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ABSTRACT: Reversed-phase liquid chromatography (RPLC) and capillary zone electrophoresis
(CZE) are two primary proteoform separation methods in mass spectrometry (MS)-based top-
down proteomics. Proteoform retention time (RT) prediction in RPLC and migration time
(MT) prediction in CZE provide additional information for accurate proteoform identification
and quantification. While existing methods are mainly focused on peptide RT and MT prediction
in bottom-up MS, there is still a lack of methods for proteoform RT and MT prediction in top-
down MS. We systematically evaluated eight machine learning models and a transfer learning
method for proteoform RT prediction and five models and the transfer learning method for
proteoform MT prediction. Experimental results showed that a gated recurrent unit (GRU)-
based model with transfer learning achieved a high accuracy (R = 0.978) for proteoform RT
prediction and that the GRU-based model and a fully connected neural network model obtained
a high accuracy of R = 0.982 and 0.981 for proteoform MT prediction, respectively.
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1. INTRODUCTION

Top-down mass spectrometry (MS), an important comple-
mentary method for bottom-up MS, has been widely used in
proteoform identification, characterization, and quantifica-
tion.1−3 The main difference between the two approaches is
that top-down MS analyzes long intact proteoforms, while
bottom-up MS studies short peptides resulting from proteo-
form proteolytic digestion. Top-down MS enables researchers
to study complex proteoforms and post-translational mod-
ification (PTM) patterns in proteoforms4 owing to its ability to
identify whole proteoforms.
Many proteoform separation techniques have been used to

increase proteoform coverage in top-down MS,5,6 which is
desirable in proteoform-wide studies for proteoform function
analysis and proteoform biomarker discovery.7 Liquid
chromatography (LC) and capillary zone electrophoresis
(CZE) are two main techniques for proteoform separation in
top-down proteomics.7,8 In an LC experiment, proteoforms are
separated based on their hydrophobicity, size, or other
properties using an LC column. There are many LC methods,
such as reversed-phase liquid chromatography (RPLC),9 size
exclusion chromatography (SEC),10 and ion exchange
chromatography (IEC).11 RPLC is one of the most used
methods owing to its high separation performance in top-down
MS.12,13 In CZE-based separation, proteoforms are injected
into a capillary filled with a background electrolyte on which an
electric field is applied. Proteoforms with different charges and
hydrodynamic radii are separated based on their electro-
phoretic mobility.14 Many studies showed that CZE is a highly

efficient method for proteoform separation, achieving over a
million theoretical plates for some samples.15−17

Predicting proteoform retention times (RTs) in RPLC−MS
and migration times (MTs) in CZE-MS can increase the
accuracy of proteoform identification in top-down tandem
mass spectrometry (MS/MS). An incorrect proteoform
identified by top-down MS/MS tends to have a large difference
between its empirical and theoretical RTs or MTs. Accurate
prediction of proteoform RTs or MTs allows for increasing
proteoform identification accuracy by filtering out identifica-
tions with inconsistent theoretical and empirical RTs or MTs.
Many methods have been proposed for RT prediction in

bottom-up MS,18 which can be divided into three categories:
library-based methods, index-based methods, and machine
learning-based methods. In library-based methods,19 a library is
built and maintained for peptides with known RTs identified
from previous LC experiments, and peptide RTs are predicted
using the library. In index-based methods, retention
coefficients of amino acids are first computed using
experimental data, and the RT of a peptide is predicted
based on the sum of the retention coefficients of its amino
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acids. For example, SSRCalc20,21 produced a high accuracy in
RT prediction using retention coefficients.
Machine learning-based methods achieved the best perform-

ance for RT prediction in bottom-up MS. Quantitative
structure-retention relationship (QSRR)22 calculates and
selects significant chemical descriptors of peptides and uses a
regression method to predict RTs. RTPredict23,24 and
ELUDE25 extract discriminant features of amino acids in
peptides and predict RTs using support vector machines.
GPTime26 utilizes the features from ELUDE and a Gaussian
process regression model27 to obtain a high accuracy for RT
prediction. Recently, many deep learning models have been
reported for peptide RT prediction in bottom-up MS,28,29

which can be divided into three groups: convolutional neural
network (CNN)-based models, such as DeepRT+30 and
DeepLC,31 recurrent neural network-based models, such as
Prosit32 and DeepMass,33 and hybrid models with both
convolutional and recurrent layers, such as DeepDIA34 and
AutoRT.35 Specifically, DeepRT+ uses convolutional and
capsule layers;36 Prosit employs gated recurrent units
(GRUs), an attention layer, and fully connected layers; and
DeepDIA combines convolutional, long short-term memory
(LSTM), and fully connected layers. These deep learning
models significantly increased the accuracy of peptide RT
prediction (Table S1). For CZE MT prediction, the peptide
size and charge are two major features that affect peptide
electrophoretic mobilities and MTs.14,37−40 A classical semi-
empirical model based on the two features produced an
accuracy of R2 = 0.974 for peptide electrophoretic mobility
prediction on a bottom-up CZE-MS yeast data set.14 After
model optimization, the accuracy was improved to R2 = 0.991.
The RT and MT prediction problems in top-down MS share

a high similarity with those in bottom-up MS, and the main
difference is that proteoforms in top-down MS are longer than
peptides in bottom-up MS. While many methods have been
proposed for peptide RT/MT prediction, only several studies
have been done for proteoform RT/MT prediction. The main
reason is that high-quality training data sets are lacking for
proteoform RT and MT prediction. Chen et al.41 extended the
semi-empirical model14 for peptide MT prediction to proteo-
form MT prediction and obtained an R2 = 0.98 on an
Escherichia coli CZE-MS data set. To the best of our
knowledge, there have been no studies of the RT prediction
problem in top-down LC−MS.
In this article, we benchmarked the performance of eight

machine learning models for proteoform RT prediction and
five models for proteoform MT prediction. The models for
proteoform RT prediction are logistic regression (LR), random
Forest regression (RFR), support vector regression (SVR),
GPTime,26 a fully connected neural network (FNN) model,
and the GRU + FNN model in Prosit,32 the CNN + capsule
model in DeepRT+,30 and the CNN + LSTM + FNN model in
DeepDIA.34 The models for proteoform MT prediction are the
semi-empirical model in the study of Chen et al.41 and the four
neural network models. We also assessed a transfer learning
method in which peptides are first employed for model
pretraining, and then, proteoforms are used for model
retraining. The method improved the prediction accuracy for
some neural network models when the size of top-down MS
training data was limited. Experimental results showed that the
GRU + FNN model with transfer learning achieved a high
accuracy for RT prediction (R = 0.978) and that the GRU +

FNN and FNN models obtained a high accuracy for MT
prediction (GRU + FNN: R = 0.982; FNN: R = 0.981).

2. METHODS

2.1. Top-Down MS Data Sets

Two top-down MS/MS data sets were used in this study: one
public RPLC−MS/MS data42 (MASSIVE: MSV000080257)
and one CZE-MS/MS data.6 The RPLC−MS/MS data set was
generated from ovarian tumor samples. A solid-phase
extraction column (360 μm o.d. × 150 μm i.d.) was used for
trapping and desalting before separation. The separation
process was performed using a dual-pump Waters nano-
ACQUITY UPLC system (Milford, Massachusetts) and a 50
cm length analytical column (360 μm o.d. × 100 μm i.d.)
packed with 3 μm diameter C2 (Separation Methods
Technology, Newark, Delaware). 5 μL of the sample was
loaded and separated with a 180 min gradient from 99%
solvent A to 35% solvent A with a 0.3 μL/min flow rate (A:
0.2% formic acid in water, B: 0.2% formic acid in acetonitrile).
The separation system was coupled with an Orbitrap Elite
mass spectrometer (Thermo Fisher, San Jose, California). MS1
and MS/MS spectra were collected at a resolution of 240,000
and 120,000 at 200 m/z, respectively. The top four precursor
ions in each MS1 spectrum were isolated with a 4 m/z window
and fragmented with collision-induced dissociation (CID) at a
normalized collision energy of 35%. Ten technical replicates
were generated for the same sample.
The CZE-MS/MS data sets were obtained from SW480 and

SW620 colon cancer cells.6 Sample proteins were first
separated by an SEC column into six fractions, and then
each fraction was injected into a linear polyacrylamide-coated
fused silica capillary (1 m, 50 μm i.d., 360 μm o.d.) with 5%
acetic acid as the background electrolyte. The electrospray
voltage was 2−2.3 kV, and the separation voltage was 30 kV for
100 min. The CZE system was coupled with a Q-Exactive HF
mass spectrometer (Thermo Fisher, San Jose, California). MS1
and MS/MS spectra were collected at a resolution of 120,000
at 200 m/z. The top five precursor ions in each MS1 spectrum
were analyzed using HCD MS/MS. Three technical replicates
were obtained for SW480 and SW620 cells with a total of 18
runs (6 fractions × 3 replicates) for SW480 cells and 18 runs
(6 fractions × 3 replicates) for SW620 cells.
2.2. Proteoform Identification

All raw MS files were converted to centroided mzML files
using msconvert in ProteoWizard.43 TopFD (version 1.4.0)44

was employed to deconvolute the centroided mass spectra to
neutral monoisotopic masses of precursor and fragment ions.
The deconvoluted MS/MS spectra were searched against the
corresponding UniProt proteome database (version Octember
23, 2019) for proteoform identification using TopPIC (version
1.4.0).44 In database search, the error tolerance for precursor
and fragment masses was set to 15 ppm, and unknown mass
shifts were not allowed. Cysteine carbamidomethylation was
specified as a fixed modification for the colon cancer cell data
set, and no fixed modifications were set for the ovarian tumor
data set. Proteoform-spectrum matches (PrSMs) reported by
the database search were filtered with a stringent E-value cutoff
of 10−5 to remove low confidence ones. These PrSMs were
further clustered by merging PrSMs into the same cluster if the
proteoforms of the PrSMs were from the same protein and the
difference of their precursor masses was <2.2 Da. The PrSM
with the best E-value in each cluster was reported, and PrSMs
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with N-terminal acetylation were filtered out. Details of the
parameter settings of TopPIC are given in Table S2 in the
Supporting Information. The apex RT/MT of a proteoform
reported by TopFD was used as the empirical RT/MT of the
proteoform and was further normalized by dividing it by the
separation time of the experiment.
To combine proteoforms identified from multiple MS files

of different samples, we grouped proteoforms into the same
cluster if they were from the same protein and the difference of
their molecular masses was <2.2 Da. In each cluster, the
proteoform with the best PrSM (lowest E-value) was reported.

2.3. Machine Learning Models

A total of eight machine learning models were assessed for
predicting proteoform RTs in top-down RPLC−MS: LR, RFR,
SVR, the model in GPTime,26 an FNN model, the CNN +
capsule model in DeepRT+,30 the GRU + FNN model in
Prosit,32 and the CNN + LSTM + FNN model in DeepDIA.34

The last four models and the semi-empirical model in the
study by Chen et al.41 were also benchmarked for predicting
proteoform MTs in top-down CZE-MS. All the models were
implemented in Python (version 3.6.8). The FNN and CNN +
capsule models were implemented using the PyTorch package
(version 1.18.1)45 and the GRU + FNN and CNN + LSTM +
FNN models using the Keras package (version 2.1.1)46 with
the TensorFlow backend (version 1.14.0). The machine
learning models were trained on a computer with an Intel
Xeon 2.20 GHz 10 core CPU, 192 GB memory, and an Nvidia
Geforce Titan Xp GPU running the Ubuntu 18.04 operating
system.
2.3.1. GPTime Model for RT Prediction. The model in

GPTime with 62 features25,26 was used for proteoform RT
prediction in top-down MS. The first feature was the
proteoform length, and the second was the sum of the
bulkiness indexes47 of all amino acid residues in the
proteoform. The other 60 features were computed for the 20
standard amino acids, each represented by three features: its
hydrophobicity index,48 the number of occurrences, and the
retention index. The retention indexes were obtained by
training a linear regression model using experimental data.25

Gaussian process regression with the radial basis function
kernel was used for proteoform RT prediction.27

2.3.2. Semi-Empirical Model for MT Prediction. The
semi-empirical model in the study of Chen et al.41 was adopted
to predict proteoform MTs in CZE-MS, in which the MT of a
proteoform is determined using two features: its molecular
mass M and charge Z. The molecular mass is used to predict
the size of the proteoform. The charge is estimated as the total
number of positively charged amino acid residues (R, H, K,
and the N-terminus) in the proteoform.14 The electrophoretic
mob i l i t y o f t h e p r o t e o f o rm i s p r e d i c t e d a s

a bZ
M

ln(1 0.35 )
0.411μ = ++ × , where a and b are two parameters

related to CZE settings.41 The electrophoretic mobility can be
converted to its corresponding MT using

t
L

v v( )

2

1 2 μ
=

− (1)

where L is the capillary length, v1 is the CZE separation
voltage, and v2 is the electrospray voltage in the experiment.
2.3.3. Neural Network Models. An FNN model was built

to predict proteoform RTs and MTs in top-down MS, which
contains an input layer, k (k = 1, 2, or 3) fully connected

hidden layers with dropout for regularization, and a fully
connected output layer. The 62 features in the GPTime model
were the input for RT prediction, and 5 features were used for
MT prediction: the 2 features in the semi-empirical model and
the numbers of D, E, and N residues (see Results). For MT
prediction, we normalized proteoform masses by dividing them
by 20,000 and normalized proteoform charges by dividing
them by 20. The rectified linear unit activation function was
used for the hidden layers and the sigmoid function for the
output layer. The model weights were initialized with a
uniform distribution with zero mean and unit variance. The
batch size was eight, the maximum training epochs was 12,000,
the loss function was the mean squared error (MSE), and the
optimizer was the Adam algorithm with a learning rate of 10−6.
The early stopping strategy was applied during the training
process with a patience of 100. Various dropout rates (0, 0.1,
and 0.2) and node numbers (64, 128, 256, 512, and 1024) for
the hidden layers were tested (Table S4 in the Supporting
Information).
Three published neural network models were also assessed

for predicting proteoform RTs and MTs in top-down MS: the
CNN + capsule model in DeepRT+,30 the GRU + FNN model
in Prosit,32 and the CNN + LSTM + FNN model in
DeepDIA.34 In the three models, the loss function was the
MSE, and the optimizer was Adam.49 The input of the CNN +
capsule and CNN + LSTM + FNN models was the one-hot
encoding of the amino acid sequence, and the input of the
GRU + FNN model was a sequence of 20 integers representing
the amino acid sequence. Zero padding was added to the right
end of the sequence to obtain the same length of 200, which
was longer than the maximum proteoform length in the data
sets. The learning rates for the three models were the default
value 0.001.
In the CNN + capsule model, the first two layers are

convolutional ones, which are followed by two capsule layers
connected by “dynamic routing” (Figure S1 in the Supporting
Information). The root sum square of the output vector of the
last capsule layer is reported as the predicted proteoform RT
or MT. Various hyperparameter settings were evaluated for the
batch size, the number of epochs, and the filter numbers and
kernel sizes of the convolutional layers (Table S5 in the
Supporting Information).
The GRU + FNN model consists of an embedding layer, a

bidirectional GRU layer, a one-directional GRU layer, an
attention layer, and two fully connected layers (Figure S2 in
the Supporting Information). Hyperparameter settings, such as
the unit number (64, 128, 256, and 512) in the GRU layers
and the node number (64, 128, 256, and 512) in the dense
layers, were tested to achieve the best prediction accuracy
(Table S6 in the Supporting Information).
The CNN + LSTM + FNN model contains a convolutional

layer, a max pooling layer, a bidirectional LSTM layer, and
three dense layers (Figure S3 in the Supporting Information).
A dropout layer with a rate of 0.5 is added between the LSTM
and the first dense layer. We tuned the following hyper-
parameters of the model: the filter number and kernel size of
the convolution layers, the number of units in the LSTM layer,
and the number of features in the dense layers (Table S7 in the
Supporting Information).

2.4. Calibration of RTs

Proteoform RT shifts between RPLC−MS runs in the ovarian
tumor data were calibrated using the RT alignment with three
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steps. (1) Proteoform identifications in different RPLC−MS
runs were matched using an RT alignment method in TopDiff
(version 1.4.0), a tool in TopPIC suite.44 (2) The list of
proteoforms identified and matched in all LC−MS runs were
reported. Finally, (3) proteoform RTs of the 2nd to 10th runs
were calibrated to match those in the first run using the
proteoform list. To calibrate the RT of a proteoform P in the
second run, we find the two neighboring proteoforms in the
proteoform list, whose RTs are the closest to P: one
neighboring proteoform is eluted before P and the other
after P. The RTs of the neighboring proteoforms are mapped
to those in the first run, and the calibrated RT of P is obtained
by interpolation.

2.5. Calibration of MTs

Proteoform MT variations in the CZE-MS runs in the colon
cancer cell data were removed by MT calibration50 with three
steps. (1) Proteoform MTs were converted to their
corresponding electrophoretic mobilities. (2) Variations in
electrophoretic mobility were removed using the semi-
empirical model in Section 2.3.2 and linear regression. Finally,
(3) the resulting electrophoretic mobilities were converted
back to calibrated MTs. Formula 1 in Section 2.3.2 was used
for the conversion in the first and third steps. In the second
step, proteoform electrophoretic mobilities in a CZE-MS run
were predicted using the semi-empirical model. Then, a linear
regression model y = ax + b was used to fit experimental
mobilities x to mobilities y reported by the semi-empirical
model in each run, where a and b are model parameters. For
two CZE-MS runs, the electrophoretic mobilities of proteo-
forms in the second run were mapped to those in the first run
using the following method. Let a1 and b1 be the regression
parameters for the first run, and a2 and b2 be the regression
parameters for the second run. For a proteoform with mobility
x in the second run, its mobility x̅ with calibration satisfies the
equation a1x̅ + b1 = a2x + b2, so the mobility with calibration is
computed as (a2x + b2 − b1)/a1. To calibrate proteoform MTs
in many runs, we choose one CZE-MS run as the reference and
map proteoform MTs in other runs to those in the reference
run.

2.6. Evaluation Criteria

Three metrics were selected to evaluate the performance of the
machine learning models: the mean absolute error (MAE),
Pearson correlation coefficient R, and Δtr95%. The MAE
measures the average error between predicted and empirical
times, R measures the correlation between predicted and
empirical times, and Δtr95% is the ratio between Δt95% and the
overall elution/MT, where Δt95% is the minimal time window
that explains 95% of the deviation between predicted and
empirical times.

3. RESULTS

3.1. Training and Test Data Sets

TopPIC identified 610 proteoforms of 188 proteins from the
first replicate (LC-ONE) of the ovarian tumor RPLC−MS
data. The proteoforms in the LC-ONE data were divided into
188 protein groups, which were then randomly split into a
training set (131 protein groups with 437 proteoforms) and a
test set (57 protein groups with 173 proteoforms) with a
proteoform ratio of 7:3 approximately. We further combined
PrSMs identified from the 10 replicates (LC-TEN) of the
ovarian tumor RPLC-MS data and removed duplicated
proteoforms (see Section 2.2), resulting in 1010 proteoforms
of 265 proteins. The proteoform RTs were calibrated to map
to those in the first run using RT alignment. The proteoforms
in the LC-TEN were divided into 255 protein groups and
randomly split into a training set (185 protein groups with 736
proteoforms) and a test set (80 protein groups with 274
proteoforms) with an approximate ratio of 7:3.
Similarly, TopPIC reported from the first replicate (CZE-

ONE) of the CZE-MS/MS SW480 data 1230 proteoforms of
470 proteins, which were further randomly split by the protein
group into a training set of 878 proteoforms from 329 proteins
and a test set of 352 proteoforms from 141 proteins. We also
combined proteoforms identified from all 36 CZE-MS runs
(CZE-ALL) in the colon cancer cell data and removed
duplicated ones, reporting 2914 proteoforms from 889
proteins. Then, we randomly split them into a training set

Figure 1. MT calibration for the CZE-ONE data set with prefractionation. (a) MTs predicted by the semi-empirical model are plotted against
experimental MTs in six CZE-MS runs. The Pearson correlation coefficient between predicted and experimental MTs is 0.956 on average for single
runs and 0.792 for the combined data of the six runs. (b) The Pearson correlation coefficient between predicted and experimental MTs is improved
to 0.954 for the combined data after calibration.
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(2105 proteoforms from 622 proteins) and a test set (809
proteoforms from 267 proteins) with an approximate ratio of
7:3.
The length distributions of the LC-ONE, LC-TEN, CZE-

ONE, and CZE-ALL data sets are given in Figure S4 in the
Supporting Information. The average proteoform lengths are
49, 53, 43, and 42 for the LC-ONE, LC-TEN, CZE-ONE, and
CZE-ALL data sets, respectively.

3.2. RT and MT Calibration

We evaluated the effect of calibration on proteoform RT
prediction accuracy using the LC-TEN data set and the
GPTime model. Proteoform RTs in the 10 RPLC-MS runs
were calibrated using the RT alignment and interpolation (see
Methods). The GPTime model was trained and tested on the
LC-TEN data set with the 7:3 training-test split using
proteoform RTs before and after calibration. The prediction
accuracy in the test data was similar for the RTs before
calibration (R = 0.937 and MAE = 0.0470) and after
calibration (R = 0.938, MAE = 0.0457), suggesting that
there are only small RT shifts in the 10 replicate runs.
The CZE-ONE data set contained proteoforms identified

from six SEC fractions of the sample, and the measured
proteoform MTs were affected by variations in the CZE-MS
runs (Figure 1a). Because proteoform identifications in the
fractions are different, time alignment51 is not a good choice
for MT calibration of the data set. The semi-empirical model in
Section 2.3.2 was applied to predict MTs for all proteoforms in
the CZE-ONE data and performed well for single runs
(average R = 0.956), but the variations in the runs for the six
fractions affected its prediction accuracy (R = 0.792) for the
combined data without calibration (Figure 1a). After
calibration (see Methods), the Pearson correlation coefficient
between experimental and predicted MTs was improved from
0.792 to 0.954 (Figure 1b), suggesting that calibration is an
indispensable step for achieving high accuracy in proteoform
MT prediction.

3.3. RT Prediction

To optimize the input features of LR, SVR, and RFR, the 62
features in GPTime were ranked based on the importance
reported by a random forest regression model (number of
trees: 350) trained on the LC-ONE training set (437
proteoforms of 131 protein groups). Using the top 10 features,
the hyperparameters (not including the feature number) of
SVR and RFR were tuned using fivefold cross-validation on the
LC-ONE training set. The 131 protein groups were divided
into five folds so that each fold contained approximately the
same number of proteoforms. The best hyperparameter
settings are given in Table S3. We then evaluated the accuracy

of the LR, SVR, and RFR models with top k features (k = 1, 2,
..., 62) using the best hyperparameter settings and found that
the best feature numbers for LR, SVR, and RFR were 28, 7,
and 23, respectively. Hyperparameters were also tuned for the
FNN, CNN + capsule, GRU + FNN, and CNN + LSTM +
FNN models using the LC-ONE training set with fivefold
cross-validation. The best hyperparameter settings for the four
models are given in Tables S4−S7 in the Supporting
Information.
Table 1 summarizes the prediction accuracy of LR, SVR,

RFR, GPTime, and the four neural network models with the
best hyperparameter settings on the LC-ONE and LC-TEN
data sets with the 7:3 training-test split. The Pearson
correlation coefficients of most of the models are between
0.92 and 0.94, and the prediction accuracies of traditional and
neural network models are similar. The neural network models
failed to achieve high accuracy as demonstrated in previous
studies30,32,34 for peptide RT prediction owing to the small
sizes of the training data sets. With the increase of the training
data size from 437 (LC-ONE) to 736 (LC-TEN), the
prediction accuracy of the CNN + capsule model slightly
increases, while the accuracy of other neural network models is
not significantly changed, indicating that the training data set
of LC-TEN is still small for most neural network models to
obtain high prediction accuracy.

3.4. MT Prediction

A total of seven proteoform features were divided into three
groups and tested for proteoform MT prediction: the
molecular mass and the charge state (group 1); the numbers
of D, E, and N residues (group 2); and the numbers of L and I
residues (group 3). A previous study41 of the semi-empirical
model showed that the two features in group 1 are important
for MT prediction and that D, E, and N residues (features in
group 2) slightly influence the proteoform charge. The
numbers of L and I residues (group 3 features) were selected
owing to their high hydrophobicity indexes in CZE experi-
ments.52 We compared four feature sets, which were used as
the input of the FNN model with two hidden layers (256
nodes in each layer), on the CZE-ONE training set with
fivefold cross-validation: (1) group 1 only, (2) groups 1 and 2,
(3) groups 1 and 3, and (4) all the features. The FNN model
with the features in groups 1 and 2 obtained the best
prediction accuracy R = 0.981 (Table S8 in the Supporting
Information), suggesting that the features in group 2 provided
additional information for MT prediction.
Hyperparameter settings of the four neural network models

were tuned using the CZE-ONE training set with fivefold
cross-validation. The best hyperparameter settings of the

Table 1. Benchmarking of Eight Machine Learning Models for Proteoform RT Prediction on the LC-ONE and LC-TEN Data
Sets with the 7:3 Training-Test Split

Model
LC-ONE LC-TEN

R Δtr95% MAE R Δtr95% MAE

LR 0.922 0.468 0.0576 0.923 0.377 0.0576
SVR 0.911 0.518 0.0639 0.918 0.366 0.0587
RFR 0.935 0.423 0.0531 0.920 0.379 0.0565
GPTime 0.926 0.433 0.0535 0.938 0.337 0.0479
FNN 0.931 0.439 0.0534 0.913 0.378 0.0595
CNN + capsule 0.889 0.518 0.0699 0.920 0.395 0.0540
GRU + FNN 0.934 0.438 0.0516 0.929 0.385 0.0508
CNN + LSTM + FNN 0.913 0.443 0.0573 0.917 0.426 0.0534
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models are given in Tables S4−S7 in the Supporting
Information. The best hyperparameter settings for the models
are not the same as those for RT and MT prediction, which is
reasonable because the RPLC and CZE separation methods
are different. We tested the prediction accuracy of the semi-
empirical model and four neural network models with two
experimental settings: the 7:3 training-test split of the CZE-
ONE data set and the 7:3 training-test split of the CZE-ALL
data set. Experimental results showed that the performance of
the GRU + FNN and FNN models slightly outperformed

other models on the two data sets (Table 2). The semi-
empirical and FNN models reported high prediction accuracy
with several proteoform features, indicating that it is possible
to accurately predict proteoform MTs with simple models.
Increasing the training data size from 878 (CZE-ONE) to
2105 (CZE-ALL) significantly improved the prediction
accuracy of CNN + capsule and CNN + LSTM + FNN,
showing that complex models need a large training data set to
obtain high prediction accuracy.

Table 2. Benchmarking of the Semi-Empirical Model and Four Neural Network Models for Proteoform MT Prediction on the
CZE-ONE and CZE-ALL Data Sets with the 7:3 Training-Test Split

CZE-ONE CZE-ALL

Model R Δtr95% MAE R Δtr95% MAE

semi-empirical 0.953 0.185 0.0179 0.970 0.141 0.0130
FNN 0.975 0.130 0.0137 0.981 0.113 0.0107
CNN + capsule 0.865 0.293 0.0329 0.946 0.207 0.0206
GRU + FNN 0.973 0.127 0.0119 0.982 0.102 0.0106
CNN + LSTM + FNN 0.777 0.387 0.0445 0.969 0.145 0.0142

Figure 2. Comparison of the GRU + FNN model with and without transfer learning on the LC-TEN data. (a) An overview of the transfer learning
method with the LC-PEPTIDE data for pretraining and the LC-TEN training data set for retraining. (b) Histograms of proteoform RT prediction
errors for the model trained with and without transfer learning on the LC-TEN test data. (c) The Pearson correlation coefficient of the GRU +
FNN model is 0.929 when it is trained with the LC-TEN training set and tested on the LC-TEN test set. (d) The Pearson correlation coefficient of
the GRU + FNN model is 0.978 when it is pretrained using the LC-PEPTIDE data, retrained with the LC-TEN training set, and tested on the LC-
TEN test set.
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3.5. Transfer Learning

Transfer learning53 was adopted to address the problem that a
large training data set was lacking for proteoform RT and MT
prediction. The main idea of transfer learning is to combine
peptide data in bottom-up MS and proteoform data in top-
down MS to train machine learning models. The four neural
network models were first pretrained with a large data set of
peptides with RTs or MTs identified by bottom-up MS, and
then, the learned knowledge was transferred to the retraining
of the models with proteoform data by initializing the model
parameters with the values obtained from pretraining (Figure
2a). The hyperparameters of the models were the same as
those in Tables S4 and S7. The models for RT prediction were
pretrained using a bottom-up RPLC−MS/MS data set of 24
human cell lines and tissues.54 X!Tandem55 identified 146,587
unique peptides, referred to as LC-PEPTIDE, from the data set
using database search, and the iRT Toolkit54 reported
normalized RTs of the identified peptides. Detailed methods
for identifying peptides and obtaining RTs can be found in the
study by Escher et al.54 The four neural network models were
assessed on the LC-TEN test data set using three training
methods: (1) pretraining with the LC-PEPTIDE data, (2)
training with the LC-TEN training data only, and (3)
pretraining with the LC-PEPTIDE data and retraining with
the LC-TEN training data. In addition, linear regression was
employed to fit the RTs predicted by the first training method
to experimental RTs. The transfer learning method increased
the prediction accuracy of all the four neural network models
compared with the other two training methods (Table 3,
Figures S5a and S7). Specifically, the GRU-FNN model
achieved a prediction accuracy of R = 0.974 with only peptide
pretraining; the transfer learning method reduced the
prediction errors of many proteoforms (Figure 2b) and
improved its prediction accuracy from R = 0.929 to 0.978
(Figure 2c,d) compared with the second training method,
indicating that the knowledge obtained from peptide data can
be efficiently transferred to the retraining step for the model.
The prediction accuracy of the FNN model was not
significantly improved by the transfer learning method, which
might be due to its simple architecture.

The four neural network models for MT prediction were
pretrained using a bottom-up CZE-MS/MS data set of HeLa
cells.56 The data set was generated from tryptic digestion of
proteins of HeLa cells, and the spectra in the data set were
analyzed by Mascot57 (version 2.2.4) in Proteome Discoverer
1.4 for peptide identification. We filtered out all identified
peptides with PTMs or with a q-value >0.001, resulting in 4234
unique peptide identifications, referred to as CZE-PEPTIDE.
The MTs of the peptides were obtained from the LC−MS data
using Mascot. Similar to proteoform RT prediction, we
evaluated the four neural network models on the CZE-ALL
test data using three training methods: (1) pretraining with the
CZE-PEPTIDE data only, (2) training with the CZE-ALL
training data only, and (3) pretraining with the CZE-PEPTIDE
data and retraining with the CZE-ALL training data. The
transfer learning method slightly improved the prediction
accuracy for the CNN + capsule model but failed to
significantly increase the accuracy for the other three models
(Table 4, Figures S5b and S8). The reason might be that the
CZE-ALL training data were enough to achieve a high
prediction accuracy for the models and that pretraining
could provide only limited additional information.
We further investigated if a small peptide pretraining data set

can improve proteoform RT prediction using transfer learning.
We randomly selected 4234 out of the 146,587 peptides in the
LC-PEPTIDE data set for pretraining and tested the GRU +
FNN model on the LC-TEN data set with transfer learning.
The trained model obtained a prediction accuracy of R = 0.971
and MAE = 0.0305 on the LC-TEN test data, which is similar
to the performance with all the peptides for pretraining (R =
0.978 and MAE = 0.0271) (Table S9).

3.6. RT Prediction for Long Proteoforms

We assessed the RT prediction accuracy of SVR, RFR,
GPTime, CNN + capsule, and GRU + FNN for peptides with
length <40 and proteoforms with length ≥40. The LC-
PEPTIDE data used in transfer learning contain 145,714
peptides with <40 amino acids, referred to as LC-SHORT,
which was randomly split into a training set with 101,999
peptides and a test set with 43,715 peptides with a ratio of 7:3.

Table 3. FNN, CNN + Capsule, GRU + FNN, and CNN + LSTM + FNN Models Are Assessed on the LC-TEN Test Data Using
Three Training Methods: (1) Pretraining Using the LC-PEPTIDE Data Only, (2) Training Using the LC-TEN Training Data
Only, and (3) Transfer Learning: Pretraining Using the LC-PEPTIDE Data and Retraining with the LC-TEN Training Data

Model
pretraining with LC-PEPTIDE data training with LC-TEN training data transfer learning

R Δtr95% MAE R Δtr95% MAE R Δtr95% MAE

FNN 0.914 0.385 0.0573 0.913 0.378 0.0595 0.933 0.352 0.0518
CNN + capsule 0.767 0.756 0.0820 0.920 0.395 0.0540 0.951 0.279 0.0415
GRU + FNN 0.974 0.180 0.0279 0.929 0.385 0.0508 0.978 0.172 0.0271
CNN + LSTM + FNN 0.845 0.607 0.0576 0.917 0.426 0.0534 0.965 0.240 0.0326

Table 4. FNN, CNN + Capsule, GRU + FNN, and CNN + LSTM + FNN Models Are Evaluated on the CZE-ALL Test Data
Using Three Training Methods: (1) Pretraining Using the CZE-PEPTIDE Data Only, (2) Training Using the CZE-ALL
Training Data Only, and (3) Transfer Learning: Pretraining Using the CZE-PEPTIDE Data and Retraining with the CZE-ALL
Training Data

Model
pretraining with CZE-PEPTIDE data training with CZE-TEN training data transfer learning

R Δtr95% MAE R Δtr95% MAE R Δtr95% MAE

FNN 0.965 0.152 0.0169 0.981 0.113 0.0107 0.980 0.109 0.0109
CNN + capsule 0.865 0.302 0.0314 0.946 0.207 0.0206 0.971 0.142 0.0146
GRU + FNN 0.943 0.210 0.0237 0.982 0.102 0.0106 0.982 0.103 0.0104
CNN + LSTM + FNN 0.343 0.595 0.0651 0.969 0.145 0.0142 0.977 0.123 0.0124

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00124
J. Proteome Res. 2022, 21, 1736−1747

1742

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00124/suppl_file/pr2c00124_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00124/suppl_file/pr2c00124_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00124/suppl_file/pr2c00124_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00124/suppl_file/pr2c00124_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00124/suppl_file/pr2c00124_si_001.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The LC-TEN test set contains 146 proteoforms with ≥40
amino acids, referred to as LC-LONG-TEST. We first trained
the five models using the LC-SHORT training set and tested
them on the LC-SHORT test set and the LC-LONG-TEST
data. The CNN + capsule and GRU + FNN models trained
with the LC-SHORT training data achieved high prediction
accuracies (CNN + capsule: R = 0.995, GRU + FNN: R =
0.996) on the LC-SHORT test data, which is similar to the
results reported previously.30,32 Figure 3 shows that the MAEs
of the models on the LC-LONG-TEST data are much higher
than those on the LC-SHORT test set, revealing that the
models trained using peptides tend to have large errors for RT
prediction of long proteoforms. We also trained the five
models using the LC-TEN training data and trained the CNN
+ capsule and GRU + FNN models using transfer learning:
pretraining the models using LC-SHORT training data and

retraining using the LC-TEN training data. The trained models
were tested on the LC-LONG-TEST data and achieved much
lower MAEs compared with the models trained with the LC-
SHORT training data, suggesting that training or retraining
with long proteoforms could help learn characteristics specific
to long proteoforms for RT prediction.

3.7. Proteoform Identification with RT/MT Prediction

We evaluated if RT/MT prediction with the GRU + FNN
model can increase the number of proteoform identifications.
An incorrect proteoform identification in top-down MS tends
to have a large difference between its experimental and
theoretical RTs or MTs (Figure S6). Therefore, the quality of a
proteoform identification is evaluated by its E-value reported
by TopPIC and the difference between its experimental and
theoretical RTs/MTs predicted by the GRU + FNN model.
Figure 4 illustrates that RT differences are important for

Figure 3. Comparison of the MAEs of SVR, RFR, GPTime, CNN + capsule, and GRU + FNN using four training and test methods. (1) Training
with the LC-SHORT training data and testing on the LC-SHORT test data; (2) training with the LC-SHORT training data and testing on the LC-
LONG-TEST data; (3) training with the LC-TEN training data and testing on the LC-LONG-TEST data; and (4) transfer learning with the LC-
SHORT training data for pretraining and the LC-TEN training data for retraining and testing on the LC-LONG-TEST data. The fourth method is
used for CNN + capsule and GRU + FNN only.

Figure 4. Filtering proteoform identifications using the differences between experimental and theoretical RTs reported by the GRU + FNN model.
Target and decoy proteoforms identified from the LC-ONE data with an E-value <1 are filtered with a cutoff value of 0.1 for experimental and
theoretical RT differences. The numbers of target and decoy proteoforms are plotted against their E-values with logarithm transformation.
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filtering out decoy identifications with an E-value ≥0.01. Based
on the observation, we filtered out proteoforms with an E-value
≥0.01 and a theoretical and experimental RT difference ≥0.1
identified from the LC-ONE data set. After the filtering
method was added to TopPIC, with a 1% proteoform-level
FDR, the number of proteoform identifications of the LC-
ONE data set was increased from 1090 to 1154 (5.9%), and
the number of protein identifications was increased from 291
to 305 (4.8%). The filtering method also increased the number
of proteoform identifications from 2146 to 2166 (1.0%) and
the number of protein identifications from 741 to 749 (1.1%)
with a 1% proteoform-level FDR for the CZE-ONE data set.
The RTs and MTs predicted by the GRU + FNN model
(Figures 4 and S9) are not accurate enough to separate target
identifications from decoy ones to achieve an FDR of 1%,
which is the reason that the increase in the number of
proteoform identifications was limited. For decoy identifica-
tions, the differences between theoretical and experimental
MTs are smaller than those between theoretical and
experimental RTs (Figure S6), so the increase of proteoform
identifications for the CZE-ONE data was less significant than
that for the LC-ONE data. The proteoform charge and
molecular mass are two dominant features in the MT
prediction models. The molecular masses of identified decoy
proteoforms are not randomly distributed. If a decoy
proteoform is matched to a query spectrum, then its molecular
mass is similar to that of the proteoform from which the query
spectrum was generated. Because of this, the MT prediction
errors of identified decoy proteoforms follow a Gaussian-like
distribution. Additionally, the distributions of the charges of
identified target and decoy proteoforms are different: identified
decoy proteoforms tend to have higher charges than identified
target proteoforms (Figure S10). As a result, the distribution of
the MT prediction errors of identified decoy proteoforms is
skewed to the left compared with identified target proteoforms
(Figure S6b).

4. DISCUSSION
The GRU + FNN model designed for peptide RT prediction
in bottom-up MS achieved an accuracy of R = 0.978 for
proteoform RT prediction and R = 0.982 for proteoform MT
prediction with transfer learning, demonstrating that it is not
significantly affected by long proteoforms with ≥40 amino
acids (Figures S4 and S5). The GRU58 and attention layers59

in the GRU + FNN model are designed for processing long
sequences, so it might be inheritably suitable for proteoform
RT and MT prediction. The simple two-gate structure in GRU
might be the reason that the GRU + FNN model could be
efficiently trained with a small data set without transfer
learning. The prediction accuracy of the CNN + capsule and
CNN + LSTM + FNN models without transfer learning
dropped significantly for RT prediction in top-down MS
compared with that in bottom-up MS owing to limited training
data. The prediction accuracies of these two models were
improved when bottom-up data were used for pretraining in
transfer learning, suggesting that large training data are
essential to improving their prediction accuracy.
The four neural network models reported comparable

prediction accuracy for proteoform RT prediction in RPLC
and MT prediction in CZE, showing that these models have
strong generality for prediction problems in proteoform
separation and may be used for other prediction problems,
such as SEC and IEC RT prediction. With only several

features, including proteoform mass and charge, the semi-
empirical and FNN models obtained a high accuracy for
proteoform MT prediction, and most of the models reported a
higher accuracy for MT prediction than RT prediction,
suggesting that RT prediction is more complicated than MT
prediction.
Because of the similarity between peptides and proteoforms,

the GRU + FNN model trained on peptide data can be used to
predict proteoform RTs and MTs with calibration. Transfer
learning in general can further improve the prediction accuracy
of a model for proteoform RT and MT prediction by first
pretraining the model on a large data set obtained from
bottom-up MS and then retraining the model using a top-
down MS data set. However, it may fail to improve prediction
accuracy in some cases, such as the GRU + FNN model for
MT prediction (Table 4). The performance of transfer learning
may depend on the model architecture, the sizes of the
bottom-up and top-down data sets, and whether there exists
information that is transferable and indispensable from the
pretraining data.
The study of the CZE-ONE data with prefractionation

reveals that the variations in CZE runs significantly affect
experimental MTs and that calibration is an indispensable step
for accurate prediction. Most of the variations in CZE runs can
be removed by a regression-based method. The existence of
variations also complicates the application of RT and MT
prediction models: a model trained on one data set needs to be
calibrated or retrained before it is used on another data set.
RT and MT prediction can increase proteoform identi-

fication in top-down MS. When proteoforms lack confident
spectral identification, RT and MT prediction becomes more
important for proteoform identification. However, when the
accuracy is not high enough, the improvement for proteoform
identification is limited.
There are still many challenges in proteoform RT and MT

prediction. The first challenge is that there is a lack of large
data sets for training complex machine learning models owing
to the low proteoform coverage of top-down MS. One possible
solution is to combine proteoforms identified from multiple
species with the same MS experimental setting. The second
challenge is to predict RTs and MTs of modified proteoforms.
The number of identified proteoforms with a specific PTM is
even lower than unmodified proteoforms. The third challenge
is how to apply trained machine learning models to MS data
sets generated with various settings, which can cause shifts in
RTs or MTs of proteoforms.

5. CONCLUSIONS

In this paper, we assessed several machine learning models for
proteoform RT and MT prediction in top-down MS. The
GRU + FNN model in Prosit with transfer learning achieved
high accuracy for proteoform RT prediction, and the GRU +
FNN and FNN models outperformed other models in
proteoform MT prediction. Experimental results on transfer
learning also showed its potential to increase prediction
accuracy by using peptides identified from bottom-up MS for
pretraining. In future work, we will generate large training data
sets, further improve RT and MT prediction accuracy, and
study the RT and MT prediction problems for modified
proteoforms.
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