNA methylation. DNMTs (DNA
methyltransferases), which is an enzyme catalyzing CpG methylation after the completion of

Fig 6. GO analysis of genes neighboring SNPr rich regions.

doi:10.1371/journal.pone.0158142.g006
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DNA repair [29], connecting DNA repair and methylation process, might be a focus to investi-
gate the relationship between SNPv and methylation.

The current experiment adopted Illumina Cotton SNP 70K Chip to detect several upland cot-
tons in different salt tolerance index so as to preliminarily screening SNPr and its adjacent genes.
The results showed that most genes in rich region of SNPr were differentially expressed, which
suggested that SNPr was likely to regulate the salt tolerance by controlling the expression of salt
tolerance-associated genes. In fact, many of the SNP relevant to traits plays a role by regulating
the expression of target genes, and most of them were in the gene or upstream 0 to 2000bp [10,
30–32]. Therefore, SNP within 2000bp on the differentially expressed genes or the upstream
region is more likely to be relevant to salt tolerance and will be the focus of future research.

Advantageous alleles spread and deleterious or poorly adapted alleles were eliminated by
natural selection [33]. The alleles that is favored by natural selection can originate from two
sources: new mutations and pre-existing alleles [34]. Advantageous alleles finally were fixed
and conferred the adaptation of organisms to different environments [35]. In our study, a lot of
SNPv were found pre- and after- salt stress in cotton genome, which may be one source of
mutations for natural selection. And the SNPr may be the result of fixation of advantageous
mutations.

According all above, the connection of ROS, SNPv, DNAmethylation, SNPr and genes
could be elaborated as below (Fig 7): (1) ROS may be one of the sources of SNPv; (2) there is a
potential link between SNPv and DNA methylation; (3) SNPr may be the result of natural
selection from SNPv; (4) SNPr plays a role in salt tolerance by regulating the expression of tar-
get genes.

Conclusions
Our data revealed that SNPv may be induced by salinity stress, and the induction efficiency of
salt stress on SNPv was different among cotton varieties with different salt tolerance index. The
induction of salt stress on SNPv was obviously biased. SNPv induced by salt stress may be
related to the methylation changes under salinity stress. 1,282 SNPr were screened in our study
and they may influence salt tolerance of plants by affecting the expression of salt tolerance-
related genes.
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Fig 7. The possible relation of ROS, DNAmethylation, SNPv and SNPr.
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