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The immune system and the neuroendocrine system share many common features. Both
consist of diverse components consisting of receptors and networks that are widely
distributed throughout the body, and both sense and react to external stimuli which, on
the one hand control mechanisms of immunity, and on the other hand control and regulate
growth, development, andmetabolism. It is thus not surprising, therefore, that the immune
system and the neuroendocrine system communicate extensively. This article will focus on
bi-directional immune-endocrine interactions with particular emphasis on the hormones of
the hypothalamus-pituitary-thyroid (HPT) axis. New findings will be discussed
demonstrating the direct process through which the immune system-derived thyroid
stimulating hormone (TSH) controls thyroid hormone synthesis and bone metamorphosis,
particularly in the context of a novel splice variant of TSHb made by peripheral blood
leukocytes (PBL). Also presented are the ways whereby the TSHb splice variant may be a
contributing factor in the development and/or perpetuation of autoimmune thyroid disease
(AIT), and how systemic infection may elicit immune-endocrine responses. The
relationship between non-HPT hormones, in particular adipose hormones, and
immunity is discussed.
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INTRODUCTION

In its most elemental form, homeostasis can be viewed as an integrated state of equilibrium between
various physical and chemical processes, not only within individual organ systems, but also
throughout the body overall. Whereas most biomedical research is conducted from a highly-
focused reductionist perspective given the inherent difficulties in attempting to measure and
quantify multifaceted processes, there is nonetheless a need to continually reflect on the vast
cross-talk of organ systems in the body.

The immune system and the neuroendocrine system both consist of widely-distributed tissues,
cells, receptors, ligands, and molecules. Moreover, both systems are highly adapted to sense external
signals from the environment, and to communicate information regarding those throughout the
body. It is perhaps not surprising, therefore, that the immune system and the neuroendocrine
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system interact broadly at many levels. In fact, the immune
system and the neuroendocrine system collectively have been
referred to as a “sixth sense” based on shared neuropeptides and
neurotransmitters used by the immune system (1). One of many
examples of this is the dynamic set of interactions between the
immune system and the neuroendocrine system in the gut. In
fact, there are at least three mechanisms for detecting changes in
the intestinal wall, consisting of neural sensation delivered by
extrinsic and intrinsic afferent neurons, more than twenty
endocrine hormones produced by the cells of the mucosal
epithelium, and immune responses to local and systemic
antigens (2). Collectively, these form a web of communication
and defense at the level of the gut. However, many other examples
of this exist, as will be discussed in the following sections.

That TSH is produced by cells of the immune system was first
reported almost forty years ago (3, 4). TSH is also produced by
mouse intestinal crypt enterocytes and intestinal leukocytes,
particularly in “hotblocks” of experimental rotavirus and
reovirus infection (5, 6). Two sets of findings opened the way for
understanding a potential role for immune system TSH. First,
hypophysectomized mice that are unable to make pituitary TSH
had elevated levels of T4 following alloantigen priming similar to
that of non-hypophysectomized animals (7). Second, bone marrow
(BM) hematopoietic cells and PBL were found to produce a novel
splice variant of TSHb (8), as discussed in detail below.
BIDIRECTIONAL IMMUNE-ENDOCRINE
INTERACTIONS OF THE HPT AXIS

The HPT axis is a critically-important hormone network for
maintaining basal metabolism, growth, development, mood, and
cognition. TSH is released into the circulation from the anterior
pituitary followings thyrotropin releasing hormone (TRH)
stimulation from the hypothalamus. TSH binds to and induces
the release of the thyroid hormones (TH) thyroxine (T4) and
triiodothyronine (T3) from the thyroid after binding to TSH
receptors (TSHR), a seven-transmembrane domain G-protein
coupled molecule on thyroid follicular cells. The majority of T4 is
converted into the more biologically active T3 form following
deiodination in target tissues after binding to thyroid hormone
transporters (9, 10). The TSHR is also widely-distributed across
many tissues outside the HPT axis (11).

Thyroid hormones have been shown to exert pleiotropic
effects on PBL and on the inflammatory response. Early studies
demonstrated that thymic peptides such as thymopoietin,
thymulin, and thymosin produced by the thymic epithelium
can have a positive effects on the secretion of hormones from the
adenohypophysis (12). It was demonstrated in a series of studies
that the thyroid is extensively involved in the maturation of
the thymus (13–15). Conversely, THs have been shown to
upregulate thymulin secretion (14). Exposure of T cells to TH
has time dependent effects in that short-term exposure results in
suppressed proliferation and apoptosis, whereas long-term
exposure induces T cell proliferation. This appears to be
regulated at least in part by activation of inducible nitric oxide
Frontiers in Endocrinology | www.frontiersin.org 2
synthetase (iNOS) (16–19). B cells respond differently to THs in
that exposure induces development and cell-proliferation in vivo
(20). T3 has direct effects on the maturation of macrophages into
the M1 and M2 forms (21). T4 also has beneficial effects on the
recovery from Neisseria meningitidis infection, mediated by
iNOS production and nitric oxide mobilization (22). T4 blocks
macrophage inhibitory factor proinflammatory activity in vivo
and enhances survival of mice with induced sepsis (23, 24). The
TSHR is expressed at high levels on a subset of murine dendritic
cells (DCs), though it is minimally expressed on T cells and B
cells. However, for reasons that are unclear, the TSHR is
expressed on more lymph node T cells and B cells than on
spleen cells (25). TSH enhances the phagocytic activity of DCs
(25). TH have complex effects on the development and function
of DCs, macrophages, and monocytes. Studies in which
hypothyroid patients were treated with exogenous TH had
increases in both plasmacytoid and myeloid DCs (26).

Adipose hormones such as adiponectin and leptin, which
regulate metabolism and energy efficiency, also influence
immunological function via receptors expressed on immune
cells, particularly on M2-differentiated macrophages (27).
Adiponectin has direct immunoregulatory activity by inhibiting
the secretion of proinflammatory cytokines and increasing
immunosuppressive cytokines (28, 29). Mice deficient in
adiponectin fail to effectively modulate metabolic homeostasis
(30). Leptin increases immune cell development, chemotaxis, and
cytokine secretion (31, 32). Moreover, M1 and M2 macrophages
in adipose tissues have opposing effects on insulin responses in
that M1 macrophages promote insulin resistance whereas M2-
macrophages enhance insulin sensitivity (33, 34). Invariant NKT
(iNKT) cells and mast cells are present in adipose tissues (35, 36).
Both of those are distinguished by their ability to rapidly respond
to danger signals and to produce proinflammatory and regulatory
cytokines. iNKT cells, in particular, are known to be a significant
source of IFN-g, IL-2, IL-4, IL-13, IL-17, and IL-21, as well as
TNFa and GM-CSF, among others (37), all of which have
important immunoregulatory activities and functions.
A NOVEL TSHΒ ISOFORM PRODUCED BY
THE CENTRAL AND PERIPHERAL
IMMUNE SYSTEM

TSH is one of three glycoprotein hormones made in the anterior
pituitary. All glycoprotein hormones share a common a-chain
molecule and a unique hormone-specific b-chain component.
TSHb is highly conserved across many mammalian species.
Until recently, no functional isoforms of TSHb had been
identified. We characterized a unique in-frame splice variant of
TSHb (referred to as TSHbv), which is copiously made by PBL
and BM hematopoietic cells, in particular though not exclusively
on myeloid cells (8, 38–40). Notably, TSHbv is stored in
intracellular secretory vesicles in macrophages (39), a property
that would facilitate rapid release under appropriate conditions.
In that context, it will be interesting to define the signals that
drive the release of intracellular TSHbv.
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TSHb is coded for by exons 2 and 3 in humans and exons 4
and 5 in mice. The splice variant is unique, however, in that
in both species only the second of the two exons is used
to code for TSHbv, with a small portion of the upstream
intron coding for a signal peptide (Figure 1). Predictions as to
the mechanisms of alternative splicing of TSHb in leukocytes
leading to the generation of TSHbv are derived from putative
donor and acceptor splice sites in human intron 1 and
intron 2, respectively, resulting in the elimination of exon 2
and the retention of an intron 2 associated signal peptide
(Figure 2) (41).

TSHbv has been shown to be present in the human
circulation (42), and to be functionally active based on cAMP
signaling (8, 39) as well as to successfully couple to TSHa (42), a
Frontiers in Endocrinology | www.frontiersin.org 3
condition considered to be essential to achieve full biological
activity (43). Moreover, TSHbv has been shown to induce TH
synthesis in vivo and in vitro. T3 and T4 were elevated in the
circulation of mice within one hour of injection of recombinant
TSHbv, and to induce the secretion of T3 and T4 from thyroid
follicular cells in vitro (44). What’s more, levels of thyroglobulin,
thyroid peroxidase, and sodium-iodide supporter were elevated
in thyroid follicular cells following TSHbv stimulation. Of
particular interest, injection of mice with T3 and TRH caused
a transient drop followed by an increase in native TSHb though
not in TSHbv in the pituitary (44).

Expression of TSHbv has been linked to the inflammatory
response in AIT, in particular in Hashimoto’s thyroiditis (HT),
as demonstrated by elevated transcript levels of TSHbv in PBL of
A

B

C

D

E

F

FIGURE 1 | Genetic organization of (A, B) mouse and (C, D) human native TSHb, and (E) mouse and (F) human TSHbv.
FIGURE 2 | Putative splicing mechanism used to generate human TSHbv in cells of the immune system. Donor splice sites in intron 1 and acceptor splice sites in
intron 2 remove exon 2. A portion of intron 2 is used for the signal peptide as shown in Figure 1.
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patients with HT compared to normal controls (42). Treatment
of patients with prednisone reduced TSHbv transcript levels in
persons with short duration of disease compared to persons with
long duration. Additionally, TSHbv-producing plasma cells
infiltrated the thyroid in HT patients (40). Recent studies
demonstrate that immune system TSHbv in humans operates
independently of the HPT axis and is capable of inducing TH
synthesis from PBL in times of immune stress, such as during
systemic infection (44). Those possibility conforms to finding in
mice showing that TSHbv-producing inflammatory cells traffic
to the thyroid following L. monocytogenes infection (38).
Moreover, spleen cells from bacteria-infected mice, but not
from non-infected mice, trafficked to the thyroid of normal
non-infected mice at high density 48 hours post-transfer
(Figure 3) (38). The connection between infection and AIT,
while interesting, is unclear due in part to a lack of sufficient
studies to draw definitive conclusions (45). Taken together,
however, these findings suggest that under certain conditions
Frontiers in Endocrinology | www.frontiersin.org 4
TSHbv may contribute to the pathogenesis of HT and possibly
other forms of AIT.

TSH has been shown to directly influence bone remodeling
via TSHR expressed on osteoclasts by preventing bone
resorption (46) and stimulating osteoblastic bone formation
(47). In humans, there is an increased risk of bone fracture in
women with low circulating TSH (48). Using Tshr-/- mice, which
are incapable of TSH signaling, and WT mice that were induced
to a state of hyperthyroidism by implantation of T4 pellets,
Tshr-/- mice had significantly greater bone loss (49), further
suggesting a role for TSH in bone restructuring. Moreover,
expression of TSHbv in BM CD11b+ cells was positively rather
than negatively regulated by in vivo T3 supplementation (49).
This was further confirmed using human BM-derived
macrophages, which had an increase in TSHbv following
exposure to T3 in a dose-dependent manner (50). Those
findings further indicate that the regulation of TSHbv by TH
occurs independently of HPT axis control.
FIGURE 3 | Splenic leukocytes from L. monocytogenes-infected mice but not normal mice traffic to the thyroid. Immunofluorescence analysis of (A) the thyroid and
(B) a thyroid perivascular lymph node from a non-infected mouse 24 hours post-cell transfer of CFSE-labeled splenic leukocytes from a L. monocytogenes-infected
mouse. (C, D) Thyroid of a non-infected mouse 48 hours post-transfer of spleen cells from a L. monocytogenes-infected mouse. CFSE-labeled leukocytes are
present surrounding thyroid follicles. (E, F) Thyroid of a non-infected mouse injected with CFSE-labeled spleen cells from a non-infected mouse. TF, thyroid follicle;
LN, lymph node.
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SUMMARY AND CONCLUSIONS

Over the past forty years, a large body or information has come
forth defining an intricate nexus between the immune system
and the endocrine system. Immune-endocrine pathways have
effects on normal as well as pathophysiological processes, some
of which is mediated by a novel alternatively-spliced form of
TSHb produced by the hematopoietic system. Indeed, a number
of studies remain to be done to fully understand the biological
implications of immune system TSHb cell signaling in the
thyroid and bone. For example, the extent to which native
TSH and TSHbv work synergistically or antagonistically in
delivering TSHR-mediated signals may provide important
information into the specific role of TSHb in AIT
and osteoporosis.
Frontiers in Endocrinology | www.frontiersin.org 5
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