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INTRODUCTION 
 

The worldwide prevalence of obesity is increasing 

worldwide and the main cause of obesity is intake of a 

high-fat diet (HFD), also known as the western diet [1]. 

Long-term consumption of HFD (≥30% of energy from 

fat) is associated with a pattern of chronic inflammation 

characterized by releasing pro-inflammatory cytokine 
and cytotoxic mediators in central nervous system 

(CNS) [2–4]. In addition, as major immune cell types in 

CNS, microglia and astrocytes are critical in regulating 

neuroinflammation and liberating inflammatory 

mediators [5]. Recent studies have suggested that HFD-

associated neuroinflammation can become an important 

risk factor for the development of neurodegenerative 

disorders, such as Alzheimer’s disease (AD), and lead 

to cognitive deficits. Furthermore, a larger body of 

literature demonstrate that prolonged HFD-induced 

cognitive impairment exhibit increased apoptosis in the 

hippocampal neurons [6–10]. These studies have 

suggested that HFD intake increases susceptibility of 

hippocampus to excessive proinflammatory responses. 
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ABSTRACT 
 

High-fat diet (HFD) has been associated with neuroinflammation and apoptosis in distinct brain regions. To 
explore the effect of short-term (7, 14 and 21 days) high-fat overfeeding on apoptosis, inflammatory signaling 
proteins, APP changes and glial cell activities in cerebral cortex and cerebellum. Mice were fed with HFD for 
different lengths (up to 21 days) and after each time body weights of mice was tested, then the apoptotic 
proteins, IL-1β, APP, BACE1and MAPKs, Akt and NF-κB signaling activity were evaluated by western blots. Results 
demonstrate that short period of high-fat overnutrition significantly promotes apoptosis, APP expression at day 
21 of cerebral cortex and at day 7 of cerebellum compared to chow diet. In addition, increased GFAP+astrocytes, 
Iba-1+microglia and IL-1β 30 were observed in cerebral cortex after 21 days HFD, but no changes for 7 days 
overfeeding of cerebellum. Serendipitously, ERK1/2 pathway was activated both in cerebral cortex and 
cerebellum for different time course of HFD. Furthermore, increased phospho-p38 MAPK level was observed in 
cerebellum only. In consistent with in vivo results, SH-SY5Y cells treatment with cholesterol (50 μM, 100 μM) for 
48 h culture in vitro demonstrated that pro-apoptotic proteins were enhanced as well. In brief, short-term HFD 
consumption increases sensitivity to apoptosis, APP and IL-1β production as well as gliosis in cerebral cortex and 
cerebellum, which may be related to enhancement of ERK1/2 and p38 MAPK activation. 
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Interestingly, even as little as 3–10 days exposure, 

short-term HFD consumption has demonstrated that 

production of proinflammatory cytokines such as 

interleukin-1β (IL-1β) and tumor necrosis factor α 

(TNFα), apoptosis and memory impairments in humans 

and rodents in long before obesity symptoms 

appearance [11–15]. Nevertheless, a literature suggests 

that short-term HFD overnutrition does not induce NF-

κB inflammatory signaling of subcutaneous white 

adipose tissue in humans [16]. 

 

On the other hand, mounting evidence has indicated that 

mitogen-activated protein kinase (MAPK) pathway is 

involved in the cellular responses to the metabolic stresses 

like HFD [17–20]. MAPK pathways, consisting of 

ERK1/2, ERK5, JNK, and p38/SAPKs, play complex 

space– and time–dependent patterns and participate in cell 

survival and apoptosis [21]. For example, enhanced ERK 

signaling contributes to cellular survival in short time, but 

the delayed activation of this kinase can lead to cell death 

[22]. In addition, while p38/MAPK signaling has been 

implicated in initiating apoptosis, p38 MAPK can also 

sometimes prevent cell death under some conditions [23]. 

However, less abundant evidence is available showing 

whether short-term HFD intake could affect apoptosis, 

APP expression, inflammatory biomarkers and gliosis in 

cerebral cortex and cerebellum mediated by MAPKs 

signaling transduction. Therefore, the current study aimed 

to explore the potential effects of short-term HFD 

consumption (7, 14 and 21 days) on apoptosis proteins, 

IL-1β, APP (amyloid-beta precursor protein) production 

and activation of glial cell in different brain regions. We 

also investigate whether stress response pathways, such as 

MAPK signaling, are involved these process. 

 

MATERIALS AND METHODS 
 

Animals, diet compositions and treatments 

 

Adult male C57BL/6J wild type mice (8-weeks of age) 

were purchased from Gem Phar ma tech Co., Ltd 

(Licensed production number: SCXK-(SU)-2018-0008; 

Nanjing, China). Low fat and no sugar Chow diet 

(TP23100) and High fat diet (HFD, TP23103) were 

purchased from Trophic Animal Feed High-tech Co., 

Ltd (Nantong, China). The Diet compositions were 

displayed in Table 1. After one week adaptation, mice 

were randomly divided into three groups (n = 5 

mice/group). Control group mice were treated with 

chow diet. In addition, 7 days group, 14 days group and 

21 days groups were fed with HFD for 7 days, 14 days 

and 21 days, respectively, Mice were subsequently 

humanely sacrificed. Brain specimens were collected 

and preserved at −80°C until further use. All animal 

experimental procedures were reviewed and approved 

by the Committee Guide of Wenzhou Medical 

University (ethical number 2019-75; Wenzhou, China.). 

All mice were maintained on a 12 hours light-dark cycle 

and temperature 24°C–25°C with free access to water 

and food. All surgery was conducted under sodium 

pentobarbital anesthesia and efforts were made to 

reduce animal suffering. 

 

SH-SY5Y cell line culture and cholesterol treatment 

 

SH-SY5Y Cells (ATCC) was were maintained in 

Dulbecco’s modified Eagle’s medium134 (HyClone, 

SH30022.01B) supplemented with 4 mM L-Glutamine 

(Sigma) and 10% fetal bovine serum (Gibco®), Cell 

lines was cultured at 37°C and 5% CO2. Cells were 

treated with 50 μM and 100 μM cholesterol for 48 h, 

respectively. Methods of protein extraction and 

immunoblotting analysis are showed in Immunoblotting 

analysis. 

 

Immunofluorescence (IF) staining 

 

The immunofluorescent assay were carried out 

according to procedures performed by us [24, 25]. 

Briefly, brains were placed in fresh 30% sucrose 

solution for 24 h, then embedded in OCT compound 

(Sakura Finetek, Torrance, CA, USA) and cut at a 

thickness of 40 μm on a cryostat (CM1950; Leica, 

Mannheim, Germany). Brain sections were then 

incubated with following antibody for 1 h in room 

temperature: glial fibrillary acidic protein (GFAP; 

1:400), a marker of astrocytes and ionized calcium 

binding adaptor molecule 1 (Iba-1; 1:400), a marker of 

microglia/macrophage-specific calcium-binding protein. 

After washing 30 min with PBS, then sections were 

incubated with Dy Light 488-conjugated goat anti-

rabbit and goat anti-mouse (1:400; Jackson Immuno 

Research Labs) antibody for 1 h in room temperature, 

and washed three times with PBS. Stained sections were 

captured under a confocal laser scanning microscopy 

(Nikon Corporation, Tokyo, Japan). Optical density 

(OD) of immunoreactive structures were measured 

using ImageJ software (developed at the National 

Institutes of Health), similar method as previously have 

described by us [24]. 

 

Immunoblotting analysis 

 

The western blotting methods were performed according 

to guidelines previously established by our group [24, 

26, 27]. In brief, mice were anesthetized with an 

intraperitoneal injection of pentobarbital sodium (50 

mg/kg, i.p.) at day 7, day 14 and day 21 after high fat 

and chow diet feeding. Mice were then decapitated 
following brain extraction (cerebral cortex and 

cerebellum). The brain tissue were cut into smaller 

pieces and incubated in RIPA buffer (Beyotime 
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Table 1. Compositions of chow diet and high fat diet nutritional facts. 

 Chow Diet (g/100 g) High Fat Diet (g/100 g) 

Casein  24 

Corn Starch  7.3 

Maltodextrin  12 

Sucrose  20.3 

Soybean Oil  3 

Lard  19.6 

Cellulose  6 

Mineral Mix, M1020  5.9 

Vitamin Mix, V1010  1.2 

L-Cystine  0.4 

Choline Bitartrate  0.3 

TBHQ  0.0045 

Cholesterol  0.0141 

 Chow Diet (Kcal %) High Fat Diet (Kcal %) 

Protein 26% 19.40% 

Carbohydrate 64% 35.60% 

Fat 10% 45% 

 

Biotechnology; P0013B) through ultrasonic cell 

disruptor. After centrifugation, the supernatants were 

obtained. Proteins (10~15 μg) from lysates were 

separated on 5~10% Tris–glycine SDS–PAGE gels and 

transferred onto nitrocellulose membranes. Membranes 

were incubated at room temperature for 1 h in 5% (w/v) 

nonfat dry milk in TBST (Tris-buffered saline, 0.1% 

Tween 20), washed in TBST and incubated with primary 

antibodies overnight at 4°C. The primary antibodies 

were listed in Table 2. After incubation at 4°C, 

membranes were rinsed for 3 times (10 min each time) at 

room temperature with agitation in TBST, incubated 

with the species appropriate secondary antibody for 60 

min at room temperature, and rinsed the membrane for a 

further 3 times (10 min each time) in TBST at room 

temperature before ECL detections. ImageJ software 

(National Institutes of Health) was used for 

quantification on densitometry of protein bands. 

 

SH-SY5Y Cells were rinsed twice with PBS and lysed 

in RIPA buffer for 30 min on ice. Protein collecting 

form SH-SY5Y Cells and western blotting also used the 

aforementioned procedure. 

 

Statistical analysis 

 

Experiments were repeated at triple or four times 

independently. All data were reported as Mean ± SD 

(standard deviation). All statistical analyses were 

performed using GraphPad software (GraphPad Prism 

version 8.00, San Diego, CA, USA). The body weight 

data of the mouse were analyzed by two-way ANOVA 

followed by Sidak’s multiple comparisons test to 

compare differences between both groups. The 

additional data with three or more groups were analyzed 

with a one-way ANOVA, followed by post hoc testing 

with Tukey LSD. Differences between two groups were 

tested by unpaired two-tailed Student’s t-test. The 

significance level were set when *P < 0.05, highly as 

significant when **P < 0.01. 

 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this published article. 
 

RESULTS  
 

Effects of short-term HFD on total body weight, 

expression of amyloid precursor protein (APP) and 

BACE1 in a mouse model at two months of age 

 

To identify whether short-term intake of HFD could 

significantly raise body mass, mice from the two diet 

groups were weighed on the day of diet beginning (day 

0) and tested every seven days (Figure 1A). As 

illustrated in Figure 1B, the body weight of HFD-fed 

mice were significantly raised compared to that of chow 

diet mice on day 0 (22.06 ± 0.33 g vs. 21.12 ± 1.10 g; 

p < 0.01; n = 5 per group), on day 7 (22.60 ±0.34 g vs. 

25.06 ± 0.65 g; p < 0.01; n = 5 per group), on day 14 

(22.8 ± 0.29 g vs. 27.08 ± 1.11 g; p < 0.001; n = 5 per 

group), on day 21 (22.54 ± 0.22 g vs. 29.36 ± 0.75 g; 

p < 0.001; n = 5 per group). 
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Table 2. Key resource table. 

Regent Source Identifier 

β-actin antibody Affinity Biosciences AF7018 

EphA4 antibody Affinity Biosciences AF5496 

His-Tag Mouse Monoclonal Antibody Affinity Biosciences T0009 

NF-B p65 antibody Sigma Aldrich SAB4502609 

GADPH antibody Sigma Aldrich G8795 

Caspase 8 antibody  Proteintech Group 66093-1-Ig 

α–tubulin antibody Cell Signaling Technology #2144 

ERK1/2 antibody Cell Signaling Technology 137F5 

Phospho-p44/42 MAPK Cell Signaling Technology 4370S 

A563 BD Biosciences  No. 612238 

A620 gift from Dr. Wei-Lin, Jin  

Protein A/G PLUS-Agarose Santa Cruz  sc-2003 

Phospho-p44/42 MAPK (Erk1/2)  Cell Signaling Technology 4370S 

Phospho-SAPK/JNK Cell Signaling Technology 9255S 

SAPK/JNK Antibody Cell Signaling Technology 9252S 

p38MAPK Antibody Cell Signaling Technology 9212S 

Phospho-p38 MAPK Cell Signaling Technology 4511S 

PARP (46D11) Rabbit mAb  Cell Signaling Technology 9532S 

p53 (1C12) antibody  Cell Signaling Technology #2524S 

GFAP antibody Cell Signaling Technology #80788 

Caspase-3 Antibody Cell Signaling Technology #9662 

HRP-conjugated goat anti-mouse IgG Beyotime Biotechnology A0216 

HRP-conjugated goat anti-rabbit IgG Beyotime Biotechnology A0208 

PageRuler™ Plus Prestained Protein Ladder No: 26619 Thermo Fisher  

Dual Color Prestained Protein Marker Epizyme Biotechnology No: WJ102 

Cell lysis buffer  Beyotime Biotechnology P0013 

Coomassie Blue Fast Staining Solution Beyotime Biotechnology P0017 

IPTG  Beyotime Biotechnology ST098-5g 

kanamycin  Beyotime Biotechnology ST102 

Ni-NTA agarose Qiagen Inc., Valencia  

In situ apoptosis detection (TUNEL) kit Roche, Switzerland  

Dehydrocorydaline chloride MedChem Express company HY-N0674A 

SP600125 MedChem Express company HY-12041 

Rhynchophylline (Rhy)  Baoji Herbest Bio-Tech   

 

By western blotting, we next analyzed APP production 

and expression of BACE1 (a key enzyme involved in 

APP metabolism) at different time-point (Figure 1C). 

Short-term HFD intake elevated the level of APP after 7 

days, 14 days and 21 days, compared to chow diet groups 

(p < 0.05; p < 0.01) (Figure 1D). On the other hand, 

BACE1 expression were significantly up-regulated at day 

14 after HFD exposure, but this protein reduced to normal 

level compared to chow diet groups after 21 days HFD (p 

< 0.01) (Figure 1E). Thus, our results demonstrates that 

increased protein expression of APP is achieved by 

responding to short-term HFD. In addition, fluctuations of 

BACE1 proteins during short-term HFD demonstrate 

APP metabolism mediated by BACE1 is complex in vivo.  
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Effects of short-term HFD on apoptosis proteins and 

aging marker p21 in cerebral cortex 

 

As demonstrated in Figure 2A, the PARP protein level 

was significantly enhanced at day 21 compared to chow 

diet groups (p < 0.01) (Figure 2B). In contrast to PARP 

expression, the anti-apoptotic BCL-2 protein showed 

opposite trend and significantly reduced after 21 days 

HFD compared to chow diet mice (p < 0.05) (Figure 2C). 

The pro-apoptotic Bax was raised at day 7 and 21 and 

reduced at day 14 compared to chow diet groups (p < 

0.05; p < 0.01) (Figure 2D). Intriguingly, no significant 

difference changes were found for pro-apoptotic Bad at 

different time-points (Figure 2E). Furthermore, cerebral 

cortex senescence was significantly induced at day 7 and 

21 compared to chow diet (p < 0.05; p < 0.01) (Figure 

2F) and confirmed by p21, which invokes cell cycle 

arrest and senescence [28]. On the other hand, caspase-3 

protein exhibited similar results as the p21 protein 

expression (p < 0.01) (Figure 2G). Taken together, these 

findings indicate that short-term consumption of a HFD 

not only accelerates cell death through apoptosis but also 

advances senescence in cerebral cortex. 

Changes of APP, BACE1, apoptosis proteins in 

cerebellum after 7 days HFD 

 

To evaluate how 7 days of HFD feeding affects the 

activities of APP, BACE1 and cell death, cerebellum 

proteins were analyzed by western blotting. Similarly, 

the results indicated that level of APP was also 

significantly elevated at day 7 compared to chow diet (p 

< 0.01) (Figure 3A–3B), however, BACE1 did not 

demonstrate obvious changes (Figure 3C). 

 

In the next step, we investigated whether 7 days HFD 

consumption also change the apoptotic signal in 

cerebellum, western blots were used to assess the 

changes of p53, cleaved-caspase 8, caspase 3, PARP, 

cytochrome C, Bax, Bad and BCL-2 (Figure 3). 

Statistical analysis shows that the amounts of p53 

(Figure 3D, 3E) and cleaved-caspase 8 (Figure 3D, 3F) 

were evidently enhanced after consumption of HFD for 

7 days (p < 0.01), however, this short period of HFD did 

not bring about significant difference in cerebellum 

caspase 3 and PARP activity as illustrated in Figure 3G 

and 3H. 

 

 
 

Figure 1. A timeline exhibiting expression changes of APP and BACE1 after short -term HFD exposure for mice cerebral 
cortex. (A) Experimental scheme for testing the effect of short period HFD on brain of adult mice. (B) Body weight curve of the two 

treatment groups at different time courses. (C) Western blotting and (D–E) densitometry analysis for APP and BACE1 from cerebral 
cortex tissue lysates obtained from mice with chow diet and HFD (n = 3 to 4 per group). GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase. Diet compositions are shown in Table 1. Data shown as means ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. chow diet 
group, by two-way ANOVA followed by Bonferroni’s post hoc test for body weight analysis and one-way ANOVA by Tukey’s test for 
densitometry assay. 
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Similar results were also found for apoptotic proteins 

released from the mitochondria. As depicted in Figure 

3I, statistical analysis demonstrated that pro-apoptotic 

proteins cytochrome C, Bax, Bad were increased 

significantly (p < 0.01; p < 0.05) (Figure 3J–3L), 

however, in this time point (7 days) a significant 

reduction in in cerebellum anti-apoptotic BCL-2 activity 

could be detected (p < 0.05) (Figure 3M). Together, the 

results demonstrate that intake of 7 days HFD elevate 

the level of APP and accelerate the occurrence of 

apoptosis in cerebellum. 

 

Effects of short-term HFD on IL-1β production, glial 

cell activation markers in cerebral cortex and 

cerebellum 

 

To investigate whether short-term HFD could activate 

pro-inflammatory actions and glial activation, western 

blotting and IF staining were conducted with IL-1β (a 

key player in the regulation of inflammatory processes) 

[29], Iba-1 (ionized calcium binding adapter protein 1; a 

hallmark of microglial activity) [30] as well as GFAP and 

vimentin antibody. As illustrated in Figure 4A, the 

expression of IL-1β 30 were increased considerably at 

day 30 compared to chow diet (p < 0.001) (Figure 4A–

4B) in cerebral cortex. In the meantime, IL-1β 17 

remained unchanged after 21 days HFD and showed a 

decrease at day 14 in these regions (p < 0.001) (Figure 

4C). On the other hand, the level of GFAP and Iba-1 

exhibited evidently higher than chow diet (p < 0.05; p < 

0.01) (Figure 4D–4E). However, vimentin did not display 

obviously difference at various time course (Figure 4D–

4F). Moreover, the IF staining results in Figure 4G also 

demonstrated hypertrophic astrocytes [31] and 

hypertrophic microglia [32] delineated by red boxes at 

day 21 compared to chow diet groups. In addition, 

consistent with the results from western blot analysis, 

Quantitation optical density of GFAP+ astrocytes 

(Supplementary Figure 1A) and Iba1+ microglia 

(Supplementary Figure 1B) staining was significantly 

enhanced at 21 days HFD compared with chow diet 

group (p < 0.01). Therefore, the results indicates that 

short-term HFD can promote neuroinflammation and 

glial cell activities in cerebral cortex. Moreover, no 

significant difference was found in IL-1β 30 and IL-1β 

17 between chow diet and HFD mice in cerebellum 

(Figure 4H–4J). Contrary to cerebral cortex findings at 

day 21, no changes were observed in GFAP, vimentin 

and Iba-1 in 7 days HFD-fed mice compared to chow diet 

mice in cerebellum (Figure 4K–4M). These observations 

demonstrate that cerebellum may be resistant apoptosis 

occurrence within 7 days of eating HFD. 

 

 
 

Figure 2. Association of apoptosis and HFD in mice cerebral cortex at separate times. (A) Western blot analysis of cerebral 

cortex tissues of mice with HFD and chow diet controls (n = 3 to 4 per group). (B–G) Quantification of PARP (B), Bcl-2 (C), Bax (D), Bad (E), 
p21 (F), caspase3 (G). GAPDH as a loading control. Values are presented as means ± SD. *P < 0.05 and **P < 0.01 versus chow diet; one-way 
ANOVA by Tukey’s test. 
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Effects of short-term HFD on Akt/MAPK/NF-κB 

p65 pathways in cerebral cortex and cerebellum 

 

On the 21st day after HFD in mice cerebral cortex, 

phosphorylation of ERK1/2 was significantly enhanced 

compared to chow diet (p < 0.05) (Figure 5A–5B). 

However, JNK and NF-κB p65 phosphorylation 

demonstrated significant lower than chow diet groups (p 

< 0.05) (Figure 5C, 5F). In addition, no significant 

differences in phospho-p38 MAPK and phospho-Akt 

were observed between chow diet and HFD mice 

(Figure 5D, 5E). 

 

As illustrated in Figure 5G, western blot indicated that 

activities of phospho- ERK1/2, phospho-p38 MAPK 

and MEKK1 were increased significantly 1 weeks after 

HFD-fed mice in cerebellum (p < 0.05; p < 0.01) 

(Figure 5H, 5J, 5L). However, no significant results 

were found in phospho-JNK and phospho-Akt between 

chow diet and HFD mice (Figure 5I, 5K). 

 

Cholesterol (a component of HFD) promotes 

apoptosis of SH-SY5Y Cells after 48h culture and 

downregulates Akt/MAPK/NF-κB p65 signaling 

 

As shown in Figure 6A–6E, the stimulation of SH-

SY5Y cells with 50 μM and 100 μM cholesterol [33] 

significantly decreased the level Bcl-2 in associated 

with evident increased Bax and Bad, compared with 

control group (0 μM) (p < 0.01; p < 0.001) (Figure 6B–

6D). Interestingly, phospho-ERK1/2, phospho-JNK 

phospho-p38 MAPK and phospho-Akt were obviously 

 

 
 

Figure 3. Changes of APP, BACE1 and apoptosis proteins after 7 days of HFD in the mice cerebellum. (A) Western blots and  

(B–C) densitometric analysis for APP, BACE1 in the supernatants of mice cerebellum (n = 3). (D) Western blot and (E–H) densitometric 
quantification of p53 (E), cleaved-caspase8 (F), caspase 3 (G), PARP (H) indicated (n = 3). (I) Western blot analysis of apoptotic proteins in 
cerebellum tissue lysates of indicated day 7 after HFD exposure for mice (n = 3). (J–M) Quantification of cytochrome C protein (J), Bax (K), 
Bad (L), Bcl-2 (M). Vinculin, β-actin and α-tubulin as a loading control. Values are means ± SD. *P < 0.05 and **P < 0.01 versus chow diet; by 
two-tailed Student’s t test. 
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reduced compared to control group (0 μM) (Figure 6E). 

Altogether, while cholesterol-treated cell models in 

vitro can partially simulate apoptosis in cortex and 

cerebellum of HFD-fed mice, these results do not 

represent the changes of stress signaling in vivo. 

Schematic explanation suggests that activation of 

ERK1/2 pathways was occurred in mice cortex after 21 

days HFD feeding. Meanwhile, ERK1/2, p38 MAPK 

and MEKK1 signaling were elevated simultaneously in 

cerebellum at day 7 of HFD-fed mice (Figure 6F). 

 

 
 

Figure 4. Effect of HFD on activation of astrocytes and microglia in the mice cortex and cerebellum. (A) Western blots and (B–F) 

densitometric analysis for IL-1β 31 kDa (B), IL-1β 17 kDa (C), GFAP (D), Iba-1 (E), vimentin (F) after HFD in mice cerebral cortex at day 7, day 14 
and day 21 (n = 3 to 4 per group). (G) Immunohistochemistry of GFAP+ astrocytes and Iba-1+ microglia in cerebral cortex tissue sections. High 
magnification images of astrocytes and microglia in a larger box outlined by red color indicated by arrows. Magnification, ×40. Scale bars, 10 
μm. (H) Western blot analysis of cerebellum tissues of mice with HFD and chow diet controls (n = 3 per group). (I–M) Quantification of IL-1β 31 
kDa (I), IL-1β 17 kDa (J), Iba-1 (K), GFAP (L) and vimentin (M). Vinculin and β-actin as a loading control. Values are presented as means ± SD. *P < 
0.05 and **P < 0.01 versus chow diet; one-way ANOVA by Tukey’s test for cerebral cortex. Two-tailed Student’s t test for cerebellum. 
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DISCUSSION 
 

In this study, we investigated the effects of short-term 

HFD on APP expression, apoptosis, IL-1β, glial cell 

activities as well as MAPK, Akt, NF-κB p65 pathways 

in the mouse cerebral cortex and cerebellum. The 

results in the C57BL/6J mice demonstrated that intake 

of HFD for only 7 days resulted in increased APP level 

in cortex and cerebellum. Furthermore, HFD 

consumption significantly contributed to apoptosis 

appearance, IL-1β elevation and gliosis at different time 

courses from 7 days to 21 days in cerebral cortex 

region. Meanwhile, HFD intake after 7 days triggered 

apoptosis increase in cerebellum. Nevertheless, no 

alterations of gliosis and IL-1β were brought about for 

cerebellum. Unexpectedly, increased activation of 

ERK1/2 level was observed both in cerebral cortex and 

cerebellum in HFD. In addition, in vivo studies showed 

that cholesterol advanced apoptosis of SH-SY5Y cells 

accompanying reduction activities of Akt/MAPK/NF-

κBp65 signaling. Our data show a possible mechanism 

in the pathophysiology of apoptosis induction and glial 

 

 
 

Figure 5. Effect of HFD on signaling pathways in the mice cortex at 21 days and cerebellum at 7 days. (A) Western blots and (B–F) 

Quantitation for phospho-p44/42 MAPK (Erk1/2) (B), phospho-SAPK/JNK (C), phospho-p38 MAPK(D), phospho-Akt (E), phospho-NF-B p65 (F) in 
the cortex of mice after 21 days HFD (n = 3 per group). (G) Western blots and (H–L) Quantitation for phospho-p44/42 MAPK (Erk1/2) (H), 
phospho-SAPK/JNK (I), phospho-p38 MAPK (J), phospho-Akt (K), MEKK1 (L) in the cerebellum of mice after 7 days HFD (n = 3 per group). Vinculin 
and β-actin as a loading control. Values are presented as means ± SD. *P < 0.05 and **P < 0.01 versus chow diet; Two-tailed Student’s t test. 
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cell activities associated with cerebral cortex and 

cerebellum dysfunctions under HFD conditions. Taken 

together, we demonstrated that short-term HFD 

consumption differentially contributes to apoptosis, 

neuroinflammation and APP expression in brain 

accompanying increased activity of ERK1/2 and p38 

MAPK, which appears to be related to brain regions-

dependent and time-dependent changes. 

 

Interestingly, some reports indicate that dietary 

administration of HFD in APP transgenic mice do not 

alter the production of APP [34, 35], while other finding 

demonstrates that HFD promotes APP expression [36]. 

On the other hand, other reports claim that APP 

production was increased after HFD for 4 weeks in 

normal adult rats [37] and no changes for APP mRNA 

level after short-term HFD in 4 weeks-old ordinary 

mice [13]. In the present study, however, our results 

showed that increased APP production continued to 

exist from day 7 to day 21 after transitory HFD. Similar 

to studies in APP after, whether HFD affect the level of 

BACE1 expression remains controversial. Miren

 

 
 

Figure 6. Changes of apoptosis and signaling pathways induced by cholesterol in SH-SY5Y cells. SH-SY5Y Cells were treated with 

cholesterol at indicated concentration (0 μM, 50 μM, and 100 μM) for 48 h (n = 3 per group). (A) Western blots and (B–D) Quantitation for 
Bcl-2 (B), Bax (C), and Bad (D) in the supernatants of SH-SY5Y Cells. (E) Western blots of phospho-p44/42 MAPK (Erk1/2), phospho-
SAPK/JNK, phospho-p38 MAPK, phospho-Akt, phospho-NF-κB p65 from supernatants of SH-SY5Y Cells after 48 h culture. The levels of 
phosphorylated signaling-related proteins after treatment with 50 μM, and 100 μM cholesterol were normalized to the levels of the 0μM 
treatment group. (F) Diagram showing the mechanism of how short-term HFD aggravates apoptosis, glial cell activation and APP production 
in cerebral cortex and cerebellum. Vinculin as a loading control. Values are presented as means ± SD. *P < 0.05 and **P < 0.01 versus chow 
diet; one-way ANOVA by Tukey’s test. Red arrow indicates up-regulation and Black arrow indicates down-regulation. 
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Ettchetoa et al. reported that BACE1 protein level was 

not influenced by HFD in APP/PS1 mice [36]. On the 

contrary, high fat/cholesterol induced significantly 

increased expression of BACE1 in C57BL/6 mice [9]. 

Our results suggested that fluctuating changes of 

BACE1 were seen in cerebral cortex, and these changes 

were significant in day 7 when compared to chow diet 

group. But there was no changes in BACE1 level in 

cerebellum. On the other hand, APP is cleaved by 

BACE1 (β-site amyloid precursor protein cleaving 

enzyme-1), contributing to Aβ aggregation. However, 

we did not detect Aβ (β-Amyloid) formation in the 

supernatants by western blots (data not shown). Thus, 

we speculate that temporary HFD leading to increased 

APP may be related to enhanced apoptotic process [38, 

39], but not Alzheimer’s development. Together, 

although the exact reason for the discrepancy between 

their results and ours remain unknown, we assume that 

it may be due to the changes in detection methods or 

experimental design. 

 

In line with previous research, HFD administration can 

result in an increase of microglia, astrocytes and 

neuroinflammation in brain [2, 10, 12, 40]. We found 

that GFAP (Glial fibrillary acidic protein; markers for 

the activation of astrocytes) was increased significantly 

at day 14 and day 21after HFD. However, vimentin 

level (type III intermediate filament protein; a marker 

for astrocytes) remained unchanged during short-term 

HFD. It is possible that vimentin is also present in other 

cell types of brain [41, 42]. In addition, Iba-1 level also 

was raised after 21 days HFD. Furthermore, IL-1β 30 

and IL-1β 17 expression increased significantly at day 

21 and day 14 and did not change significantly in the 

other time points compared to chow diet in cerebral 

cortex. Thus, we reasoned that increased astrocytes and 

microglia may contribute to IL-1β production [43]. 

HFD induces neuroinflammation in the cerebral cortex 

through microglia and astrocytes activation. However, 

unchanged of GFAP, vimentin and Iba-1 level were 

observed in cerebellum at day 7 after HFD. This 

phenomenon in our study is consistent with IL-1β 

results in cerebellum that did not show significant 

difference between HFD and chow diet. Finally, our 

results clearly demonstrate region-dependent and time-

dependent changes in specific brain regions in response 

to the HFD. 

 

Currently, many reports have indicated that MAPK 

signaling are involved in response to metabolic stresses 

changes of extracellular or intracellular signals, such as 

glucose, circulating free fatty acids (FFAs) and intake 

HFD, which affect cell and organ metabolism [17, 44]. 
In agreement with previous research reported that an 

increase in the activity of ERK1/2 after long-term HFD 

(20weeks) in hippocampus [19], our studies also 

revealed that 21 days HFD feeding increased the level 

of phospho-ERK1/2 significantly in cerebral cortex. 

However, other evidence have shown that after 16weeks 

of HFD feeding decrease ERK activity in the entire 

brain [20]. Recently, research indicates that stimulation 

of ERK1/2 can cause neural cell death [22, 45, 46]. 

Thus, our results suggest that upregulation of ERK1/2 

activity in short-term HFD may contribute to apoptosis 

happening, gliosis and increased APP level. In addition, 

many new findings in mice and humans suggest that 

JNK activation might induce insulin resistance and lead 

to obesity [47, 48]. Meanwhile, NF-κB inflammatory 

regulation signaling pathway is up-regulated in the 

brain tissue of 14weeks or 16weeks HFD-feeding mice 

[20, 49] as well NF-κB inflammatory signaling is 

unchanged in subcutaneous white adipose tissue after 

short-term high-fat overfeeding [16]. On the other hand, 

our results showed that after 7 days or 21 days 

consumption of HFD led to a significant decrease in 

phospho-NF-κB p65 and phospho-JNK simultaneously. 

Thus, we reasoned that the differences of results are 

mainly due to the experimental duration and tissue 

location. 

 

Interestingly, we also observed the increased activities 

of MEKK1/ERK1/2 in cerebellum. In consistent with 

Liu et al. have reported phospho- p38MAPK increase 

after extending HFD feeding [20, 49], our results 

demonstrated that p38MAPK activity was enhanced 

significantly after 7 days HFD. Some findings presented 

in this Review show that activation of p38MAPK lead 

to insulin resistance, obesity and metabolic diseases 

[48]. Therefore, activation of MEKK1/ERK1/2 and 

p38MAPK aggravated the vulnerability of cerebellum 

to 7 days HFD feeding. 

 

However, the limitations of current study should be 

stated. First, because similar results have been described 

in some literature [12, 13, 19], we did not explore the 

changes of metabolic parameters, such as glucose, 

cholesterol, insulin and triglyceride levels in blood, 

which may reflect changes of metabolic variables in 

short-term HFD-fed mice. Nevertheless, more recent 

studies suggest that cholesterol and triglyceride can 

induce neuroinflammation [40, 50]. Therefore, it is 

worth investigating the associations between metabolism 

and apoptosis in brain over time following short-term 

HFD. Second, gender and biological sex affect the 

pathogenesis of metabolic disorders, such as diabetes, 

obesity, insulin resistance and hyperglycemia [51, 52]. 

We used male mice only for the experiment. Therefore, 

whether there is an association between the effects of 

short-term HFD on brain and mice gender should be 
evaluated. Third, blood–brain barrier (BBB) remains 

intact after one-week or 12 month exposure to high-fat 

diet [53, 54]. Although we observed the up-regulation of 
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ERK1/2 protein in brain of HFD mice, ERK1/2 

inhibitors cannot be used to prove whether decreased 

ERK1/2 will reverse apoptosis in brain after short-term 

HFD. Because no sufficient evidence shows that 

ERK1/2 inhibitors will cross the BBB. We believe that 

nanoparticle technology may contribute to facilitating 

inhibitors delivery to transverse the BBB in the future. 

 

In conclusion, we discovered that short periods (7 days, 

14 days and 21 days) consumption of HFD caused some 

alterations of APP protein, apoptosis, glial cell, IL-1β 

and MAPK signaling in cerebral cortex and cerebellum 

of young mice. Interestingly, apoptotic molecules 

changes have started from the first week. In addition, it 

is necessary to identify the exact roles of ERK1/2 and 

APP up-regulation in different regions of brain after 

short-term HFD. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Quantitation optical density of GFAP+ astrocytes (A) and Iba1+ microglia (B) staining of mice fed chow diet and 

high fat diet in different time points. The images (2–3 sections per animal) were captured and quantified using the NIH Image J software 
package. *p < 0.01 versus the chow diet fed control group. 
 

 


