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Abstract: Postprandial responses to food are highly dependent on the macronutrient composition
of the diet. We investigated the acute effects of transition from the recommended moderately high
carbohydrate (HC) diet towards a carbohydrate-reduced high-protein (CRHP) diet on postprandial
glycemia, insulinemia, lipemia, and appetite-regulating hormones in non-diabetic adults. Fourteen
subjects, including five males (Mean ± SD: age 62 ± 6.5; BMI 32 ± 7.6 kg/m2; hemoglobin A1c

(HbA1c) 40 ± 3.0 mmol/mol; HOMA2-IR 2.1 ± 0.9) were included in this randomized, cross-over
study. Iso-caloric diets were consumed for two consecutive days with a median wash-out period of
21 days (range 2–8 weeks) between diets (macronutrient energy composition: CRHP/HC; 31%/54%
carbohydrate, 29%/16% protein, 40%/30% fat). Postprandial glucose, insulin secretion rate (ISR),
triglycerides (TGs), non-esterified fatty acids (NEFAs), and satiety ratings were assessed after
ingestion of breakfast (Br) and lunch (Lu), and gut hormones and glucagon were assessed after
ingestion of Br. Compared with the HC diet, the CRHP diet reduced peak glucose concentrations (Br
11%, p = 0.024; Lu 11%, p < 0.001), glucose excursions (Br 80%, p = 0.20; Lu 85%, p < 0.001), and ISR (Br
31%; Lu 64%, both p < 0.001) whereas CRHP, as compared with HC, increased glucagon-like peptide-1
(Br 27%, p = 0.015) and glucagon values (Br 249%, p < 0.001). NEFA and TG levels increased in the
CRHP diet as compared with the HC diet after Br, but no difference was found after Lu (NEFA Br 22%,
p < 0.01; TG Br 42%, p = 0.012). Beta-cell glucose sensitivity, insulin clearance, cholecystokinin values,
and subjective satiety ratings were unaffected. It is possible to achieve a reduction in postprandial
glycemia and insulin without a deleterious effect on beta-cell glucose sensitivity by substituting part
of dietary carbohydrate with iso-caloric protein and fat in subjects without type 2 diabetes mellitus
(T2DM). The metabolic effects are more pronounced after the second meal.
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1. Introduction

Obesity, as well as impaired glucose tolerance with a pre-diabetic hemoglobin A1c (HbA1c),
are associated with increasing risk of developing type 2 diabetes mellitus (T2DM) and coronary heart
disease [1,2]. These conditions are often characterized by elevated circulating glucose and insulin
concentrations [3,4]. Dietary interventions combined with increased physical activity remain the
conventional first-line approaches to treatment of the pre-diabetic state [5,6]. Whereas the effects of
weight loss and exercise develop gradually, a change in macronutrient composition might induce
more immediate results as the postprandial response is affected acutely [7–9]. The macronutrient
composition of the diet has been shown to play a significant role in satiety, gut hormone secretion,
glucose metabolism, and insulin secretion in healthy adults and in subjects with type 2 diabetes
mellitus (T2DM) [7,8,10–12]. Intake of large amounts of carbohydrates with high glycemic index have
been associated with development of T2DM and coronary heart disease in healthy adults [4,13–16].
As hyperinsulinemia can induce insulin resistance and postprandial hyperglycemia contributes to
elevated HbA1c, dietary carbohydrate reduction may be beneficial for subjects at risk for developing
T2DM by reducing postprandial excursions of glucose and insulin [4,17–20]. When reducing dietary
carbohydrates under eucaloric conditions, protein and fat must be added to the diet. High-fat diets
have been thought to cause increases in blood lipids and to increase the risk of coronary heart disease,
although this has been highly debated [21–25].

The aim of the present mechanistic study was to examine the acute effects on glucose and lipid
metabolism of a carbohydrate-reduced high-protein (CRHP) diet compared with an energy-matched
currently recommended high-carbohydrate (HC) diet [26,27] in obese and non-obese subjects with
normal or pre-diabetic HbA1c in subsequent meals. Breakfast and lunch meals were chosen to assess
second-meal phenomenon, as the difference in duration from the last meal is the greatest for these two
meals during the day. Moreover, incretin hormones, satiety, and gut hormones related to satiety were
measured, as they play a role in postprandial satiety and glucose homeostasis [28,29].

2. Materials and Methods

2.1. Study Design

The study was designed as a, controlled, cross-over study with two arms where the subjects
received the CRHP and the HC diets in randomized order. Each diet was provided for two consecutive
days with a wash-out period of 2 to 8 weeks between interventions. Randomization was performed by
a third-party study nurse by drawing blinded ballots. Participants were provided with breakfast and
lunch to be ingested at the study site (Endocrine Research Unit at Copenhagen University Hospital
at Bispebjerg, Copenhagen, Denmark), while dinner and pre- and post-dinner snacks were provided
to be consumed at home. The breakfast and lunch meals also served as mixed meal tests (MMT).
Diets were the same on day 1 and day 2. The evening prior to the intervention days, subjects were
provided a standardized dinner to be ingested at home. Thirty percent of the subject’s calculated
energy expenditure was ingested at breakfast, 30% at lunch and 30% at dinner. The remaining 10%
percent was ingested as pre- and post-dinner snacks respectively. For the three days immediately
before the interventions, subjects were asked to adjust their carbohydrate intake to 150–300 g daily and
to refrain from strenuous physical activity and alcohol intake. On intervention days, no tea or coffee
was allowed, and only sedentary activities were permitted. The methods employed for the present
study were the same as employed and described in detail in an earlier study of subjects with type 2
diabetes [8]. The study was registered at clinicaltrials.gov (ID:NCT02472951) and was approved by The
Danish National Committee on Health Research Ethics in accordance with the Helsinki II declaration.
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Before any study related procedures were initiated, written informed consent was obtained from all
subjects. All subjects were non-smokers and all female participants were post-menopausal. All subjects
were weight-stable prior to and throughout the study. Subjects with critical illness, renal or liver
disease, steroid treatment, food allergy or intolerance, gut disease, or alcohol abuse were excluded.

2.2. Diet Compositions

The CRHP diet consisted of 31% energy from carbohydrates, 29% energy from protein, and
40% energy from fat, compared with 54% from carbohydrate, 16% from protein, and 30% from
fat in the HC diet (Table A1). The diets were energy-matched and weighed out individually for
each subject according to their estimated daily caloric expenditure, by trained kitchen personnel at
Copenhagen University Hospital, Bispebjerg. Each subject’s daily energy requirement was assessed by
calculation of daily resting energy expenditure (REE) based on a dual-energy x-ray absorptiometry
scan (Lunar iDXA; GE Healthcare, Madison, WI, USA) [30]. As subjects were sedentary throughout
the intervention days, REE was multiplied with a physical activity level of 1.4 to calculate daily total
energy expenditure (TEE).

The Mixed Meal Tests

After a 10–12 h overnight fast, subjects reported to the Endocrine Research Unit and were placed
in a reclining position after voiding the bladder and being weighed. A venous catheter was placed in
an antecubital vein to draw blood samples at time points: −10, 0, 10, 20, 30, 45, 60, 90, 120, 150, 180,
210, 240, 270, 280, 290, 300, 315, 330, 360, 390, 420, and 450 min. Breakfast was ingested between times
0–30 min and lunch between times 270–300 min. Glucose, insulin, C-peptides, non-esterified fatty
acids (NEFAs), and triglycerides (TGs) were measured at all time points, while glucagon, glucagon-like
peptide-1 (GLP-1), and cholecystokinin (CCK) were measured at the following time points: 0, 30, 60,
90, 120, 150, 180, and 240 min. Satiety was assessed at 0, 30, 60, 120, 180, 240, 270, 300, 300, 330, 390, and
450 min and expressed as a composite satiety score (CSS) based on 100-mm visual analogue scales (VAS)
with four questions to integrate appetite sensations into one mean index (range 0–100 mm) [7,8,31,32].

2.3. Analytical Procedures

Of each blood sample drawn, the first 2 mL were discarded. Serum was obtained by collecting
blood in clot activator tubes left for 30 min at room temperature before centrifugation and plasma
was prepared from blood sampled in pre-chilled EDTA tubes, which were centrifuged immediately
at 4 ◦C. Insulin, C-peptides, NEFA, and TG values were analyzed in serum, while glucose, GLP-1,
glucagon, and CCK values were analyzed in plasma. Analytical methods have been described
in detail previously [8]. In short, glucose was analyzed with YSI 2300 STAT plus (Yellow Spring
Instruments). Insulin and C-peptides were analyzed with the IMMULITE 200 Immunoassay System
(Siemens Healthcare). NEFA values were analyzed with the ACS-ACOD Method [33,34] by using
a commercially available reagent (Wako, NEFA-HR (2), Wako Chemicals GmbH, Neuss, Germany).
TG values were analyzed using an enzymatic colorimetric analysis on the Cobas 8000 modular
analyzer (Roche Diagnostics, Indianapolis, IN, USA), standardized against isotope-dilution mass
spectrometry [35]. Plasma samples were extracted with ethanol (70% v/v), for analysis of GLP-1 and
glucagon. Antiserum code no. 89390 was used to measure GLP-1 [36], antiserum code no. 4305 was
used to measure glucagon [37] and antiserum code no. 92128 to measure CCK [38].

2.4. Statistical Analysis

Means of both days on each diet were calculated. For all fourteen subjects, results,
graphs and statistical analyses are presented as means of the two consecutive days on each diet.
Fasting concentrations were measured at time 0 min or as a mean of time −10 and 0 min when
applicable (glucose, insulin, C-peptides, NEFAs, and TGs). The trapezoidal rule was used to calculate
area under curve (AUC) and by subtracting area below individual fasting concentrations from AUC,
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netAUC was calculated. Peak concentrations were identified for each individual for all variables
(except for NEFA where the nadir concentration was identified). A software program, ISEC (Insulin
SECretion), was used to calculate prehepatic insulin secretion rates (ISR) by deconvolution of C-peptide
concentrations [39,40]. As a measure of initial β-cell glucose sensitivity (β-GS), change in ISR per unit
change in glucose concentration (∆ISR/∆glucose) from baseline to peak glucose concentration was
calculated for each subject during the breakfast and lunch meals, respectively. Insulin clearance during
meals was calculated as an index (AUCinsulin/AUCISR).

If data followed a Gaussian distribution, as determined by the Shapiro–Wilk normality test,
results are presented as means with their standard errors (SEM) and if not, results are presented as
medians and interquartile range (IQR). Student’s paired t-test was used to calculate simple differences
(AUC, peaks etc.) between diets, and Wilcoxon-matched pairs signed rank test was used if a Gaussian
distribution was not found. After subtracting baseline values, two-way repeated-measures ANOVA
with time and treatment as repeated measures and subjects as fixed effects were used to test for
postprandial differences at different time points. To adjust for multiple comparisons at each time point
post hoc, Bonferroni’s multiple comparison adjustment was used. Significance level was set to p = 0.05.
Graphpad Prism for Windows (version 7.02, 13 September 2016; Graphpad software, La Jolla, CA,
USA) was used for statistical analyses and graphical presentations.

3. Results

3.1. Subjects

Fourteen subjects ranging from normal weight-to-obese (BMI range: 22.7–49.3 kg/m2) without
T2DM (HbA1c range: 35–45) were included in the study (Table 1).

No differences were found in fasting concentrations on the different treatment days on any of the
measured variables.

Table 1. Baseline characteristics of participants.

Subject
(no.)

Age
(years)

Gender
(M/F 1)

Weight
(kg)

BMI 2

(kg/m2)
HbA1c

3

(mmol/mol)
Fasting PG 4

(mmol/L) HOMA2-IR 5 TEE 6

(MJ/day)

1 45 M 138 43.4 39 6.2 3.2 13.6
2 70 F 127 49.3 41 6.6 3.4 11.0
3 70 F 108 38 45 6.3 3.6 10.1
4 63 F 109 34.1 42 6.3 2.1 10.0
5 65 F 88 34.7 39 6.2 2.4 8.5
6 59 F 77 30.8 42 5.8 1.6 8.3
7 56 M 121 34.9 42 5.4 3 12.2
8 59 M 70 22.7 35 5.2 1 8.8
9 63 F 80 28.3 37 5.0 1.8 8.3

10 64 F 67 23.8 35 5.0 1.2 7.8
11 67 M 103 28.4 38 6.2 2.1 11.0
12 56 M 75 25.2 43 6.1 1.1 9.7
13 63 F 90 27.9 40 5.8 1.7 9.3
14 64 F 78 27.6 42 5.4 1 8.3

Mean 61.7 5 M/9 F 95 32.1 40 5.8 2.1 9.8
Range 45–70 5 M/9 F 78–138 22.7–49.3 35–45 5.0–6.6 1–3.6 8.3–13.6

1 Male/female; 2 body mass index; 3 hemoglobin A1c; 4 Plasma glucose; 5 HOMA2 Calculator Version 2.2.3
(University of Oxford, Oxford, UK); 6 Total energy expenditure.

3.2. Glucose

An interaction between time and treatment was found in the 7.5-h repeated measures analysis of
glucose (p < 0.001). The CRHP diet reduced peak glucose concentrations by 11% (0.8 ± 0.3 mmol/L,
p = 0.024) after ingestion of breakfast and by 11% (0.9 ± 0.2 mmol/L, p < 0.001) after ingestion of lunch,
respectively, compared with the HC diet. On both diets, peak glucose concentrations were reached
45 min after ingestion of breakfast and lunch, respectively (Figure 1A).
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A non-significant reduction in glucose breakfast AUC of 6% and netAUC of 80% was found on the
CRHP compared with HC diet (0.3 ± 0.2 mmol/L × 270 min, p = 0.13, and 0.3 ± 0.2 mmol/L × 270 min,
p = 0.20, respectively). Compared with intake of the HC diet, the CRHP diet reduced lunch glucose AUC
by 12% (0.8 ± 0.1 mmol/L × 180 min, p < 0.001) and netAUC by 85% (0.8 ± 0.2 mmol/L × 180 min,
p < 0.001).

3.3. Insulin

An interaction between time and treatment was found in the 7.5-h repeated measures analysis of
insulin (p < 0.001). The CRHP diet reduced median peak insulin concentration by 32% (201 (IQR 12–331)
pmol/L, p = 0.042) after ingestion of breakfast and by 33% (154 (IQR 62–243) pmol/L, p = 0.005) after
ingestion of lunch, respectively, compared with the HC diet. On both diets, peak insulin concentration
was reached 60 min after ingestion of breakfast and after 60 min on the CRHP diet compared with 45
min on the HC diet after ingestion lunch (Figure 1B).

Compared with the HC diet, ingestion of the CRHP diet reduced breakfast median insulin netAUC
by 29% (51 (IQR 21–104) pmol/L × 270 min, p = 0.049) and lunch median insulin netAUC by 63% (123
(IQR 69-188) pmol/L × 180 min, p < 0.001), respectively.
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Figure 1. Mean ± SEM 7.5-h concentrations of glucose (A) and insulin (B) in 14 non-diabetic subjects
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3.4. C-Peptides

An interaction between time and treatment was found in the 7.5-h repeated measures analysis
of C-peptides (p < 0.001). The CRHP diet reduced peak C-peptide concentrations by 23%
(802 ± 183 pmol/L, p < 0.001) after ingestion of breakfast and by 29% (1026 ± 103 pmol/L, p < 0.001)
after ingestion of lunch, respectively, compared with the HC diet. Peak C-peptide concentration was
reached 60 min after ingestion of both breakfast and lunch, respectively, on both diets (Figure 2A).

Compared with intake of the HC diet, the CRHP diet reduced breakfast C-peptide netAUC by 31%
(432 ± 97 pmol/L × 270 min) and lunch C-peptide netAUC by 63% (890 ± 139 pmol/L × 180 min) (both
p < 0.001).

3.5. Insulin Secretion Rate

As ISR was calculated by deconvolution of C-peptides, an interaction between time and treatment
was found in the 7.5-h repeated measures analysis of ISR (p < 0.001). The CRHP diet, as compared with
the HC diet, reduced peak ISR by 27% (3.5 ± 0.7 pmol/kg per min) after ingestion of breakfast and
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by 31% (3.6 ± 0.4 pmol/kg per min) after ingestion of lunch (both p < 0.001). Peak ISR was reached
60 min after ingestion of both breakfast and lunch on both diets (Figure 2B).

Intake of the CRHP diet, as compared with HC diet, reduced breakfast ISR netAUC by 31%
(1.3 ± 0.2 pmol/L × 270 min, p < 0.001) and lunch ISR netAUC by 64% (3.3 ± 0.5 mmol/L × 180 min,
p < 0.001).Nutrients 2018, 10, x FOR PEER REVIEW  6 of 14 
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diet). * Significant difference (p < 0.05) between the HC and CRHP diet. HC: high carbohydrate; CRHP:
carbohydrate-reduced high-protein; ISR: insulin secretion rate.

3.6. β-Cell Glucose Sensitivity and Insulin Clearance

No difference in initial β-GS was found after ingestion of CRHP compared with HC breakfast
(5.7 ± 1.0 vs. 5.1 ± 0.6 pmol/kg per min per mM, p = 0.60) or lunch (5.3 ± 0.8 vs. 4.3 ± 0.6 pmol/kg
per min per mM, p = 0.34), respectively.

No difference in insulin clearance index was found after ingestion of the CRHP compared with
HC breakfast (44 (IQR 28–67) vs. 42 (IQR 32–64) kg/l × min, p = 0.43) or lunch (40 (IQR 30–62) vs. 40
(IQR 30–54) kg/L × min, p =0.33), respectively.

3.7. Non-Esterified Fatty Acids

An interaction between time and treatment was found in the 7.5-h repeated measures analysis of
NEFA (p < 0.001). The CRHP diet increased nadir NEFA concentration by 20% (0.30 ± 0.02 vs. 0.25 ±
0.02 mmol/L, p = 0.027) after ingestion of breakfast and by 29% (0.37 ± 0.03 vs. 0.29 ± 0.02 mmol/L,
p = 0.001) after ingestion of lunch, respectively, compared with the HC diet. Nadir NEFA concentration
was reached after 90 min on the CRHP diet compared with after 120 min on the HC diet after ingestion
of breakfast and 120 min after ingestion of lunch on both diets, respectively (Figure 3A).

Compared with intake of the HC diet, the CRHP diet increased breakfast median NEFA netAUC
by 22% (0.06 (IQR 0.01–0.08) mmol/L × 270 min, p = 0.005). No difference was found in lunch NEFA
netAUC between diets.

3.8. Triglycerides

An interaction between time and treatment was found in the 7.5-h repeated measures analysis
of TG (p < 0.001). No difference in peak TG concentrations was found between diets after ingestion
of either breakfast or lunch. Peak TG concentration was reached after 240 min on the CRHP diet
compared with after 210 min on the HC diet after ingestion of breakfast and after 30 min on the CRHP
diet compared with 45 min on the HC diet after ingestion of lunch, respectively (Figure 3B).

Compared with intake of the HC diet, the CRHP diet increased breakfast TG netAUC by 42%
(0.12 ± 0.04 mmol/L × 270 min, p = 0.012). No difference was found in lunch TG AUC between diets.
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Figure 3. Mean ± SEM 7.5-h concentrations of NEFAs (A) and triglycerides (B) in 14 non-diabetic
subjects after intake of a CRHP or HC breakfast and lunch, respectively (mean of two consecutive days
on each diet). * Significant difference (p < 0.05) between the HC and CRHP diet. HC: high carbohydrate;
CRHP: carbohydrate-reduced high-protein; NEFA: non-esterified fatty acid.

3.9. Glucagon-Like Peptide-1

An interaction between time and treatment was found in the 4-h repeated measures analysis of
GLP-1 (p < 0.001). GLP-1 concentrations were significantly higher 90–240 min after ingestion of the
CRHP compared with the HC breakfast. Peak concentration was reached 120 min after ingestion of
both diets. A 17% (4.2 ± 1.9 pmol/L, p = 0.045) higher peak was found in the plasma concentration
of GLP-1 after ingestion of the CRHP compared with HC breakfast (Figure 4A). Likewise, the GLP-1
netAUC value was 27% (3.2 ± 1.1 pmol/L × 240 min, p = 0.015) higher after ingestion of the CRHP
compared with the HC breakfast.

3.10. Glucagon

A time-treatment interaction was found in the 4-h repeated measures analysis of glucagon
(p < 0.001). Compared with the HC diet, ingestion of the CRHP breakfast significantly increased
glucagon concentration at all time points, increased peak concentration by 39% (7.2 ± 1.2 pmol/L,
p < 0.001) and netAUC by 249% (7.5 ± 1.2 pmol/L, p < 0.001) (Figure 4B).
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3.11. Cholecystokinin

A time-treatment interaction was found in the 4-h repeated measures analysis of CCK (p < 0.01).
Compared with the HC diet, ingestion of the CRHP breakfast significantly increased CCK concentration
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at individual time points 180 and 240 min, although no significant differences were found in peak
concentration or netAUC between diets (Figure 5A).

3.12. Composite Satiety Score

A trend for interaction was found between time and treatment in the 7.5-h repeated measures
analysis of CSS (p = 0.057). At individual times of measurement, satiety was significantly higher 180
and 240 min after ingestion of the CRHP compared with HC breakfast. No difference in peak satiety
score was found between diets. On both diets, peak satiety was reached 30 min after ingestion of
breakfast and lunch, respectively (Figure 5B). No difference between diets was found in CSS breakfast
or lunch netAUC.
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or HC breakfast and lunch, respectively (mean of two consecutive days on each diet). * Significant
difference (p < 0.05) between HC and CRHP diet. HC: high carbohydrate; CRHP: carbohydrate-reduced
high-protein; CCK: cholecystokinin; VAS: visual analogue scale.

3.13. Explorative Analyses

No correlation was found between HOMA2-IR, BMI, HbA1c, or fasting glucose and effect size of
reduction in postprandial glucose excursion or insulin secretion (Spearman p > 0.2 for all). No difference
was found in effect size of reduction in postprandial glucose excursion or insulin secretion after
stratification of subjects in two equal size groups based on HbA1c (35–40 and 41–45), BMI (<30 and
>30), and fasting glucose (<6 and >6) (all p > 0.05).

4. Discussion

The major new finding in this study in obese and non-obese subjects with prediabetes or normal
glucose tolerance was a highly significant and clinically relevant acute reduction in postprandial
insulin and C-peptide responses on a diet reduced in carbohydrate and increased in protein and fat.
This was found both after ingestion of breakfast and lunch without altering β-cell glucose sensitivity
and insulin clearance. Furthermore, the postprandial glucose excursion was reduced following lunch
and glucose peak concentrations were reduced following both breakfast and lunch meals. This is
important as postprandial glucose excursions contribute relatively more to HbA1c in subjects with
lower fasting glucose concentrations [17,18] and may suggest that remission of prediabetes can be
achieved with a carbohydrate-reduced high-protein diet in obese adults [19].

We have previously shown that the hallmark of early T2DM, i.e., elevated glucose and insulin
excursions following meals, can be ameliorated by a reduction in dietary carbohydrate content with
iso-caloric replacement of fat and protein [8]. The findings in the present study show that similar effects may
also be found in subjects without T2DM. Reduction of postprandial hyperinsulinemia and hyperglycemia
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may be an effective strategy to prevent development of insulin resistance and obesity in subjects at
risk, as both have been associated with obesity and development of diabetes [16,41–45]. Although
more research is needed to establish a causal relation, hyperinsulinemia has been associated with a
plethora of pathological conditions, e.g., hypertension, malignancy, stroke and coronary heart disease,
implying a possible benefit of less insulinogenic diets for subjects at risk for these conditions [42,46–50].
Furthermore, it is important to note that no acute adverse effect was found in β-cell glucose sensitivity
on the CRHP diet despite a reduced insulin excursion and a reduced suppression of circulating NEFA
concentrations after breakfast.

NEFA levels were less suppressed after intake of the CRHP compared with HC at breakfast, while
both diets elicited a similar postprandial decrease of NEFA after ingestion of lunch. The difference
in postprandial NEFA excursions following breakfast can be partly explained by the suppression of
lipolysis and increased re-esterification of NEFA by insulin [51,52], while the excursion following
lunch must be interpreted together with the excursion in TG because insulin also increases lipoprotein
lipase (LPL) activity after a delay, causing some NEFAs from TG-rich lipoproteins to ‘spill-over’ back
to the circulation at the site of action, i.e., the luminal surface of endothelial cells in capillaries [53–57].
Much to our surprise, the same trend was found in the postprandial triglyceride excursions, i.e., the
postprandial TG excursion was increased by the CRHP as compared with the HC meal at breakfast
but not lunch. Previous studies suggested this phenomenon to be caused by an increased postprandial
insulin response to the HC diet, resulting in increased hepatic production rate of very low-density
lipoprotein-TGs (VLDL-TGs). An increase in VLDL-TGs in turn reduces clearance of chylomicron-TG
from the second meal, as both are cleared by LPL in a competitive manner [58–60]. The present
study underscores the importance of interpreting these two important energy substrates in man
in conjunction and during several meals to achieve a sufficient duration to assess the underlying
hormonal regulation. Accordingly, a single meal test may be misleading and confound interpretation
of the effect of the dietary interventions evaluated. This seemingly paradoxical pattern in postprandial
TG excursions on sequential meals may explain the reduced fasting concentrations of TG on low
carbohydrate diets in long term trials found in a recent review [61].

As expected, glucagon responses were increased by the CRHP compared with HC diet due to
the higher content of protein, as seen in previous studies [7,8,62]. GLP-1 responses also increased,
reflecting the fact that both protein and fat are potent stimuli for GLP-1 secretion. In our previous
study in subjects with T2DM, the CRHP diet, as compared with HC diet, did not increase GLP-1
levels, leading us to speculate if the GLP-1 response to protein and fat ingestion might be blunted in
subjects with T2DM [8]. As both glucagon and GLP-1 have been associated with satiation [7,63,64],
these responses could perhaps explain the higher satiety scores found at 180 and 240 min after ingestion
of breakfast on the CRHP diet in the present study. Furthermore, the increase in GLP-1 secretion may,
in part, explain the maintained β-cell glucose sensitivity despite the reduced glucose excursion after
CRHP diet ingestion. The CCK response was increased 180 and 240 min after ingestion of the CRHP
compared with HC breakfast due to increased fat content [65] in the CRHP (40E%) compared with
HC (30E%) diet and coincided with the increase in satiety scores at these time points. Interestingly,
we found, in our previous study, that CCK was increased to a larger extent by a CRHP compared with
HC diet in subjects with T2DM concurrently with increased satiety. The putative mechanism might be
an exacerbated response of CCK and thus satiety to increased fat in subjects with T2DM [9].

A limitation of the present study is the broad metabolic range of subjects regarding glucose
metabolism, which could confound the findings and interpretation of results, but no correlation was
found between degree of impaired glucose tolerance (e.g., HOMA2-IR, HbA1c, or fasting glucose) and
effect size of reduction in postprandial glucose excursion or insulin secretion, though.A strength of the
present study is the measurement of postprandial responses to two subsequent meals, as the response
to a second meal can differ from the response to the first meal, as discussed above.
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5. Conclusions

Our group has previously found reduced hyperglycemia and hyperinsulinemia and increased
satiety on a CRHP diet in subjects with T2DM. The present study suggests a similar promising effect in
non-diabetic subjects. Future studies are needed to evaluate the complete diurnal postprandial effects
of a shift in macronutrient composition in subjects with and without T2DM and long-term studies are
needed to evaluate whether these effects are sustained or even amplified over time. As adherence
is a major issue in dietary trials, long-term studies should emphasize the importance of adherence,
for instance through diet provision, in evaluations of the true potential for carbohydrate-reduced diets
to prevent or treat T2DM.
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Appendix

Table A1. Macronutrient composition and ingredients of the test meals standardized at 10 MJ/day.

CRHP 1 Diet HC 2 Diet

Breakfast

Energy (kJ) 3000 3000
Carbohydrate (E%) 31 54
Protein (E%) 29 16
Fat (E%) 40 30
Fiber (g/MJ) 2.5 4
Ingredients (g)
Egg 192.3 39.7
Olive oil 7.5 -
Bread 37.4 69.4
Rye flour yoghurt topping 21.4 49.6
Tomato 85.5 -
Cheese 16.0 19.8
Ham 26.7 -
Skyr (icelandic yoghurt) with vanilla 160.3 -
Strawberry jam - 19.7
Apple - 49.6
Almond - 11.9
Milk, acidophilus cultured - 198.3

Lunch

Energy (kJ) 3000 3000
Carbohydrate (E%) 31 54
Protein (E%) 29 16
Fat (E%) 40 30
Fiber (g/MJ) 3.5 2.7
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Table A1. Cont.

CRHP 1 Diet HC 2 Diet

Lunch

Ingredients (g)
Chicken 137.3 38.1
Olive oil 14.7 -
Tomato 147.2 142.8
Spring onion 9.8 19.0
Bell pepper 29.4 47.6
Bread 24.5 47.6
Milk 245.3 142.8
Feta cheese 29.4 -
Chick peas 39.2 -
Pasta - 66.6
Pesto - 33.3
Butter - 9.5

1 CRHP, carbohydrate-reduced high-protein; 2 HC, high carbohydrate.
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