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Objective: This study aimed to study the diagnostic efficacy of positron

emission tomography (PET)/magnetic resonance imaging (MRI), computed

tomography (CT) and clinical metabolic parameters in predicting the

histological classification of lung adenocarcinoma (ADC) and squamous cell

carcinoma (SCC).

Methods: PET/MRI, CT and clinical metabolic data of 80 patients with lung ADC

or SCC were retrospectively collected. According to the pathological results

from surgery or fiberscopy, the patients were diagnosed with lung ADC (47

cases) or SCC (33 cases). All 80 patients were divided into a training group (64

cases), an internal testing group (8 cases) and an external testing group (8 cases)

in the ratio of 8:1:1. Nine models were constructed by integrating features from

different modalities. The Gaussian classifier was used to differentiate ADC and

SCC. The prediction ability was evaluated using the receiver operating

characteristic curve. The area under the curve (AUC) of the models was

compared using Delong’s test. Based on the best composite model, a

nomogram was established and evaluated with a calibration curve, decision

curve and clinical impact curve.

Results: The composite model (PET/MRI + CT + Clinical) owned the highest

AUC values in the training, internal testing and external testing sets,

respectively. In the training set, significant differences in the AUC were found

between the composite model and other models except for the PET/MRI + CT

model. The calibration curves showed good consistency between the

predicted output and actual disease. The decision curve analysis and clinical

impact curves demonstrated that the composite model increased the clinical

net benefit for predicting lung cancer subtypes.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.991102/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.991102/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.991102/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.991102/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.991102/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.991102&domain=pdf&date_stamp=2022-08-23
mailto:hangzhoudzx73@126.com
mailto:feng.shi@uii-ai.com
https://doi.org/10.3389/fonc.2022.991102
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.991102
https://www.frontiersin.org/journals/oncology


Tang et al. 10.3389/fonc.2022.991102

Frontiers in Oncology
Conclusion: The composite prediction model of PET/MRI + CT + Clinical

better distinguished ADC from SCC pathological subtypes preoperatively and

achieved clinical benefits, thus providing an accurate clinical diagnosis.
KEYWORDS
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Introduction

Lung cancer is the second most prevalent malignancy and

the first leading cause of cancer-related death globally (1, 2).

Nonsmall cell lung cancer (NSCLC) is the most common

disease, mainly including lung adenocarcinoma (ADC, ~50%)

and squamous cell carcinoma (SCC, ~40%) (3), with a 5-year

survival rate of 10%–20%. The survival rates only changed

slightly despite advances in treatment strategies in recent

years. Given the patient variability and tumor heterogeneity,

personalized treatment is the key to improve survival over the

current poor prognosis. However, a requirement for

personalized medicine is the validation of biomarkers and

early identification of pathological types (4, 5). Bronchial

fiberscopy and surgical biopsy are still the gold standards for

the pathological diagnosis of lung cancer, but they are invasive

and nonreproducible and may be accompanied by potential

complications and false-negative results (6, 7). Therefore, a more

effective, non-invasive and repeatable method needs to

be explored.

At present, low-dose computed tomography (CT) scan is the

main screening method for diagnosing lung cancer. According

to the National Lung Screening Trial, low-dose chest CT

screening could help in the early diagnosis of cancer and

reduce mortality, which was confirmed in several independent,

international and randomized controlled clinical trials.

However, low-dose CT screening increased the number of

indeterminate nodules, in which the high false-positive rate

would lead to over-diagnosis, bringing challenges to the

management of pulmonary nodules (8). Considering the

limitation of a single imaging modality, positron emission

tomography/CT (PET/CT) and PET/magnetic resonance

imaging (MRI) were developed to improve the efficacy of

diagnosis and treatment of lung cancer.

Moreover, radiomics has attracted great attention in a

variety of classification tasks. The significant advantages of

radiomics include quantifying morphological parameters of

tumors, revealing the characteristics of tissue heterogeneity,

reflecting the subtle differences between different tissues and

linking the image features with tumor characteristics, thus

providing objective and valuable information and suggestions

for diagnosis, treatment and prognosis (9–11). In the last few
02
decades, many prediction models based on a single imaging

modality (CT, PET and MRI) have been developed for

quantifying the tumor microenvironment or predicting

tumor pathological type, survival and prognosis (12–17).

However, composite radiomics models based on PET/MRI,

CT and clinical metabolic parameters were rarely reported in

the literature. Therefore, this study aimed to establish a

radiomics prediction model based on PET/MRI, CT and

clinical metabolic parameters, and to explore its prediction

and clinical value for the pathological subtyping of ADC

or SCC.
Materials and methods

Participants

Patient selection
The study was approved by the local Medical Research

Ethics Committee (Medical Ethics Number: 2021-008), and

informed consent was obtained from all participants. Eighty

patients with ADC or SCC, initially diagnosed by CT and PET/

MRI and pathologically confirmed at Hangzhou Panoramic

Imaging Center from October 2018 to October 2021, were

retrospectively included as the study participants.

The inclusion criteria were as follows: All patients had

pathologically confirmed ADC or SCC; All patients had only

one primary lung cancer lesion; No chemotherapy, radiotherapy

or surgical therapy was performed before the imaging scan; Clear

whole-body and chest PET/MRI and CT images were obtained

before treatment; The PET/MRI examination was performed 40–

60 min after injecting 18F-fluorodeoxyglucose (18F-FDG).

The exclusion criteria were as follows: patients confirmed

with other pathological subtypes than ADC and SCC; patients

had two or more primary lung cancer lesions; five patients with

lung ADC and two patients with SCC were excluded because

PET images were too blurry (SUVmin < 1); three patients with

lung SCC and two patients with lung ADC were excluded

because of MRI contraindications; patients with a history of

other thoracic malignancies or other systemic malignancies; and

patients who had received any form of treatment (such as
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radiotherapy, chemotherapy and so on) before PET/MRI and

CT examination.
Image acquisition

The imaging data were collected using GE 256-slice spiral

CT (GE, USA) and integrated time-of-flight (TOF) PET/MR

(GE SIGNA, WI, USA). The PET/MRI instrument consisted of a

PET detector with TOF technology (TOF-PET) and the latest

generation of 750W 3.0T magnetic resonance.

Patient preparation: Patients were fasted for more than 6 h,

and blood glucose concentrations were controlled below 7.8

mmol/L before injecting 18F-FDG. The patient was injected with
18F-FDG at a dose of 3.7 Mbq/kg, and first scanned using the

chest CT instrument 40 min later, followed by a whole-body

PET/MR imaging scan. Written informed consents were

obtained from all patients or legal guardians before

the examination.

CT and PET/MRI scan: CT was first performed with the

patient in a supine position from the apex to the base of the

lung. The CT scanning parameters were tube voltage 120 kV,

tube current 80–350 mA, slice thickness 5 mm, slice spacing

5 mm, helical spacing 0.992:1, scanning speed 158.75 mm/s,

rotation time 0.5 s, matrix 512 × 512, and noise index 12.0. The

scanning was completed under breath-hold condition. After

scanning, the original imaging was set to be thin-section

reconstructed automatically. The slice thickness was

0.625 mm, and the slice spacing was about 0.625 mm. The

CT imaging parameter was a thoracic axial image (5 mm;

1.25 mm; 0.625 mm). After attenuation correction, the patient

underwent PET/MRI scanning. The patient was placed in the

supine position and scanned from the top of the head to

the middle of the femur; additional scans were performed on

the sole if necessary. Five to six beds were set. The acquisition

time for each bed was 6 min. PET data were acquired using the

3D mode, TOF technique and point spread function with 2

iterations of ordered subset expectation maximum (OSEM), 28

subsets and a 5-mm Gaussian post-processing filter

reconstructed into a 192 × 192. PET data acquisition was

performed during the whole-body MRI examination. PET/

MR scans of the region from the apex to the base of the lung

were then performed, and axial, coronal, and sagittal images

were obtained using a dedicated MRI coil for the thoracic

region to obtain PET, MRI and PET/MR fusion maps of the

whole body and region. [Please refer to our previous study (15)

for detailed PET/MRI scanning methods.]. All data were

acquired from the same CT and PET/MR instruments. Chest

CT axial images (1.25 mm), MRI axial T2WI images and PET

images were selected as imaging feature extraction sequences in

this study (15, 17).
Frontiers in Oncology 03
Clinical features acquisition

We measured each metabolic parameter with PET VCAR

software in the AW SERVICE 3.2 processing workstation of the

GE Company. The image analysis mainly used visual and semi-

quantitative analyses. The uptake boundary of the primary

tumor was determined by the adaptive threshold method (17),

which identified 40% of the maximum standardized uptake

value (SUVmax) within the regions of interest (ROIs) as the

tumor boundary. PET/MR data of patients were transmitted

from the GE PACS database to the local and opened by the

software. PET/MR fusion image and PET transverse, sagittal,

and coronal images were displayed in the 4 × 4 windows. ROIs

could be found by dragging the crosshair. Subsequently, we set

the default WL percent of PET to 40% under the left Preferences

window, clicked the Insert key on the keyboard to insert the ROI

automatic identification box, placed the ROI in the outline of

primary lung cancer, and delineated the tumor boundary

through the iterative adaptive algorithm. The size of the

identification frame was adjusted in different windows in three

directions, and high-uptake areas, such as normal tissues and

metastatic lymph nodes, were excluded from the ROI range in

combination with MRI structural images. Finally, the software

automatically generated nine metabolic parameters: volume,

relative deviation (REL), threshold (THR), standard deviation

(STD), peak (PK), SUVmax, minimum standardized uptake value

(SUVmin), mean standardized uptake value (SUVmean) and total

lesion glycolysis (TLG) of the ROI. We collected the

aforementioned nine metabolic parameters, besides age, sex

and site of disease as the clinical features for the study.
Tumor segmentation

The investigators were blinded to all data including the

image reports, clinical documents and the histopathology of

the tumors. Axial chest CT images (1.25 mm) in the DICOM

format, axial T2WI images of chest MRI and PET images were

imported into the ITK-SNAP software (http://www.itksnap.org)

and segmented by two chest radiologists with the experience of

10 and 15 years, respectively. ROI of the primary tumor was

segmented layer by layer, and the original image and the

corresponding ROI image were saved as Nifti files (nii).

Subsequently, the intraclass correlation coefficient (ICC) was

used to obtain the inter- and intra-measurer consistency and

assess its reliability (18).
Radiomics analyses

The original images and corresponding ROI images were

imported into the uAI Research Portal (https://www.uii-ai.com/
frontiersin.org
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en/uai/scientific-research) to perform radiomics analyses, which

is a platform containing the package of PyRadiomics (http://

pyradiomics.readthedocs.io/en). The workflow of radiomics

analyses included feature extraction, feature selection, model

construction and comparison and model evaluation.
Feature extraction

The radiomics features were extracted from the CT, MRI

and PET images for modeling. A total of 2264 features were

extracted from the ROI of each image from 3 modalities.

Specifically, the original image was transformed with 14 image

filters to generate additional 24 images. The features for each

filter were computed for seven categories, that is, including first-

order image intensity statistics (histogram), shape, gray-level co-

occurrence matrix (GLCM), gray-level run-length matrix

(GLRLM), gray-level size-zone matrix (GLSZM), neighboring

gray-tone difference matrix (NGTDM), and gray-level

dependence matrix (GLDM).
Data separation

In the dataset, we set lung ADC as “1” and SCC as “0”,

respectively. A total of 80 cases were divided into a training

group (64 cases), an internal testing group (8 cases) and an

external testing group (8 cases) in the ratio of 8:1:1 to ensure data

stability; 3 groups owned similar disease distribution.
Feature selection

The procedure was performed on the training set. For each

single modality, the optimal subset of features was selected from

the 2264 features using z-score normalization and operators; the

F test owned the P value of 0.01, and the Least Absolute

Shrinkage and Selection Operator (LASSO) set the a value of

0.1, thus optimal features avoiding collinearity and overfitting

were obtained. Considering Harrell’s guidelines, that dimension

of selected features should be less than 10% of the total sample,

we selected 5 features in a single imaging modality. At the same

time, 12 clinical features were also imported, and the features

most correlated with the pathological subtypes of ADC and SCC

were selected using the F test with the P value of 0.1 and LASSO

regression with the a value of 0.1. Then, the dual- or multi-

modality features were combined with the corresponding

imaging modality.
Frontiers in Oncology 04
Model construction

Based on the opt imal fea tures , the BOX-COX

transformation and machine learning classifier (Gaussian

process, GP) were applied to construct the models. A total of

nine models were constructed as follows: PET prediction model,

CT prediction model, MRI prediction model, Clinical prediction

model, PET + CT prediction model, PET/MRI prediction model,

PET + Clinical prediction model, PET/MRI + CT prediction

model and PET/MRI + CT + Clinical prediction model.
Model evaluation and comparison

ROC curve and confusion matrix were used to evaluate the

ability of models to distinguish the ADC from SCC. The area

under the curve (AUC) value, F1 score, sensitivity, specificity and

accuracy in the training group, internal testing group and external

testing group of different models were also calculated. The

difference in the AUC of the models was compared using

DeLong’s test, and the best model (PET/MRI + CT + Clinical

model) was chosen. In addition, the nomogram of this composite

model was established to help predict the risk probability of one of

the diseases (ADC). The calibration curves were used to compare

the predictive output and the actual disease. The decision curves

plotted the net benefit at a range of risk thresholds and assessed

the utility of models for decision making. Clinical impact curves

were also used to determine whether basing clinical decisions on

the prediction model would do better than harm based on the

specific high risk threshold (19, 20).
Statistical analysis

Statistical analyses were performed with IBM SPSS Statistics

(version 26.0) and R software (version 4.1.2). The clinical

features were summarized, in which the categorical features

(disease, sex, site) were represented with the counts and

percentages, while the continuous features (age, nine metabolic

parameters) were represented with the median (25%, 75%

quantile). Significant differences among the training set,

internal testing set and external testing set were analyzed using

the chi-square test for categorical features and Kruskal–Wallis H

test for continuous features. A P value < 0.05 indicated a

statistically significant difference. The ICC was used to

evaluate the inter- and intra-measurer consistency of ROI

delineation. F test and LASSO regression were used to select

features, and a GP classifier was used to construct radiomics

models. The predictive performance of each model was visually

evaluated using ROC curves and confusion matrixes and
frontiersin.org
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quantitatively assessed using AUC, F1-score, accuracy,

sensitivity and specificity. DeLong’s test was used to compare

the difference in the AUC values of different models. Nomogram

was plotted to show the risk probability of one of the diseases.

Calibration curves, decision curves and clinical impact curves

were generated to evaluate the predictive performance and

clinical net benefit of the composite model. We used several

tools within the R environment, including “rms”, “regplot”,

“VRPM”, “foreign” and “rmda”.
Results

Clinical demographics

A total of 80 patients were enrolled in the study, and their

CT and PET/MR images were taken. Table 1 shows the clinical

information of patients. All patients were divided into training

set (n = 64), internal testing set (n = 8) and external testing set

(n = 8), in which the proportion of people with ADC was 57.8%,

62.5% and 62.5%, respectively. The median age of the patients

was 67 years; the female patients accounted for 25.0%. We

classified all cases according to the position of the primary

lung cancer and customized “central lung cancer” to “0” and

“peripheral lung cancer” to “1”. Other nine metabolic

parameters, including TLG, volume, PK, THR, SUVmin,

SUVmax, SUVmean, REL and STD, are also shown in Table 1.

No significant difference was found among the three subsets for

all characteristics (P > 0.05).
Tumor segmentation and ICC evaluation

The ROI of each image in CT and PET/MR modalities was

independently delineated by two experienced radiologists. The
Frontiers in Oncology 05
original image and the corresponding ROI image are shown in

Figure 1. Subsequently, the reliability of ROI delineation was

evaluated. The results showed that the ICC value of inter- and

intra-measurer consistency assessment was 0.943–0.967 and

0.957–0.973, respectively, indicating that it had good reliability

and repeatability.
Model construction and comparison

Based on the delineated ROI, 2264 features were extracted

from each image of 3 imaging modalities (PET, MRI and CT).

Moreover, 12 clinical features were added to construct a clinical

model and a hybrid model. The most relevant imaging features

and clinical features were selected using F test and LASSO

regression sequentially. The detailed information of the selected

features is shown in Figure S1. The PET prediction model (Figure

S1A) obtained five most optimal features, including one first-

order feature and four texture features, of which glrlm-

runlengthnonuniformity and glcm-jointentropy accounted

for the top two weight ratios. The CT prediction model (Figure

S1B) obtained five most optimal features, including one first-

order feature and four texture features, of which skewness

and glszm-largearealowgraylevelemphasis accounted for the top

two weight ratios. The MRI prediction model (Figure S1C)

obtained five most optimal features, including five texture

features, of which glszm-graylevelnonuniformity and gldm-

dependencenonuniformitynormalized accounted for the top

two weight ratios. The clinical prediction model (Figure S1D)

obtained three most relevant features, including volume, position

and TLG, of which position accounted for the maximum

weight ratio. Then, nine models were established by combining

features from corresponding modalities, which included PET, CT,

MRI, Clinical, PET + CT, PET/MRI, PET + Clinical, PET/MR +

CT and PET/MR + CT + Clinical. Therefore, the number of
TABLE 1 Clinical characteristics in the study sample (n = 80; current thresh: 42).

Characteristics All samples (n = 80) Training (n = 64) Internal testing (n = 8) External testing (n = 8) P

Disease (ADC) 47 (58.8%) 37 (57.8%) 5 (62.5%) 5 (62.5%) 0.943

Sex (female) 20 (25.0%) 14 (21.9%) 4 (50.0%) 2 (25.0%) 0.266

Position (1) 41 (51.2%) 33 (51.6%) 4 (50.0%) 4 (50.0%) 0.994

Age (year) 67.0 (62.3–72.8) 67.0 (63.0–71.0) 65.5 (60.5–75.0) 67.5 (55.3–74.5) 0.996

TLG (g/mL × cm3) 91.5 (37.9–236.4) 81.5 (36.4–228.4) 271.4 (128.9–458.5) 83.5 (40.5–145.1) 0.112

Volume (cm3) 13.7 (6.9–33.5) 13.2 (6.6–30.1) 31.1 (13.8–56.5) 12.0 (8.9–30.4) 0.264

Peak 9.4 (5.3–11.9) 9.2 (5.3–11.9) 11.5 (9.0–16.0) 8.9 (4.0–10.3) 0.261

Threshold (/42%) 5.0 (3.2– 6.1) 5.0 (3.2–6.1) 5.9 (4.4–8.3) 4.5 (2.5–5.2) 0.286

SUVmin 5.1 (3.2–6.2) 5.0 (3.2–6.1) 5.9 (4.4–8.3) 4.5 (2.5–5.2) 0.268

SUVmax 12.0 (7.7–14.6) 11.8 (7.7–14.5) 14.0 (10.5–19.8) 10.7 (6.0–12.3) 0.285

SUVmean 7.0 (4.5–8.8) 6.9 (4.5–8.8) 8.1 (6.5–12.5) 6.4 (3.1–7.6) 0.231

Relative deviation 0.21 (0.20–0.23) 0.21 (0.19–0.23) 0.21 (0.19–0.22) 0.22 (0.20–0.23) 0.716

STD 1.4 (0.9–1.9) 1.4 (0.9–1.9) 1.6 (1.4–2.5) 1.4 (0.5–1.7) 0.298
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theselected features was 5, 5, 5, 3, 10, 10, 8, 15 and 18, respectively.

In the PET/MRI + CT + Clinical prediction model, the mri-

GLSZM-GLN weight ratio was about – 0.165, and the

pet_shotnoise_GLCM_IDM weight ratio was about 0.145

(Formula S2). Then, the GP was applied to classify the ADC

and SCC. The predictive performances of nine models were

characterized using ROC curves (Figures 2, S2), demonstrating

that the PET/MR + CT + Clinical model, named the composite

model, had the highest AUC value regardless of the dataset, which

was confirmed by Table 2. The AUC value of the composite model

in the training group, the internal testing group and the external

testing group was 0.965 (95% CI: 0.920–1.000), 0.933 (95% CI:

0.746–1.000) and 0.867 (95% CI: 0.593–1.000), respectively.

Besides, DeLong’s test was used to compare the AUC of
Frontiers in Oncology 06
different models. As shown in Figure S3, In the training set,

significant differences in the AUC were found between the

composite model and other models except for the PET/MRI +

CT model. At the same time, no significant difference was found

between models in the internal testing group or external testing

group due to limited data.

Additionally, the F1-score, sensitivity, specificity and

accuracy of each model in the training set, internal testing set

and external testing set are listed in Table 3. On the whole, the

PET/MRI + CT + Clinical model possessed a superior

performance in all parameters, especially the accuracy and

specificity. Moreover, the confusion matrixes of the composite

model are plotted in Figure 3. As shown in Figure 3, in the

training set, 21 of 27 cases of SCC were correctly classified, and
A B C

FIGURE 2

ROC curves of different prediction models. Nine ROC curves in the training set (A), internal testing set (B) and external testing set (C).
A1 B1 C1

A2 B2 C2

FIGURE 1

Images and corresponding ROI of three modalities. The original image of CT (A1), MRI (B1) and PET (C1). The ROI image of CT (A2), MRI (B2)
and PET (C2). The scale bar was 10 cm.
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only 6 cases were misclassified as ADC, while 36 of 37 cases of

ADC were correctly classified and only 1 case was misclassified

as SCC. Only one case of ADC was misclassified as SCC and the

others were correctly classified in both the internal testing

(Figure 3) and external testing sets (Figure 3). Therefore, it

was concluded that the PET/MRI + CT + Clinical model showed

good discriminative performance of ADC and SCC.
Composite model evaluation

The detailed information of PET/MRI + CT + Clinical

model (composite model) is displayed in Formulas S1, S2 and

Figure S4, including the formula of Rad_score (reflecting

imaging information), the formula of Nomo_Score

(representing imaging and clinical information), and

Nomo_Score distribution in the ADC and SCC. Importantly,

we constructed a nomogram to calculate individualized ADC

probabilities for patients with lung cancer. As shown in Figure 4,

Rad_Score was calculated from 15 imaging features,

representing the key information of images of 3 modalities,

while the volume, TLG and position were important clinical
Frontiers in Oncology 07
features. Thus, this nomogram combined tri-modality imaging

information with clinical information. For a given patient, every

variable corresponded to a point, and the total point

corresponded to the probability of ADC.

The calibration curves, decision curves and clinical impact

curves were plotted to evaluate the discriminative performance

of the composite model, as shown in Figure 5. Relevant

characterizations could not be carried out in the internal

testing set and external testing set due to the limited data.

Thus, we combined them as the testing group. As shown in

Figures 5A, the PET/MRI + CT + Clinical prediction model

fitted well with the actual disease in the calibration curves to a

certain extent, in both the training and testing sets. Most

notably, the composite model could classify the ADC and SCC

over a wide range. Furthermore, we created the decision curves

(Figures 5C) and clinical impact curves (Figures 5E) in both the

training and testing sets to explore the clinical benefit of the

prediction model. The clinical net benefit was the difference

between the benefits of intervention to true-positive patients and

the costs of intervention to false-positive patients, which was

useful for determining whether clinical decisions based on the

prediction model would do better than harm. The decision
TABLE 3 F1-score, sensitivity, specificity, and accuracy of different prediction models (IT represented internal testing, and ET represented
external testing).

Model F1-Score Sensitivity Specificity Accuracy

Training IT ET Training IT ET Training IT ET Training IT ET

CT 0.795 0.727 0.727 0.838 0.800 0.800 0.630 0.333 0.333 0.750 0.625 0.625

MRI 0.795 0.727 0.667 0.838 0.800 0.600 0.630 0.333 0.667 0.750 0.625 0.625

PET 0.756 0.909 0.800 0.838 1.000 0.800 0.481 0.667 0.667 0.688 0.875 0.750

Clinical 0.747 0.667 0.667 0.757 0.600 0.600 0.630 0.667 0.667 0.703 0.625 0.625

PET + CT 0.795 0.909 0.800 0.838 1.000 0.800 0.630 0.667 0.667 0.750 0.875 0.750

PET/MRI 0.795 0.909 0.800 0.838 1.000 0.800 0.630 0.667 0.667 0.750 0.875 0.750

PET + Clinical 0.769 0.727 0.800 0.811 0.800 0.800 0.593 0.333 0.667 0.719 0.625 0.750

PET/MRI + CT 0.895 0.909 0.800 0.919 1.000 0.800 0.815 0.667 0.667 0.875 0.875 0.750

PET/MRI + CT + Clinical 0.911 0.889 0.889 0.973 0.800 0.800 0.778 1.000 1.000 0.891 0.875 0.875
frontier
TABLE 2 AUC values of different prediction models in the training set, internal testing set and external testing set.

Model Training Internal testing External testing

PET 0.751 (0.632–0.870) 0.733 (0.281–1.000) 0.800 (0.476–1.000)

CT 0.825 (0.717–0.933) 0.733 (0.358–1.000) 0.867 (0.593–1.000)

MRI 0.829 (0.729–0.928) 0.867 (0.593–1.000) 0.800 (0.476–1.000)

Clinical 0.795 (0.686–0.903) 0.800 (0.430–1.000) 0.800 (0.476–1.000)

PET+CT 0.826 (0.721–0.931) 0.733 (0.281–1.000) 0.800 (0.476–1.000)

PET/MRI 0.818 (0.715–0.920) 0.867 (0.584–1.000) 0.833 (0.522–1.000)

PET + Clinical 0.838 (0.742–0.934) 0.800 (0.476–1.000) 0.867 (0.593–1.000)

PET/MRI + CT 0.934 (0.871–0.997) 0.867 (0.584–1.000) 0.867 (0.593–1.000)

PET/MRI + CT + Clinical 0.965 (0.920–1.000) 0.933 (0.746–1.000) 0.867 (0.593–1.000)
AUC was represented with mean and 95% confidence interval (95% CI).
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curves were estimates of the standardized net benefit by the

probability threshold used to categorize observations as “high

risk”. Clinical impact curve analysis was also performed to

evaluate the clinical applicability. For a wide range of the high-

risk threshold, the PET/MRI + CT + Clinical prediction model

had higher clinical net benefits in both the training and testing

datasets. All these results verified that the composite model had

superior predictive performance, achieving high clinical benefits

and helping clinicians make clinical decisions.
Discussion

We constructed nine different prediction models based on 80

cases and found that the PET/MRI + CT + Clinical model had

the best predictive efficacy for lung adenocarcinoma and lung

squamous cell carcinoma. Based on this model, we obtain the
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most relevant features, of which (mri-GLSZM-GLN) and

(pet_shotnoise_GLCM_IDM) account for a large weight ratio.

GLSZM quantifies gray-level zones in the image, which is

inversely correlated with survival and helps identify the

hypoxic or necrotic areas with poor prognosis. A gray-level

zone is defined as the number of connected voxels sharing the

same gray-level intensity. It measures the variability of gray-level

intensity values in the image, with a lower value indicating more

uniform intensity values (https://pyradiomics.readthedocs.io/

en/latest/features.html). The results of our study indicated that

ADC was more homogeneous than SCC, which could indirectly

reflect the structure of the tumor itself. ADC was mainly

composed of glandular structures (such as glandular duct and

glandular cavity-like structures), while SCC was mainly

composed of cornified beads, cancer nests and intercellular

bridges. Besides, ADC had various growth modes, relatively

few tumor cells per unit volume with abundant stroma,
FIGURE 4

Nomogram for predicting the risk probability of ADC. Four variables were included in the nomogram model. For a given sample, each variable
had a point, and the total point reflected the probability of ADC.
A B C

FIGURE 3

Confusion matrixes of the PET/MRI + CT + Clinical prediction model in the training set (A), internal testing set (B) and external testing set (C).
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lowwater content, and relatively uniform distribution. In

contrast, SCC had a tighter structure with more tumor cells

per unit volume, a higher water content, and uneven distribution

of various components, which made it easy to necrosis and cystic

degeneration, leading to relatively uneven density. The results

were consistent with those of Orlhac et al. (21), who found

that scaly cell carcinoma had lower homogeneity and higher

entropy by comparing the texture characteristics of ADC and

SCC. Moreover, it was consistent with our previous findings (15)

in that PET/MRI was used to create a prediction model for

the pathological subtypes of ADC and lung SCC. It was also

found that the GLSZM-GLN feature value accounted for the

maximum weight ratio, indicating that ADC was more

homogeneous than SCC. The GLCM of size Ng × Ng

described the second-order joint probability function of an

image region constrained by the mask. It was a measure of the

local homogeneity of an image. IDM weights were the inverse of

the contrast weights (decreasing exponentially from the diagonal

i = j in the GLCM) (22). Therefore, in this study, the

pet_shotnoise_GLCM_IDM weight ratio was large, indicating

that ADC had higher homogeneity than SCC.

In our study, the most relevant parameters in the clinical

model for the pathological classification of ADC and SCC were

volume, TLG, and position, which was consistent with published

findings. Koh et al. (23) retrospectively analyzed 269 cases of

NSCLC preoperative PET-CT imaging and found significant

differences in metabolic volume (MTV), TLG values, and

GLUT1 expression between patients with lung ADC and those
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with SCC. Lu et al. (24) also discovered that the factors such as

MTV, TLG, SUV histogram width, and texture characteristics

were more valuable than traditional SUVmax value changes in

predicting the tumors in clinical practice. This might be related

to the heterogeneity of ADC and SCC, which varied in their

growth rate and mode of infiltration into the surroundings,

resulting in different morphologies and sizes.

18F-FDG PET can be used to determine the metabolic

activity of lung tumors, but it is prone to false-negative or

false-positive re the metabolic activity of lung tumors, but it is

prone to false-positive and false-negative resultsesults. False-

negative results could be seen in small tumors and bronchogenic

carcinoma, while false-positive results are seen in cases of

infection or inflammation. Reinfeld et al. (25) found that non-

cancer cel ls in the tumor microenvironment were

predominantly glucose-dependent macrophages, whereas

tumor cells were predominantly glutamine-dependent, through

the use of two different PET tracers. Therefore, the basis of PET

tumor imaging might be the result of competition between

tumor cells and macrophages. Due to the heterogeneity of

ADC and SCC, differences were observed in TLG in different

pathological types of lung cancer. Davide et al. (26) reported that

SUVmean, SUVmax, and TLG were correlated significantly with

disease-free survival. On the contrary, the bronchi below the

segment (around the lung) of ADC and the bronchi above the

segment (near the hilum) of SCC were satisfactory. Therefore,

different pathological subtypes of lung cancer were considered

associated with the location of the tumor.
A

B D

E

F

C

FIGURE 5

Characterizations of the PET/MRI + CT + Clinical prediction model. (A) Calibration curve, (C) decision curve and (E) clinical impact curve of the
model on the training dataset. (B) Calibration curve, (D) decision curve and (F) clinical impact curve of the model on the testing dataset.
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In recent years, many researchers have established image

prediction models for the pathological classification of lung

cancer. Kirienko et al. (27) established PET radiomics models

and CT radiomics models for predicting ADC and SCC. The AUC

value of the PET radiomics model was 0.90 ± 0.10 and 0.80 ± 0.04

in the training group and testing group, respectively; while the

AUC value of the CT radiomics model was 0.81 ± 0.02 and 0.69 ±

0.04 in the training group and testing group, respectively. It

confirmed that the imaging models based on PET or CT could

predict lung cancer subtypes well and distinguish primary and

metastatic lung lesions. Caiyue et al. (28) found that the machine

learning–integrated 18F-FDG PET/CT radiomics model based on

the clinical characteristics of 315 patients with NSCLC could

efficiently predict the pathological set of SCC and ADC, with an

AUC of 0.932 (95% CI: 0.900–0.964) and 0.901 (95% CI: 0.840–

0.957) in the training set and testing set, respectively. In our

previous study (15), 61 patients with ADC or SCC were divided

into a training group and a testing group at the ratio of 7:3, and the

features selected from preoperative PET/MRI images were applied

to create a prediction model. It was found that the AUC value for

classifying ADC and SCC was 0.886 (95% CI: 0.787–0.985) and

0.847 (95% CI: 0.648–1.000) in the training and testing groups,

respectively. A common feature compared with previous studies

was that all image-based prediction models could predict the

pathological subtypes of ADC or SCC well. The difference in this

study was that we established nine different prediction models,

and every prediction model had a high diagnostic value for the

pathological types of ADC and SCC, especially the PET/MRI + CT

+ Clinical model. The AUC value of this composite model in the

training group, internal testing group and external testing group

was 0.965 (95% CI: 0.920–1.0), 0.933 (95% CI: 0.746–1.000) and

0.867 (95% CI: 0.593–1.000), respectively. Using DeLong’s test, it

was found that the predictive performance of PET/MRI + CT +

Clinical model was superior to that of other prediction models in

the training set, except PET/MRI + CT model. Based on the best

model, a nomogram was constructed to visualize the probability of

ADC. Moreover, the calibration curves, decision curves, and

clinical impact curves verified that the PET/MRI + CT +

Clinical prediction model owned great discriminative

performance and high clinical net benefit. This might be

attributed to two reasons: 1) The model could distinguish subtle

structures by integrating the multi-parameter multifunctional

imaging of MRI, the metabolic characteristics of PET, and high-

resolution CT; 2) The model combined tri-modal imaging features

and clinical features could accurately display the shape of the

lesion and obtain the pathological and physiological information

of the tumor so as to achieve efficient prediction of the

pathological type of lung cancer.

This study had several limitations. First, this was a single-center

retrospective study with a small sample size. Hence, designing new

multicenter cooperative prospective studies was still necessary.

Second, the sample selection had a bias. Some patients with

NSCLC, especially those with ADC, were excluded from
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radiomics analysis due to their weak 18F-FDG uptake or small

tumor volume so as to ensure the quality of image and texture data.

With the increasing use of imaging screening for lung cancer, small

lesions were more likely to be detected in the early stage.

Furthermore, ROI manual segmentation is time-consuming and

vulnerable to the inconsistency of different readers. Although

automatic and semi-automatic segmentations have been used to

increase objectivity and minimize time cost, no specification is

available to guide or assess the efficiency of segmentation.
Conclusions

In conclusion, based on the PET/MRI + CT + Clinical

prediction model, ADC or SCC could be well differentiated

preoperatively, since it was non-seminal and repeatable and had

clinical practicability. The model integrated multi-modal imaging

features and clinical features showed great potential in predicting

the pathological subtype, thus further helping clinicians

make decisions.
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SUPPLEMENTARY FIGURE 1

Selected features from three imaging modalities and clinical data. (A) PET
image; (B) CT image; (C) MRI image; and (D) clinical features.

SUPPLEMENTARY FIGURE 2

ROC curves of different models in the training set, internal testing set, and
external testing set. (A) PET model; (B) CT model; (C) MRI model; (D)
Clinical model; (E) PET + CTmodel; (F) PET/MRI model; (G) PET + Clinical
model; (H) PET/MR + CT model; and (I) PET/MR + CT + Clinical model.

SUPPLEMENTARY FIGURE 3

ComparisonofAUCvaluesofdifferentmodels inthetrainingsetusingDeLong’s

test.P<0.05 indicatedastatistically significantdifference.Rad_Score=0.1551*
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mri_log_gldm_log.sigma.1.5.mm.3d.dependencenonuniformitynormalized +
0.1332*pet_shotnoise_glcm_idmn+0.0920*ct_wavelet_firstorder_wavelet

.hll.skewness + 0.0278 * pet_normalize_glrlm_runlengthnonuniformity +
0.0108 * ct_wavelet_ngtdm_wavelet.hhh.contrast - 0.0042 * ct_log_glszm

_log.sigma.0.5.mm.3d.largearealowgraylevelemphasis - 0.0056 * pet_norm
alize_ngtdm_busyness - 0.0397 *mri_normalize_gldm_dependencevariance

- 0.0456 * ct_wavelet_gldm_wavelet.hll.largedependencehighgraylevelem
phasis - 0.0477 * mri_wavelet_glcm_wavelet.llh.imc2 - 0.0514 * pet

_wavelet_glcm_wavelet.hhl.jointentropy - 0.0604 * ct_wavelet_gldm_

wavelet.hlh.largedependencehighgraylevelemphasis - 0.0643 * pet_wavelet
_firstorder_wavelet.llh.kurtosis - 0.0837 * mri_specklenoise_ngtdm

_complexity - 0.1476 * mri_wavelet_glszm_wavelet.lhh.graylevelno
nuniformity + 0.5833

SUPPLEMENTARY FIGURE 4

Nomo_Score of ADC and SCC in the training set (A) and internal testing

set (B). Nomo_Score was generated from PET/MRI + CT + Clinical
prediction model, combing imaging information and clinical

information. Label 0 represented SCC, and Label 1 represented ADC.
The results demonstrated that the two diseases could be differentiated

well using the Nomo_Score.

FORMULA S1

Calculation formula of Rad_Score. Rad_Score was generated fromPET/MRI

+ CTpredictionmodel, representing the imaging information. Nomo_Score
= 0.1451 * pet_shotnoise_glcm_idmn + 0.1346 * mri_log_gldm_log.

sigma.1.5.mm.3d.dependencenonuniformitynormalized + 0.1061 *

ct_wavelet_firstorder_wavelet.hll.skewness + 0.0922 * volume + 0.0863
* position + 0.0313 * pet_normalize_glrlm_runlengthnonuniformity +

0.0133 * ct_wavelet_ngtdm_wavelet.hhh.contrast + 0.0074 * ct_log
_glszm_log.sigma.0.5.mm.3d.largearealowgraylevelemphasis - 0.0104 *

pet_normalize_ngtdm_busyness - 0.0172 * tlg - 0.0178 * mri
_normalize_gldm_dependencevariance - 0.0282 * ct_wavelet

_gldm_wavelet.hll.largedependencehighgraylevelemphasis - 0.0554 *

pet_wavelet_glcm_wavelet.hhl . jointentropy - 0.0771 * mri:
wavelet_glcm_wavelet.llh.imc2 - 0.0840 * ct_wavelet_gldm_

wavelet.hlh.largedependencehighgraylevelemphasis - 0.0942 * pet_
wavelet_firstorder_wavelet.llh.kurtosis - 0.1309 * mri_specklenoise_

ngtdm_complexity - 0.1649 * mri_wavelet_glszm_wavelet.lhh.gray
levelnonuniformity + 0.5833

FORMULA S2

Calculation formula of Nomo_Score. Nomo_Score was generated from

PET/MRI + CT + Clinical prediction model, representing the imaging
information and clinical information.
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