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Abstract: Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid
environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides
L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the
environmental data (soil temperature, moisture, pH, salinity, carbon and nitrogen content, and light
intensity), vegetation composition, and diversity of associated species were recorded under- and
outside canopies. Eight of the most frequent understory species were selected for evaluating their
response to the facilitative effect of C. polygonoides. Bioactive ingredients of Calligonum roots were
analyzed using gas chromatography-mass spectrometry (GC-MS), and mycorrhizal biodiversity in
their rhizosphere soil was also assessed. The effect of Calligonum on understory plants ranged between
facilitation and inhibition in an age-dependent manner. Old shrubs facilitated 18 and inhibited 18
associated species, while young shrubs facilitated 13 and inhibited 9 species. Calligonum ameliorated
solar radiation and high-temperature stresses for the under canopy plants. Moreover, soil moisture
was increased by 509.52% and 85.71%, while salinity was reduced by 47.62% and 23.81% under old
and young shrubs, respectively. Soil contents of C and N were increased under canopy. This change
in the microenvironment led to photosynthetic pigments induction in the majority of understory
species. However, anthocyanin, proline contents, and antioxidant enzyme activities were reduced
in plants under canopy. Thirteen mycorrhizal fungal species were identified in the rhizospheric
soil of Calligonum with the predominance of Funneliformis mosseae. Thirty-one compounds were
identified in Calligonum root extract in which pyrogallol and palmitic acid, which have antimicrobial
and allelopathic activities, were the major components. The obtained results demonstrated that
facilitation provided by Calligonum is mediated with multiple mechanisms and included a set of
interrelated scenarios that took place in a species-specific manner.

Keywords: nurse plant; mycorrhizae; arid habitat; proline; species coexistence; positive
interactions; allelopathy
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1. Introduction

Arid regions represent about 40% of the global land area, in which environmental conditions
are known to exert a strong influence on organisms to the extent of hindering their growth and
development [1]. To overcome desertification in these habitats, shrubs that are able to survive in such
conditions can be used to restore vegetation as they create more mesic spots for other understory
plants. Such plants are termed as nurse plants and the phenomenon that is represented by plant-plant
positive interactions is called plant facilitation [2]. Nurse plants are characterized by their ability to
sustain life, growth, and physiology of neighboring plants. The canopy of the nurse plant ameliorates
the effect of light and temperature on the understory species, and inconsequence modulates the
physiological response such as photosynthetic rate, respiration, and enzyme activity [2,3]. In contrast,
individuals in the same community might compete with each other for nutrients, light, space, and water
uptake. The concept of plant facilitation was not common until recently when it has been re-evaluated
particularly in extreme habitats [4]. Whether through facilitation or competition, these interactions
shape the plant community structure, particularly under severe conditions in which the interactions
between plants are shifted toward facilitation [5,6] as in deserts and salt marshes as predicted by
the stress gradient hypothesis (SGH). Moreover, this idea was followed by other models proposing
the collapse of facilitation in extremely harsh conditions [7]. The main facilitation benefits given by
the overstory shrubs are through alleviation of the abiotic stresses, and providing more favorable
conditions for the understory species such as buffered temperatures, increased shading, soil moisture,
nutrition, protection from herbivores, and enhancement of beneficial soil microorganisms making the
conditions more favorable to the understory plants [4,8]. Additionally, the nurse plant exudates a vast
number of chemicals for roots. These chemicals comprise a mixture of organic acids, sugars, enzymes,
amino acids, nucleotides, and other bioactive compounds such as alkaloids, phenolics, glycosides, and
volatile organic compounds [9–11]. These exudates have either stimulatory or inhibitory (allelopathic)
activity for the understory plant species as well as the microflora [2].

The mutualistic relationships established between arbuscular mycorrhizal fungi
(Glomeromycotina) and terrestrial plants play key roles in the establishment, diversification,
productivity, and sustainability of different natural ecosystems [12]. Furthermore, arbuscular
mycorrhizal fungi are considered as a crucial factor in the afforestation programs [13] as they enhance
soil texture and fertility [14]. This symbiotic relationship may directly or indirectly benefit the
understory plants as well as the nurse plant through the formation of complex common mycorrhizal
networks (CMNs) serving as channels by which the plants could communicate. These CMNs provide
the interconnected plants with important benefits concerning water and nutrients transport, and signal
exchange, affecting their plant vigor, survival, and competition [15]. In the CMN-interlinked plant
community, the weak plant individuals can benefit from nutrients supply and other advantages
from the stronger nurse plant(s). In other words, the nurse plant reduces competition between the
other interconnected weak plants allowing facilitation [2]. However, the impact of CMNs on the
interconnected plants is highly species-dependent [16].

Calligonum polygonoides L. inhabits the North African desert and sandy deserts of the Middle East.
It is a common shrub in the Mediterranean coastal zone of Egypt, where it dominates the sandy habitats.
It is a much-branched shrub capable of building sand mounds (nebka). Moreover, C. polygonoides
has ecological importance owing to its ability to stabilize the mobile sand dunes, prevent erosion,
and increase the organic matter content in the soil [17]. As a nurse plant, C. polygonoides has been
proved to be a potential soil ameliorating factor, as well as a facilitative herbaceous plant in India [18]
and Iran [19]. The Mediterranean coastal belt habitat in Egypt is highly sensitive due to its vulnerability
to inundation and saltwater intrusion as a result of sea-level rise. The plant communities of this habitat
are suffering from many influences including urbanization, agriculture expansion, pollution, touristic
pressures, industrialization, over-collecting, overgrazing, military activities as well as the invasion by
alien species [20]. In degraded habitats with harsh environmental conditions, the nurse plants play a
vital role in the ecological restoration, where the facilitation process becomes essential for survival,
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growth, and performance of the nearby plants, as well as improvement of diversity and community
dynamics [2,6].

The present study is aimed to (1) determine the effect of C. polygonoides shrubs on the understory
plant species, (2) evaluate the effects of C. polygonoides on the microhabitat under canopy, (3) assess
the physiological response of the most frequent understory species to the presence of C. polygonoides,
(4) investigate the mycorrhizal diversity in the rhizospheric soil of C. polygonoides, and (5) analyze the
chemical composition of the C. polygonoides root extract.

2. Materials and Methods

2.1. Field Study Area

The study was performed along the Mediterranean coastal belt of the Nile delta, Northern
Egypt. The studied location area extended from Damietta (31◦26′39.6′′ N 31◦37′18.9′′ E) to Baltim
(31◦35′25.4′′ N 31◦02′06′′ E), with ≈50 km long. Usually, the coastal regions suffer from saltwater
intrusion which increases the salinity level. In addition, this zone in Egypt is more sensitive due to
sea level rise as well as climate change. The climate of the northern coast of Egypt is mainly affected
by the Mediterranean Sea. The metrological data from 1979 to 2010 revealed that annual average
air temperature ranged from 15.2 to 25.9 ◦C, and the annual average total precipitation was up to
200 mm [21].

2.2. Study Species

Calligonum polygonoides is a common shrub in Egypt and it is considered to be a dominant perennial
plant occupying sand soil under water scarcity making it suitable to combat desertification. It grows
up to two meters tall and 5 m in diameter on mobile sand dunes, stabilized dunes, and sand sheets
(Figure 1). The adult plants have a lignified stem that carries vegetative and generative branches.
The vegetative branches become lignified, brown and shiny with age forming the skeleton of the plant.
However, the generative branches develop from the accessory buds of the vegetative branches and
never lignified, but these generative branches are shed at the beginning of summer i.e., under canopy
at the end of the growing season [22]. The taproot of C. polygonoides extends to a depth of more than
1.5 m, while the superficial roots horizontally extend by 10–20 m. In addition, C. polygonoides builds up
‘nebka’, which is a sand dune that forms around vegetation and is able to rearrange its canopy above
the nebka.

2.3. Field Sampling and Vegetation Survey

To examine the effects of C. polygonoides on the understory plant species, a total of 40 shrubs
were surveyed randomly within 40 stands from January to May 2017. These shrubs were regarded as
old (with obvious lignification) and young shrubs (with green branches). The canopy width, height,
and length were measured for every shrub. In each instance, three quadrats (0.5 m × 0.5 m) were
placed under the canopy at 50 cm from the trunk. Within the quadrat, the density of each plant species
was measured. Coupled with each shrub, similar quadrats were performed in the gaps outside the
canopy (at least 1 m away from the canopy), at which the plant species density was also measured.
The frequency percentage of each species within all studied quadrats, of old and young shrubs, was
calculated. The taxonomic nomenclature, identification, and chorotype of plant species were assessed
according to Boulos [23]. However, life forms were identified according to the scheme of Raunkiaer [24].
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Figure 1. Calligonum polygonoides L. shrub and two selected understory species. (a) overview of old 
shrub, (b) regenerated vegetative branches, (c,d) young shrub, (e) Rumex pictus L. under, and outside 
the canopy of C. polygonoides, and (f) Mesembryanthemum crystallinum L. 

2.4. Environmental Measurements and Soil Analysis 

To evaluate the effect of C. polygonoides shrubs on the environmental conditions of the 
microhabitat, soil moisture, temperature, contents of organic carbon (OC) and total nitrogen (TN), 
salinity, pH, and available photosynthetic photon flux density (PPFD) under- and outside-canopy 
were determined. For each quadrat, soil temperature was measured at ≈15 cm depth below the 

Figure 1. Calligonum polygonoides L. shrub and two selected understory species. (a) overview of old
shrub, (b) regenerated vegetative branches, (c,d) young shrub, (e) Rumex pictus L. under, and outside
the canopy of C. polygonoides, and (f) Mesembryanthemum crystallinum L.

2.4. Environmental Measurements and Soil Analysis

To evaluate the effect of C. polygonoides shrubs on the environmental conditions of the microhabitat,
soil moisture, temperature, contents of organic carbon (OC) and total nitrogen (TN), salinity, pH,
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and available photosynthetic photon flux density (PPFD) under- and outside-canopy were determined.
For each quadrat, soil temperature was measured at ≈15 cm depth below the ground surface from
10:00 to 12:00 AM along clear days using soil thermometer (Spectrum, Technologies, Inc., Aurora, IL,
USA). Photosynthetic photon flux density (PPFD, λ = 400–700 nm) was measured by a digital lux
meter (Model: LX-101, Lutron Electronic, Taipei, Taiwan). The probe was placed 5 cm above the soil
surface in a north-south direction. The data of soil moisture, temperature, and PPFD were taken every
week, starting from January to May 2017. Therefore, 7650 readings were taken during all the fieldwork
21 weeks × 40 stands × 3 locations (outside, under canopy of old, and young shrubs) × 3 replications.

In each stand, three soil samples (15–20 cm depth) were collected under and outside canopy,
packed in polyethylene bags, and brought to the laboratory. The collected samples were then air-dried
at room temperature (25 ◦C ± 2), sieved through 2-mm sieve to remove stones and plant debris, and
packed in bags until further physical and chemical analyses. Soil pH and electrical conductivity
(EC) were measured in water suspension (1:2.5) as described by Jackson [25]. To estimate TN in
soil, one gram of air-dried homogenous soil sample was first digested by using H2SO4 for 8 h in the
presence of 0.5 g catalyst (K2SO4, CuSO4.5H2O, and SeO2) then the micro-Kjeldahl method was used
to estimate total nitrogen as ammonia [25]. The OC content was estimated according to the modified
Walkley–Black method [26].

2.5. Plant Analyses

According to the data of the vegetation analysis, eight of the most frequent understory plant species
within the quadrats were selected. These species are Bromus diandrus, Cakile maritima, Erodium laciniatum,
Launaea mucronata, Mesembryanthemum crystallinum, M. nodiflorum, Rumex pictus, and Senecio glaucus.
To evaluate the effects of C. polygonoides shrub on these understory species, dry weight, contents of
photosynthetic pigments, total anthocyanin, and proline, as well as the activities of some antioxidant
enzymes were estimated in the leaves of these understory plants, under- and outside the canopies.

2.5.1. Determination of Dry Weight

Twenty individuals of the selected plants were collected under canopy and outside canopy, packed
in polyethylene bags, and transferred to the laboratory. The plant samples were dried in an oven at
65 ◦C until reaching constant weights.

2.5.2. Estimation of Photosynthetic Pigments

A known fresh weight (0.1 g) of plant leaves was extracted using 80% chilled acetone to determine
chorophyll and carotenoids pigments. Chlorophyll pigments were determined according to Arnon [27],
while carotenoids were estimated according to Myers and Kratz [28].

2.5.3. Estimation of Total Anthocyanin Content

To a known weight of the plant leaves (0.1 g), 4 mL of chilled acidic methanol (HCl 0.1% v/v) was
added. After maceration and centrifugation at 6000 rpm at 4 ◦C for 20 min, the spectrum from 300
to 700 nm was monitored using a spectrophotometer (Jenway 7315 UV-VIS, Burlington, VT, USA).
Anthocyanin content was calculated using the following formula:

Anthocynin content = Absorbance530 −Absorbance653

The values obtained were normalized to cyaniding 3-glucoside (Mol. Mass = 449.2 and
ε = 26.9 mM−1 cm−1) concentrations of mg g−1 fresh weight [29].

2.5.4. Estimation of Proline Content

A known weight of the plant leaves (0.1 g) was immersed in 2 mL of 3% sulfosalicylic acid. After
maceration and centrifugation at 6000 rpm at 4 ◦C for 20 min, 2 mL of phosphoric acid and 2 mL of
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ninhydrin reagent were added and the mixture was heated together in a water bath at 100 ◦C for
1 h and then 4 mL of toluene were added to the mixture to extract the developed color, and then the
absorbance was measured at 520 nm using a spectrophotometer (Jenway 7315 UV-VIS, Colombia, MD,
USA) [30].

2.5.5. Assays of Antioxidant Enzymes

A known fresh weight of plant leaves (0.1 g) was immersed in liquid-N and ground in 50 mM
potassium phosphate buffer (KPB) pH 7. After centrifugation at 6000 rpm at 4 ◦C for 20 min,
the supernatant was collected and kept at −20 ◦C until use.

For catalase assay (CAT; EC 1.11.1.6), an assay mixture of 500 µL containing 50 mM KPB pH
7 and 10 mM H2O2 (ε = 0.036 mM−1 cm−1). The absorbance was measured at 240 nm for 2 min
using the kinetic mode of a spectrophotometer (Jenway 7315 UV-VIS, USA). One unit of enzyme
activity is the decomposition of 1 µM H2O2 per min mL−1. Peroxidase activity (POD; EC 1.11.1.7)
was assayed in 500 µL reaction mixture containing 50 mM KPB pH 7, 50 mM pyrogallol, and 0.03%
H2O2. The increase in absorbance due to the production of purpurogallin (ε = 2.47 mM−1 cm−1)
was continuously measured at 420 nm for two min. Glutathione reductases (GR; EC 1.6.4.2) activity
was assayed by using biodiagnostic kit. A mixture (500 µL) containing 80 mM KPB pH 7.5, 0.8 mM
EDTA, 4 mM oxidized glutathione (GSSG) and 0.16 mM NADPH was used. The decrease in NADPH
(ε = 6.27 mM−1 cm−1) concentration at 340 nm was measured over two minutes [31].

Superoxide dismutase activity (SOD, EC 1.15.1.1) was assessed via the inhibition of nitro blue
tetrazolium chloride (NBT) reduction using biodiagnostic kit in which an assay mixture of 500 µL
contained 40 mM KPB pH 8.5, 0.1 mM NBT, 0.1 mM NADH and 0.01 mM Phenazine methosulphate
(PMS). The absorbance was measured for both samples and blank for 2 min at 560 nm. The amount of
enzyme required for 50% inhibition of NBT was considered as one unit of SOD activity [32].

2.6. Mycorrhizal Biodiversity Analysis

To study the species and diversity of mycorrhizal fungi, rhizospheric soil samples, under the
canopy of C. polygonoides shrub, were collected from 12 stands. The stands were selected randomly,
at least one km far from each other. The mycorrhizal spores were extracted using the wet sieving and
decanting method described by Gerdemann and Nicolson [33] and density gradient centrifugation [34],
and then counted using a dissecting microscope. For identification, mycorrhizal spores were mounted
on glass slides in polyvinyl-lactophenol-glycerol under a dissecting microscope. Morphological
characteristics were described according to Schenck and Perez [35] and the species description webpage
(https://invam.wvu.edu/).

Spore density, relative abundance, species richness, and frequency of mycorrhizal fungi were
estimated as follows: spore density (SD) = number of mycorrhizal spores in 50 g of soil; species richness
(SR) = number of fungal taxa found in 50 g of soil; relative abundance (RA) = (number of spores of a
species or genus/total spores) × 100, and frequency (F) = (number of samples in which the species or
genus was observed/total samples) × 100.

Mycorrhizal colonization levels were evaluated in roots of the eight selected plant species grown
under and outside canopy of C. polygonoides. Plant roots were cut into 1 cm segments, stained with
trypan blue [36], and forty root segments from each plant species were examined using a compound
microscope (×400), and the colonization levels were estimated according to Trouvelot et al. [37].

2.7. Chemical Composition Analysis of C. polygonoides Roots

Roots of C. polygonoides with healthy appearance were collected from different stands along the
Mediterranean coast of Egypt. For extraction, 80 g of air-dried root sample was ground into a fine
powder, added to 250 mL 80% (v/v) methanol in a dark bottle, and shaken at 150 rpm on a rotary shaker
for 72 h at room temperature (25 ◦C ± 2). The crude extract was firstly filtered through Whatman
filter paper No. 1, then centrifuged at 4000 rpm for 60 min. The supernatant was collected in a

https://invam.wvu.edu/
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clean dark-glass-bottle, and freeze-dried using vacuum lyophilizer (FZ-6, Labconco Co., Kansas City,
MO, USA). The residue was re-dissolved in 10 mL of methanol (HPLC grade) and re-filtered using a
micro-filter (0.45 µm pores).

The root extract of C. polygonoides was analyzed using the GC-MS-QP 2010 system (Shimadzu,
Kyoto, Japan) to investigate its chemical composition. The sample was injected at a rate of 1 mL min−1

via DB-5 column (60 m × 0.25 mm, 0.25 µm thick) using helium as a carrier at 250 ◦C. The oven
temperature was 50 ◦C using the split mode of injection at 50:1. The ion source temperature was 230 ◦C,
but the interface temperature was 250 ◦C, at an ionization voltage of 70 eV. The retention times, as well
as mass spectra of the constituents, were used to identify the chemical components of the extract using
the NIST11 mass spectral database (Gaithersburg, MD, USA).

2.8. Data Analysis

To measure the effect of C. polygonoides shrubs on the understory plant species, the relative
interaction index (RII) was calculated. Based on the data of vegetation analysis (relative densities),
and according to Armas et al. [38], RII of each associated plant species was calculated according to the
following equation:

RII =
(
RDUnder canopy −RDOuside canopy

)
/(RDUnder canopy + RDOuside canopy)

where RD is the relative density of the associated species. The RII determines the intensity of change
in the presence of a shrub (under canopy) compared to gaps (outside canopy) and ranges from −1
(indicating negative effects) to +1 (facilitation). In addition, RIIs for the eight selected species based on
their biomass (dry weight) were also calculated.

The plant species diversity, as well as mycorrhizal species diversity, were determined by
calculating species richness (Simpson index) and species evenness (Shannon-evenness) according to
the following equations:

Simpson index (S) =

∑
i[ni × (ni − 1)]
[N × (N − 1)]

Shannon− Evenness index (H) =
s∑

i=1

Pi ln(Pi)

Shannon−Wiener index (E) =
H
lns

where Pi = ni/N = proportional abundance of species, i in a habitat made up of s species, ni = the
number of quadrats containing species i and N = S ni.

Soil data (temperature, PPFD, and chemical analyses), as well as plant biochemical analyses
(photosynthetic pigments, total anthocyanin, proline, and antioxidant enzymes), were subjected to
one-way ANOVA followed by Duncan’s test with a probability level of 0.05 using CoStat 6.311 (CoHort
Software, Monterey, CA, USA). The data were tested for the normality test and homogeneity of
variance with no violation before running ANOVA. The data of shrubs measurements were subjected
to two-tailed t-test at the probability level of 0.05 using XLSTAT 2018 (Addinsoft, New York, NY, USA).

3. Results

3.1. Vegetation Analysis

A significant variation in shrub canopy width, length, and height was observed between old and
young C. polygonoides (Figure S1). The vegetation analysis of the associated species with C. polygonoides
shrubs revealed the presence of 40 plant species (15 perennials and 25 annuals), belonging to 16
families (Table S1). The most represented families were Poaceae (22.5%), Asteraceae (20.0%), and
Chenopodiaceae (15.0%).
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The analysis of RII, based on the relative densities of the associated species with old and young
C. polygonoides shrubs revealed varied effects ranged from facilitation to inhibition (Figure 2). The old
shrubs provided facilitation for 18 and inhibited 18 associated plant species (Figure 2a), while the
young shrubs provided facilitation to 13 and inhibited 9 plant species (Figure 2b). Based on the
frequency of the associated plant species, eight species attained frequency higher than 22.22%. These
species are B. diandrus, C. maritima, E. laciniatum, L. mucronata, M. crystallinum, M. nodiflorum, R. pictus,
and S. glaucus (Table S1 and Figure 3a). Therefore, these species were selected to study the effect of
C. polygonoides on their physiological behavior.
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facilitated, inhibited or not-affected associated species.
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Figure 3. Interaction of C. polygonoides shrubs (old and young shrubs) with the eight selected associated
species. (a) Frequency percentage of the eight selected species (highest one). (b) Relative interaction
index (RII) values based on biomass (dry weight, n = 20).

Calculations of RII, based on the plant biomass, revealed that M. nodiflorum, L. mucronata,
M. crystallinum, S. glaucus, and R. pictus received facilitation, while, B. diandrus, C. maritima,
and E. laciniatum were inhibited under C. polygonoides (Figure 3b).

3.2. Effect of C. polygonoides Shrub on the Environmental Conditions of the Microhabitat

The measurements of the different environmental variables revealed that C. polygonoides reduced
the temperature and PPFD under canopy compared to the outside (Table 1). The temperature under
canopy decreased by 10.54% and 7.85% for the old and young shrubs, respectively, while the light
intensity was lower by 95.11% and 89.08% for the old and young shrubs, respectively. In addition,
the soil moisture content under canopy was significantly higher by 509.52% and 85.71% for old and
young shrubs, respectively, compared with that outside canopy (Table 1). Moreover, soil organic
carbon, total nitrogen, and salinity under canopy showed significant variations from those of the soil
outside canopy. In this regard, the organic carbon content increased under the canopy by 67.92% and
47.80% for the old and young shrubs, respectively, while salinity content was reduced by 47.62% and
23.81% for the old and young shrubs, respectively (Table 1).
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Table 1. Photosynthetic photon flux density (PPFD) and soil parameters under the canopy of
C. polygonoides and outside the canopy. Values are average ± standard error (n = 15). Means followed
by different letters within each row are significantly different after Duncan’s post-hoc test.

Parameter Outside Canopy
Under Canopy

F-Value
Old Young

PPFD (µmol m−1 s−1) 1353.85 ± 58.79 a 66.20 ± 7.65 b 147.90 ± 17.13 b 174.68 ***
Temp. (◦C) 29.87 ± 0.70 a 26.72 ± 0.28 b 27.53 ± 0.60 b 5.72 *

Moisture content (%) 0.21 ± 0.01 c 1.28 ± 0.05 a 0.39 ± 0.06 b 1726.17 ***
Organic carbon (g kg−1) 1.59 ± 0.15 b 2.67 ± 0.34 a 2.35 ± 0.40 a 6.26 **
Total nitrogen (g kg−1) 8.75 ± 0.18 b 9.52 ± 0.28 a 9.88 ± 0.46 a 5.95 **

pH 8.52 ± 0.12 a 8.53 ± 0.10 a 8.36 ± 0.14 a 0.91 ns

EC (mS cm−1) 0.21 ± 0.01 a 0.11 ± 0.02 b 0.16 ± 0.03 a 7.30 **

Different superscript letters within each row means values significant difference after Duncan’s post-hoc test,
* p < 0.05, ** p < 0.01, *** p < 0.001, ns: non-significant.

However, no significant variation was observed in the soil pH values between under- and outside
canopy neither for old nor young shrubs. On the other hand, significant variations were detected
between old and young shrubs regarding soil moisture and salinity, but not for organic carbon, total
nitrogen, or pH (Table 1).

3.3. Effects on the Physiological Responses of Understory Plant Species

Except for S. glaucus, the plants under canopy showed significantly higher contents of Chl a than
that of the counterparts collected from the outside canopies (Table 2). The same pattern was observed
for Chl b contents, except for M. nodiflorum, which showed higher Chl b contents in plants growing
outside the canopy (Table 2).

Table 2. Water content and photosynthetic pigments of the eight selected associated under canopy and
outside canopy of C. polygonoides as well as the relative interaction index (RII).

Plant Species Water
Content (%)

Chl a
(µg g−1 fw)

Chl b
(µg g−1 fw)

Total Chls
(µg g−1 fw)

Chl a/Chl b Carotenoids
(µg g−1 fw)

Mesembryanthemum
nodiflorum

Under 5.55 ± 1.70 E 84.53 ± 2.57 G 102.88 ± 0.80 C 187.41 ± 3.20 CD 0.82 ± 0.02 I 10.16 ± 0.08 D

Outside 3.62 ± 0.37 F 70.72 ± 0.55 I 111.01 ± 0.87 A 181.73 ± 1.42 E 0.64 ± 0.00 K 12.38 ± 0.10 B

RII 0.21 0.09 −0.04 0.02 0.13 −0.10

Launaea
mucronata

Under 5.44 ± 0.18 E 48.71 ± 1.48 J 15.92 ± 0.12 N 64.64 ± 1.57 I 3.06 ± 0.08 B 3.18 ± 0.02 L

Outside 6.27 ± 0.08 D 21.72 ± 0.17 L 12.95 ± 0.10 O 34.67 ± 0.27 L 1.68 ± 0.00 H 2.66 ± 0.02 N

RII −0.07 0.38 0.10 0.30 0.29 0.09

M. crystallinum
Under 12.25 ± 0.07

A 79.77 ± 2.42 H 109.85 ± 0.86 B 189.62 ± 3.11 C 0.73 ± 0.02 J 7.46 ± 0.06 G

Outside 8.10 ± 0.07 B 44.60 ± 0.35 J 77.85 ± 0.61 E 122.45 ± 0.95 H 0.57 ± 0.00 L 5.29 ± 0.04 K

RII 0.20 0.28 0.17 0.22 0.12 0.17

Senecio glaucus
Under 2.70 ± 0.67 G 36.96 ± 1.12 K 18.30 ± 0.14 M 55.26 ± 1.23 J 2.02 ± 0.05 G 2.91 ± 0.02 M

Outside 2.85 ± 0.51 G 33.82 ± 0.026 K 15.77 ± 0.12 N 49.58 ± 0.39 K 2.14 ± 0.00 F 3.09 ± 0.02 L

RII −0.03 0.04 0.07 0.05 −0.03 −0.03

Rumex pictus
Under 7.46 ± 0.58 C 86.82 ± 2.64 G 38.32 ± 0.30 K 125.14 ± 2.86 H 2.27 ± 0.06 E 6.82 ± 0.05 I

Outside 2.40 ± 0.48 H 16.41 ± 0.13 M 21.02 ± 0.16 L 37.43 ± 0.29 I 0.78 ± 0.00 IJ 2.90 ± 0.02 M

RII 0.51 0.68 0.29 0.54 0.49 0.40

Bromus diandrus
Under 2.50 ± 0.02 H 242.63 ± 7.37 A 87.38 ± 0.68 D 330.01 ± 7.88 A 2.78 ± 0.07 C 14.21 ± 0.11 A

Outside 1.41 ± 0.02 J 139.24 ± 1.09 C 42.98 ± 0.33 I 182.22 ± 1.42 DE 3.24 ± 0.00 A 7.30 ± 0.06 H

RII 0.28 0.27 0.34 0.29 −0.08 0.32

Cakile maritima
Under 2.84 ± 0.04 G 128.81 ± 3.91 D 57.12 ± 0.45 G 185.93 ± 4.25

CDE 2.25 ± 0.06 D 7.95 ± 0.06 E

Outside 2.86 ± 0.09 G 109.33 ± 0.85 E 46.14 ± 0.36 H 155.47 ± 1.21 F 2.37 ± 0.00 E 7.65 ± 0.06 F

RII 0.00 0.08 0.11 0.09 −0.02 0.02

Erodium
laciniatum

Under 3.60 ± 0.01 F 175.70 ± 5.34 B 75.89 ± 0.59 F 251.59 ± 5.78 B 2.32 ± 0.06 D 11.47 ± 0.09 C

Outside 2.08 ± 0.00 I 97.75 ± 0.76 F 41.68 ± 0.32 J 139.43 ± 1.09 G 2.35 ± 0.00 DE 6.63 ± 0.05 J

RII 0.27 0.29 0.29 0.29 −0.01 0.27

F-value 3129.25 1427.61 14651.38 2127.02 1545.38 10693.12

Values with the same letter within each column are not significantly different after Duncan’s post-hoc test (p ≤ 0.05).
Values are average ± standard error (n = 5).
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Chl a/b ratio in S. glaucus, B. diandrus, and C. maritima decreased in plants grown under canopy
compared to those of the gap locations. However, this ratio increased for other understory species for
plants under canopies. In a similar pattern, M. nodiflorum and S. glaucus plants under canopy showed
more carotenoid contents (Table 2).

Measurements of anthocyanin contents confirmed the field observation in that the facilitated
plants (under canopy) were less reddish than counterparts. Except for C. maritima and E. laciniatum,
the studied understory plants (under canopy) showed higher anthocyanin contents than that growing
outside the canopy, while, no significant difference was observed in the anthocyanin content in case of
M. crystallinum compared to the outside canopy plants (Figure 4a).
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Figure 4. Effect of C. polygonoides shrubs on (a) anthocyanin content in the eight selected associated
species under and outside. (b) proline content. Columns with the same letter are not significantly
different after Duncan’s post-hoc test (p ≤ 0.05). Values are average ± standard error (n = 5). The relative
interaction index (RII) was presented on the right as black columns.

Moreover, the proline content was found to be significantly lower in R. pictus, B. diandrus,
and C. maritima growing under canopy than that outside canopy. In contrast, L. mucronata and
M. crystallinum showed higher proline contents in under- than outside canopy plants. For other plants,
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there were no significant differences, in proline content, between plants under- and outside canopy
(Figure 4b).

The activity of SOD was significantly higher in L. mucronata and M. crystallinum and R. pictus plants
growing outside the canopy than the under canopy plants. However, E. laciniatum plants growing
outside canopy showed lower SOD activities compared with those under the canopy. The other species
showed no significant differences in this concern (Figure 5a).
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Figure 5. Antioxidant enzymes activity of the eight selected associated species in response to C.
polygonoides shrubs (under and outside canopy) as well as the relative interaction index (RII) as black
columns. (a) Superoxide dismutase (SOD) activity. (b) Peroxidase (POD) activity. (c) Catalase (CAT).
(d) Glutathione reductases (GR) activity. Columns with the same letter are not significantly different
after Duncan’s post-hoc test (p ≤ 0.05). Values are average ± standard error (n = 5).

In contrast to L. mucronata, M. crystallinum, S. glaucus, and B. diandrus, the POD activity was
significantly lower in E. laciniatum plants collected from places outside the canopy than the under
canopy plants, while, no significant difference in the activity of this enzyme was detected between the
other studied plants, under- and outside canopy Figure 5b.

For L. mucronata, S. glaucus, R. pictus, and C. maritima plants, the CAT activity was found to be
significantly higher in plants growing outside than that under canopy, in contrast to E. laciniatum
plants. For the other studied species, there were no significant differences observed in the activity
of this enzyme between samples collected from outside and under canopy (Figure 5c). In contrast
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to E. laciniatum, the GR activity of L. mucronata and M. crystallinum was significantly higher in the
plants growing outside than under canopy, while, no significant differences were detected for the rest
of species with this regard (Figure 5d).

3.4. Mycorrhizal Fungi Associated with C. polygonoides Roots

A total of 13 species and six genera of mycorrhizal fungi were identified in the rhizospheric
soil of C. polygonoides from the selected sampling sites. The identified genera included Acaulospora,
Entrophospora, Funneliformis, Gigaspora, Glomus, and Rhizophagus. Frequency and relative abundance of
the identified fungi were are presented in Figure 6a. Among the observed fungi, F. mosseae was the
most abundant (22.7%), while, the highest frequency was recorded for A. tuberculata, E. infrequens,
F. mosseae, and Glomus sp. 2 (66.67% for each). Spore diversity (richness and evenness) of the identified
mycorrhizal fungi are illustrated in Figure 6b. The average species richness was 0.76, while the species
evenness was 0.88. The spore density in the studied sites ranged between 8.5 and 32.5 spores per 50 g
of soil.
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Figure 6. Diversity analyses of mycorrhizal fungi in the rhizosphere soil of C. polygonoides. (a) frequency
and relative abundance. (b) Species diversity indexes (richness and evenness).

Mycorrhizal colonization levels in roots of the selected plants growing under and outside canopy
are shown in Table 3. Of the eight evaluated plants, four species (B. diandrus, E. laciniatum, L. mucronata,
and S. glaucus) were found to be colonized, to varying degrees, with mycorrhizal fungi. Although the
frequencies of mycorrhization in these colonized roots were found to have moderate to high levels,
the intensities of their mycorrhization were found in low levels. In contrast, the other four plant species
(M. crystallinum, M. nodiflorum, R. pictus, and C. maritima) showed no mycorrhizal colonization.
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Table 3. Mycorrhizal colonization level (%) in roots of the selected plant species under and outside the
canopy of C. polygonoides.

Plant Species
Under Canopy Outside Canopy

F M A F M A

Bromus diandrus 95 * 2.35 0 75 2.15 0.17
Cakile maritima 0 0 0 0 0 0

Erodium laciniatum 65 2.65 0 60 1.67 0
Launaea mucronata 30 0.3 0 30 0.3 0

Mesembryanthemum crystallinum 0 0 0 0 0 0
M. Nodiflorum 0 0 0 0 0 0
Rumex pictus 0 0 0 0 0 0

Senecio glaucus 91 6.82 1.5 26.7 0.53 0.03

* Each value represents the mean of 40 root segments of each plant species, F = frequency of root colonization,
M = intensity of cortical colonization, and A = frequency of arbuscules.

3.5. Chemical Composition of C. polygonoides Root Extract

Using GC-MS analysis, 31 compounds at varied existence ratios were determined in the root
extract (Table 4 and Figure S2). Among them, four compounds were detected as major components,
namely; pyrogallol (33.00%), palmitic acid (12.02%), acetic acid (7.66%), and 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl (5.46%). In addition, five compounds were detected as minor
components including; 3-methylpentane (4.46%), acetasol (3.93%), catechol (3.43%), β-hydroxyethyl
isopropyl ether (2.48%), and citronellyl acetone (2.06%), while, the others were found as
trace constituents.

Table 4. Chemical composition of C. polygonoides root extract as detected by GC-MS system.

Peak Rt * Conc. (%) Compound Name

1 3.490 1.30 1,2-Dichloro-tetramethyldisilane
2 3.855 1.30 4-Phenylglutamic acid
3 5.980 1.04 5-(2-Aminopropyl)-2-methylphenol
4 6.079 12.02 Palmitic acid
5 6.170 1.16 1,6-Dideoxy-2,4-O-methylenehexitol
6 6.379 2.48 β-hydroxyethyl isopropyl ether
7 6.810 4.46 3-methylpentane
8 7.475 0.02 Malonodinitrile, 2-(2,4,6-trichlorophenylhydrazono)
9 8.372 7.66 Acetic acid

10 8.510 3.93 Acetasol
11 11.504 1.07 1,2,4-Butanetriol
12 13.975 1.04 3-[4-(2-Methoxyphenyl)-1-piperazinyl]-1-propanol
13 14.940 5.46 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl
14 15.386 3.43 Catechol
15 18.108 33.00 Pyrogallol
16 18.265 2.06 Citronellylacetone
17 18.300 1.05 2-Chloro-2-propenyl 4-methylphenyl ether
18 18.330 1.29 3-Methoxy-5-methyl-4-nitrophthalic acid
19 18.370 1.09 6-Acetoxy-4-methyl-hept-4-enoic acid
20 18.435 1.39 Methyl 6-methyl-2-oxo-2H-pyran-5-carboxylate
21 18.672 1.25 Cyclohexane-1,2-dimethanol, diacetate
22 18.918 1.03 1-(3,6-Dimethyl-2-pyrazinyl)-1-propanone
23 21.101 1.36 5,5′-Diamino-3,3′-bis-1,2,4-triazole
24 22.095 1.11 5-Bromouridine
25 22.227 1.26 1,4-Cyclooctanediol
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Table 4. Cont.

Peak Rt * Conc. (%) Compound Name

26 23.228 1.23 1-Methylverbenol
27 25.758 1.33 4-Nitrophenyl hexopyranoside
28 25.811 1.16 1H-Pyrrole-2,5-dione, 3-.beta.-D-ribofuranosyl
29 27.380 1.09 4-Nitrophenyl hexopyranoside
30 28.921 1.91 1-Ethyloctyl methyl sulfide
31 31.490 1.02 Trimethylsilyl 12-oxooctadecanoate

* Rt: retention time (min).

4. Discussion

Results obtained in this study demonstrated that C. polygonoides shrubs provided either facilitation
or inhibition to their associated plant species. The old shrubs provided facilitation for 18 and inhibited
another 18 understory plant species, while the young shrubs provided facilitation to 13 and inhibited
9 plant species. It is clear that most of the typical halophytes were inhibited by C. polygonoides
shrubs. These halophytes included perennial halophytes such as Zygophyllum album, Z. aegyptium,
Arthrocnemum macrostachyum, as well as halophytic herbs and grasses such as Bassia muricata, Parapholis
incurva, Lolium perenne, and Paspalidium geminatum. This inhibition can be ascribed to the competition
for the resources as these species are well adapted for this stressful environment. On the other
hand, the majority of the understory plant species received facilitation from C. polygonoides shrubs,
however, the provided facilitation was species-specific dependant. The balance between facilitation
and competition phenomena seems to vary based on life stage, physiology of the interacting species,
intensity of the abiotic stress, and other biotic stresses such as allelopathy [39]. In arid and semiarid
ecosystems, the net effects of the woody plants on their understory species usually shift between
facilitation and interference depending on environmental conditions [40,41]. Under shrubs such as
C. polygonoides, the light intensity is significantly reduced compared to open gaps and this makes a
difference in water relations and temperature [2]. C. polygonoides is known for its ability to colonize
deserts and grow in harsh conditions such as Mediterranean ecosystems marked by lengthy warm
summers with elevated irradiance and little or scarce precipitation [42,43]. Therefore, we can say that
the facilitation or inhibition of C. polygonoides shrubs is species dependent. The communities associated
with C. polygonoides shrubs revealed facilitation regarding evenness than richness.

The mechanism of facilitation could be indirect biotic, abiotic via nutrient enrichment, or abiotic
facilitation via microclimate amelioration [44]. In general, the young C. polygonoides shrubs showed
more facilitation to the understory species than the old one, where the overall communities under the
young C. polygonoides shrubs showed more richness as well as evenness. This can be attributed to the
development of the shrub architecture as the branches of the old shrubs became very condensed by
the time. This condensation may negatively affect the establishment of the other associated species.
On the other hand, the old shrubs produce a condensed layer of plant litter which hinders the seeds
from reaching the soil for establishment [9,45].

Based on biomass production, M. nodiflorum, L. mucronata, M. crystallinum, S. glaucus, and R. pictus
received facilitation from the C. polygonoides shrubs. The aboveground biomass of M. crystallinum was
reported to be 4-fold higher under the influence of Eulychnia acida in the Atacama Desert [46], and this
facilitation was explained by direct and/or indirect positive effects. In agreement with the results
obtained in this study, the E. acida retained more water and nutrients which provided more benefits to
M. crystallinum [46]. Mesembryanthemum crystallinum performs as C3 plant in mesic environments but
switched to CAM metabolism under drought stress. However, M. crystallinum performance becomes
better in less saline habitat compared to salt marsh habitat along the Mediterranean coast of Egypt [20].
This may explain the facilitation received by M. crystallinum under C. polygonoides shrubs.

Compared to the gaps (outside canopy), the observed relatively high content of moisture beneath
the canopy of C. polygonoides shrubs is in harmony with previous studies [41,47,48]. The canopy
of C. polygonoides provided a shade that reduced the solar radiation and soil temperature for the
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understory plants and led to decline of PPFD and water evaporation, which may contribute to the
high moisture content under the shrubs [49,50]. In addition, the dense vegetative growth allows the
tree to condense fog water. On the other hand, the increment of the organic matter content under
the canopy may indirectly contribute to the increased moisture content as it retains more water [51].
The understory species received a benefit from the water that is retained under canopy particularly in
arid and semiarid ecosystems [19].

In addition, the reduced light intensity under canopy may protect the understory vegetation
from the fatal photoinhibition and give the plants more benefits [52]. However, the heavy shading
may hinder the photosynthesis as well [45], and this was clear in the present results as the young
shrubs (low shading) provided more facilitation to the understory plant species than the old shrubs
(high shading).

The salt concentration under the canopy in the present study may have led to a significant
reduction in the plant diversity compared to the gaps (outside canopy) which played an important
role in the facilitation for the understory species as the high salt concentrations can inhibit the plant
growth due to the osmotic stress and ion toxicity [53]. The shrubs can mitigate the salinity stress via
shading, which reduces the evaporation of the soil water under canopy as well as the condensation of
water vapor, leading to maintaining the soil water potentials, which results in reduction of the soil
salinity [2]. The study by Bertness and Yeh [54] reported that Iva frutescens shrub decreased soil salinity
and facilitated the growth and survival of Juncus gerardi in salt marsh habitat due to the shade effect.

In dry ecosystems, the non-resource factors (temperature and light) become more important for
the plant facilitation than the nutrients such as organic carbon and the total nitrogen [44]. In the present
study, C. polygonoides shrubs significantly improved the soil nutrients such as organic C and total
N. This observation has been reported for other shrubs in similar ecosystems such as C. mongolicum,
Nitraria sphaerocarpa, Haloxylon ammodendron [50], Retama sphaerocarpa [55], and Caragana intermedia [56].
The higher soil contents of total N and organic C under old than young shrubs can be ascribed
to the higher amount of litter under the old shrubs. Moreover, the facilitation effect of the shrubs
provided more species richness for the understory species that indirectly increased the nutrient contents
such as N and C [2]. The nutrients content has been reported to be positively correlated with the
litter decomposition process, while the facilitation is negatively correlated with the phytotoxicity
(allelopathy) of the litter materials [57].

The salt-tolerant plant species gained benefits such as mitigation of the soil salinity by the nurse
plant. In contrast, the halophytic species were inhibited under the canopy of C. polygonoides shrubs,
which can be ascribed to the competition rather than facilitation due to lower content of salinity.
The light shapes the plant life through its influence on growth, pigment formation, and photosynthesis.
The high contents of Chl a and Chl b of the understory plants compared to those growing outside canopy
indicated that the extended vegetative development of the canopy decreased the underlying solar
radiation and prevented the photoinhibition leading to conservation of the photosynthetic pigments
of the understory plants. This result is in accordance with a previous study performed to evaluate
the nursing effect of Acacia auriculiformis and A. mangium on Castanopsis hystrix, Michelia macclurei,
and Manglietia glauca [8]. The high Chl b content of M. nodiflorum growing outside canopy may be due
to the exposure to high ratio of red: far-red light compared to under canopy plants. Total chlorophyll
of M. nodiflorum was reported to be higher in the plants subjected to high red: far-red light under
greenhouse conditions [58].

The decrease in Chl a/b ratio for S. glaucus, B. diandrus, and C. maritima plants growing under
canopy compared to those of the gap locations indicated the ability of these species to change the
pattern of the pigment in response to their prevailing environments. This result is in agreement with
that observed for Castanopsis hystrix under Acacia [8] to increase the amount of the light-harvesting
complexes in antenna enriched with Chl b.

Carotenoids act as antioxidants in addition to their role in light collection and photoprotection.
The observed reduction in carotenoids of M. nodiflorum under canopy is in accordance with the same
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result reported for Castanopsis hystrix which was facilitated by Acacia [8]. The opposite result was
observed for the other species in the same study, as in the case of Manglietia glauca, indicating the
photoinhibition facilitation ability of the overstory canopy.

Moreover, anthocyanins level was lower in the understory plants than in that growing outside
canopy. The significantly lower level of anthocyanins in the understory species indicated another
facilitation effect of C. polygonoides via alleviation of the radiation stress on these plants. Anthocyanins
are produced in response to radiation stress and nutrient scarcity [59], and they are known for their
ability to absorb UV radiation [60]. Supporting this result, the anthocyanins content in Orbea variegata
was also reduced under the chenopod shrubs [61]. In addition, accumulation of anthocyanins may be
linked to abiotic stress such as drought and salt stresses [62], which means that C. polygonoides provided
a more suitable environment for the growth of the understory species compared to the prevailed stress
conditions in the surrounding environment. However, E. laciniatum growing under the canopy of
C. polygonoides in the present study showed more anthocyanins content compared to that growing
outside canopy, this opposite behavior is unjustified, thereby further research is needed to understand
this behavior.

Salt stress is usually accompanied by proline accumulation in plants [63]. In this study, the detected
high level of proline in R. pictus, B. diandrus, and C. maritima plants growing outside canopy refers
to the facilitative effect of C. polygonoides shrub on the same species growing under their canopy.
However, the presence of L. mucronata and M. crystallinum under the canopy induced their proline
level, an unexpected result that may be explained as a species-specific response to such environmental
conditions. In stressed plants, the generated reactive oxygen species induce the antioxidant enzymes
to scavenge these toxic compounds [64]. The reduced activities of SOD, POD, CAT, and GR in the
understory plants indicated the ability of C. polygonoides to alleviate the oxidative stresses exerted on
these plants.

The data obtained in this study showed a high diversity of mycorrhizal fungi in the rhizospheric
soil of C. polygonoides. In this concern, a total of 13 species and 6 genera of mycorrhizal fungi
were identified. In addition, mycorrhizal colonization was confirmed in roots of four of the eight
selected plant species. In the mycorrhizal relationship, the plant provides the fungal partner with a
carbon source from the photosynthesis process, while the latter enhances the plant growth, nutrients,
and water uptake [65], and induces the plant resistance to biotic and abiotic stresses [66]. The
presence of these diverse sets of mycorrhizal fungi in the rhizosphere of C. polygonoides demonstrated
their probable contribution in the facilitative/inhibitive effect on the understory species through the
formation of CMNs. This mycorrhization has the ability to mitigate the salinity stress in the plants [13].
This bio-amelioration of salinity stress is mediated with a diverse set of biochemical and physiological
mechanisms including enhanced nutrient uptake, antioxidant metabolism, osmoprotection, regulating
of ionic homeostasis, and maintenance of cell ultrastructure [67]. These probable mechanisms may
explain the facilitation effect exerted on the understory plants in the present study. With regard to the
non-mycorrhizal plant species in this study, absence of mycorrization in their roots is an expected result
where they are members of well-known non-mycorrhizal plant families [68]. Moreover, arbuscular
mycorrhizal fungi have important roles in reducing soil erosion, nutrient leaching, and enhancing soil
texture and fertility [14]. In other words, they can differently change plant coexistence, induce plant
productivity, and alter aboveground biodiversity-ecosystem relationships depending on the fungal
and plant species involved in the CMN [69].

Gas chromatography-mass spectrometry analysis revealed the existence of 31 chemical compounds
in the root extract of C. polygonoides. Among them, different bioactive compounds with well-known
antimicrobial and/or allelopathic activities were detected. Pyrogallol and catechol are phenolic
allelochemicals which are synthesized in plants via the shikimate pathway and have important roles
as protective and antioxidant agents against attacking microbes and as signaling molecules in the
plant-pathogen interaction [70]. Both bioactive compounds have been widely reported as antibacterial
and antifungal agents against varied microorganisms [71]. Their antimicrobial mode of action refers
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mostly to their inhibitory effect on the enzymes by reacting with sulfhydryl groups or other non-protein
interactions. Their microbial-toxicity depends on the position and number of the hydroxyl groups on
their aromatic ring [72]. Soil microbial communities play a basic role in the facilitative effect of the
nurse plant on the under canopy plants affecting their competition, diversity, fitness, and nutrient
availability [73,74].

Nurse plants influence the occurrence, distribution, viability, diversity of the soil microbiota, and
their interactions with the beneficiary plant species [74]. Moreover, recent researches have reported the
role of the nurse plant in changing the composition of the soil microbiome by enhancing the beneficial
microorganisms involved in nutrient mineralization and plant growth regulation and suppressing
the harmful microorganisms through secretion of root exudates [75]. In this regard, it was found
that flavonoids secreted as plant exudates act as chemical attractants to Rhizobia [76]. Moreover,
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, which is determined as a major flavonoid
compound in the present study, has been reported as an antifungal agent [77]. Indeed, root exudates
act as chemical messengers to regulate the microbial chemotaxis and interactions via a diverse array of
molecular networks [78]. Functions of root exudates include control of the plant-microbe association,
promotion for beneficial symbiotic microorganisms, protection against herbivores, suppression of other
competent plants, and pathogenic microorganisms, as well as improvement of the chemo-physical soil
properties [79].

On the other hand, pyrogallol and catechol (major compounds in C. polygonoides root extract)
are considered as precursors in the synthesis of humic-like polymers via the so-called humification
process [80]. In addition, phenolics secreted as root exudates once they are incorporated into the
soil and decomposed by the microbial enzymatic action, they act as a potential geoengineering tool
regulating soil organic matter decomposition, N availability, nutrient cycling, and humus formation
which affect soil structure and fertility [81]. Moreover, the toxicity of the allelochemicals in the soil
is reduced with time due to microbial degradation, not only this but may be used as nutrients by
microbes. This biochemical dynamics of the allelochemicals can potentially affect key ecosystem
processes, including plant growth and microbial activity and thereby affect the facilitation process of
the nurse plants [57].

5. Conclusions

The nurse plant, C. polygonoides, along the Mediterranean coast of Egypt provides either facilitation
or suppression for the understory species in a species-specific manner. In addition, the shrub affects
the microhabitats by altering light intensity, soil temperature, soil composition, particularly the soil
moisture, salinity, and organic matter content. The present study revealed high diversity and evenness
of mycorrhizal fungi in the rhizosphere soil of C. polygonoides that seem to play significant and crucial
roles and may explain their facilitative/inhibitive effect on the neighboring understory plants via CMNs.
This facilitated effect was reflected in the enhanced growth performance, adaptation, and stress tolerance
of the understory species. On the other hand, the present study showed that the roots of C. polygonoides
have different bioactive compounds with antimicrobial and/or allelopathic activities such as pyrogallol
and catechol. These compounds have an inhibitive effect on the pathogens in the soil microbiome,
providing protection for the nurse plant and their understory species. Moreover, these bioactive
compounds, as allelochemicals, may be responsible for the suppression of the understory species.
However, the allelochemicals act also as stimulatory compounds, particularly at a lower concentration.

It became evident that the facilitation of the understory species is not limited to a single
mechanism, but obviously includes a set of interrelated mechanisms. Moreover, the varied responses
of the studied understory species revealed that the response to facilitation provided by C. polygonoides
is species-specific. Based on the data obtained in the present study, it can be concluded that
the C. polygonoides has an implication for the restoration of the endangered ecosystem along the
Mediterranean coast in Egypt, and maybe in other coastal areas in the world with similar climate and
conditions, which may improve the natural vegetation establishment. A further study is recommended
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for the evaluation of C. polygonoides as a nurse plant via a long-term field experiment, maybe on a
global scale, with the implication of mechanisms of either facilitation or inhibition on a large set of
understory species.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/9/8/232/s1,
Figure S1: Measurments of C. polygonoides shrubs measurements within the studied locations in the study
area, Figure S2: GC-MS chromatograms of the C. polygonoides root extract, Table S1: The plant species
composition, families, life forms, chorotypes, and frequency percentage of the recorded species associated with C.
polygonoides shrubs.
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