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Abstract

Objective: Accurate ascertainment of comorbidities is paramount in clinical

research. While manual adjudication is labor-intensive and expensive, the adop-

tion of electronic health records enables computational analysis of free-text doc-

umentation using natural language processing (NLP) tools.

Hypothesis: We sought to develop highly accurate NLP modules to assess for the

presence of five key cardiovascular comorbidities in a large electronic health record

system.

Methods: One-thousand clinical notes were randomly selected from a cardiovascular

registry at Mass General Brigham. Trained physicians manually adjudicated these

notes for the following five diagnostic comorbidities: hypertension, dyslipidemia, dia-

betes, coronary artery disease, and stroke/transient ischemic attack. Using the open-

source Canary NLP system, five separate NLP modules were designed based on

800 “training-set” notes and validated on 200 “test-set” notes.
Results: Across the five NLP modules, the sentence-level and note-level sensitivity,

specificity, and positive predictive value was always greater than 85% and was most

often greater than 90%. Accuracy tended to be highest for conditions with greater

diagnostic clarity (e.g. diabetes and hypertension) and slightly lower for conditions

whose greater diagnostic challenges (e.g. myocardial infarction and embolic stroke)

may lead to less definitive documentation.

Conclusion: We designed five open-source and highly accurate NLP modules that

can be used to assess for the presence of important cardiovascular comorbidities in

free-text health records. These modules have been placed in the public domain and

can be used for clinical research, trial recruitment and population management at any
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institution as well as serve as the basis for further development of cardiovascular

NLP tools.
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1 | INTRODUCTION

Extracting and accurately categorizing medical comorbidities is para-

mount in clinical research.1 The traditional approach to identification

of comorbidities using manual adjudication is labor-intensive and

expensive. However, the ever-expanding adoption of electronic health

data makes it possible to automate this process. While relying on

structured data sources such as coded problem lists or billing codes

can be an efficient way to capture medical comorbidities, structured

data often has poor sensitivity which can introduce bias into analytic

work.2–6 Accordingly, innovative and efficient methods of analyzing

free-text documentation are crucial to realizing the electronic health

record's potential to advance medical research.7,8

One common approach to analyzing free text information is to

deploy natural language processing (NLP) systems. NLP can be

implemented using machine learning9 or human-designed “heuristic”
technologies.10,11 Machine learning technologies are increasingly able

to model non-linear linguistic relationships and can be trained quickly

on large annotated datasets. On the other hand, human-designed

heuristic-based NLP tools are characterized by transparency (allowing

for easier correction of errors) and do not require specialized high-

performing hardware such as Graphics Processing Units. Additionally,

human-designed NLP techniques can be developed using smaller

annotated datasets as they incorporate their designers' knowledge of

language as well as professional vernacular.11,12 NLP has been

implemented in numerous clinical applications11–19 and continues to

be developed across a host of critical domains to transform natural

language into data ready for computational work.

Although there have been NLP systems developed to assess for

the presence of cardiovascular comorbidities in narrative electronic

health data,20,21 their portability and implementation within other

health-system databases face questions of validity.22 Accordingly, we

sought to develop and validate NLP modules for key cardiovascular

comorbidities using the longitudinal electronic health records within

the Mass General Brigham system, a large tertiary care medical sys-

tem in Boston, MA. Our aim was to accurately assess for the presence

of major cardiovascular comorbidities—as documented by clinicians in

free-text form—in a system-wide longitudinal health care record.

2 | METHODS

We developed five distinct NLP modules to assess for the presence of

the following cardiovascular comorbidities: (a) hypertension;

(b) dyslipidemia (any subtype); (c) diabetes; (d) coronary artery disease

(CAD); (e) non-hemorrhagic stroke and transient ischemic attack (TIA).

Each module was designed to assess for language that is diagnostic of

these comorbidities on a phrase-by-phrase and sentence-by-sentence

level. For instance, a sentence stating that, “Mrs. Smith has a history

of hyperlipidemia” or one that stated, “Mrs. Smith has a history of ele-

vated cholesterol” would be considered semantically equivalent and

diagnostic of dyslipidemia. Similarly, a phrase stating, “History: uncon-

trolled hemoglobin A1c” would be considered diagnostic of diabetes.

The ability to develop algorithms that can extract phrase and

sentence-level details to determine the presence of a diagnostic con-

cept allow for the potential to build highly accurate NLP modules.

Ultimately, the goal was to design NLP algorithms that are able to rec-

ognize phraseology that clinicians use in regular practice to represent

the diagnostic concepts of interest.

For conditions where non-binary classifications provide valuable

information, we sought to develop algorithms that would be able to

characterize multiple levels of clinically useful information in order to

obtain granular diagnostic data. Accordingly, the modules for diabetes,

CAD, and non-hemorrhagic stroke/TIA were designed to obtain the

following secondary levels of information:

1. Diabetes – (a) type 1 diabetes, (b) type 2 diabetes, (c) unspecified

diabetes type.

2. CAD – (a) general CAD reference (which does not meet one of the

other defined categories), (b) reference to a greater than 50% coro-

nary stenosis, (c) unstable angina, (d) myocardial infarction, (e)

ST-segment elevation myocardial infarction, (f) coronary

revascularization.

3. Non-hemorrhagic stroke/TIA – (a) ischemic stroke, (b) embolic

stroke, (c) unspecified stroke type, (d) TIA.

Designing the modules in this fashion enabled further characterization

of the subtype of the diagnosis of interest as relayed through free-

text clinical documentation.

2.1 | Document selection

Clinical notes were randomly selected out of a large, retrospective

cardiovascular registry created at Brigham and Women's Hospital and

Massachusetts General Hospital. The registry was comprised of

�30 000 patients who received care within the Mass General Bri-

gham hospital system from January 2000 to July 2019. In total, the

cohort generated approximately 8 million notes across all types of

clinical encounters. Given the nature of the diagnostic concepts
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targeted for NLP development, this set of �8 million notes was lim-

ited to predominately outpatient notes and hospital discharge summa-

ries for further analysis. This resulted in a total of �3.5 million notes,

of which 1000 notes were randomly selected for use in NLP develop-

ment. Of the 1000 notes, 800 random notes were equally divided into

four “training-sets” with the remaining 200 notes designated for the

final, validation “test-set.” See Figure 1 for a schematic of the note

selection process. This study was approved by the Institutional

Review Board at Mass General Brigham and was granted a waiver of

informed consent.

2.2 | Adjudication

Four internal medicine physicians at Brigham and Women's Hospital

were trained to adjudicate the 1000 clinical notes for the diagnostic

concepts of interest. Each physician underwent a 2-h training session

and subsequently received tailored feedback on the accuracy of their

first 15 adjudicated notes prior to beginning the formal adjudication

process. See the Appendix S1 for the standardized adjudication guide-

lines. Each of the 800 training-set notes were adjudicated by one phy-

sician alone for all five diagnostic concepts. The final 200 notes were

designated as the validation test-set and each note was adjudicated

by two physicians to optimize the accuracy of the reference standard.

Agreement between the two adjudicators as measured by Cohen's

Kappa in the test-set is given in Table 1 and ranged from 0.961 to

1.00. Any adjudication discrepancies in the test-set were resolved

through a joint meeting between the two physicians to create a final

validation test-set against which the NLP software output was then

compared. The physician adjudicators were not involved in the devel-

opment of the NLP modules and the designer of the NLP modules

was blinded to the test-set adjudication.

Each physician was instructed to extract diagnostic information

through a sentence-by-sentence review of each clinical note. Accord-

ingly, if there were multiple sentences in a given note that referenced

a history of coronary artery disease, each was logged as a positive ref-

erence to that diagnostic concept. See Table 2 for the number of

unique note-level and sentence-level positive references for each

diagnostic concept in the test set. The secure, web-based software

platform REDCap23,24 (Research Electronic Data Capture) was used

for data entry. Individual REDCap forms for each of the five diagnostic

concepts were developed to facilitate information entry by the team

of physician adjudicators. See the Appendix S1 for representative

designs of the REDCap forms.

When multiple levels of diagnostic information were available

within a given phrase or sentence, the adjudicators were instructed to

input all available classification information through the use of “radio
buttons” in the REDCap forms. For instance, if a sentence stated:

“Mr. Smith has a history of CAD s/p MI in 2018 requiring 2 stents to

his LAD,” the adjudicators were instructed to check off the boxes for

“CAD General,” “MI,” and “Revascularization” as shown in Figure 2.

This process allowed for the ability to obtain detailed information

from sentence-level references and program the NLP algorithms to

recognize complex and multi-layered diagnostic concepts.

2.3 | NLP development

NLP algorithms were created using the open-source Canary NLP plat-

form.17,19,25–28 We elected to use the Canary NLP system for the fol-

lowing reasons: (a) it implements NLP algorithms transparently,

facilitating error correction; (b) it is easily portable to other institutions

and datasets; and (c) it was previously shown to achieve higher accu-

racy than other NLP methodologies.28

F IGURE 1 Note selection
process. Schematic overview of
the note selection process for
manual adjudication of the five
diagnostic concepts targeted for
NLP development. Each of the
training sets and test set
contained 200 unique notes with
the same proportion of
outpatient and hospital discharge
summaries. The NLP designer
was blinded to the gold-standard
test set adjudication
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For each distinct NLP module, a unique set of word classes were

created. Word classes contain sets of semantically-related words that

can be used to create phrase structures. A simplified set of word classes

from the CAD module include:

1. >CAD - cad, coronary disease, coronary heart disease, ischemic

heart disease.

2. >MI - acs, acute coronary syndrome, heart attack, mi, myocardial

infarction, nstemi.

3. >STENT - angioplasty, stents.

4. >CORONARY - lad, rca, acute marginal, circumflex, lcx, left main.

In addition to defined word classes, Canary allows for the creation

of an “>UNKNOWN” word class which accounts for sentences with

undefined words. Phrase structures are then created from word classes

to create meaningful units of information which can later be extracted

as numbered outputs for analytic work. A phrase structure to capture a

sentence such as, “The patient had 2 stents placed in his LAD in July

2018” is shown in Figure 3. This example sentence referencing the

placement of stents in a coronary artery would then resolve to an

TABLE 1 Cohen's Kappa on the adjudication of the 200 test set
notes

Module Cohen's Kappa

Hypertension 0.97

Dyslipidemia 1.00

Diabetes 0.96

Coronary artery disease 0.97

Stroke/TIA 0.98

TABLE 2 Unique note-level and sentence-level positive
references for each diagnostic concept in the 200 test set notes

Module

Note-level

references

Sentence-level

references

Hypertension 82 212

Dyslipidemia 68 169

Diabetes 29 128

Coronary artery

disease

54 217

Stroke/TIA 41 168

F IGURE 2 Example adjudication of multi-layered diagnostic sentence. Example sentence and associated REDCap form of how adjudicators
were instructed to input all available classification information for multi-layered diagnostic information. In the sentence, “Mr. Smith has a history
of CAD s/p MI in 2018 requiring 2 stents to his LAD,” adjudicators would click “unspecified CAD,” “myocardial infarction,” and
“revascularization” to capture all available data points
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output indicating that the patient had a coronary revascularization

procedure. In the CAD module, for example, there were more than

40 distinct word classes, greater than 600 unique heuristic-based

phrase structures, and 70 numbered output types.

Each module was designed with its own unique set of word clas-

ses and heuristic-based phrase structures to maximize diagnostic accu-

racy. For the 800 training set notes, a rigorous iterative process was

performed whereby unique and often multilayered phrase structures

were created to capture positive references to the diagnostic con-

cepts of interest. When the creation of additional phrase structures

improved sensitivity but caused a decrement to the specificity of the

module, the specificity of the module was favored and such heuristics

were not included in the final algorithms.

In addition to capturing positive references to the desired diag-

nostic concepts, the NLP system was designed to exclude negations

and family history. As such, sentences describing a patient's family

F IGURE 3 Schematic of building NLP phrase structures. Schematic of building phrase structures to capture diagnostic concepts using defined
word classes. This example sentence referencing the placement of stents in a coronary artery would then resolve to an output indicating that the
patient had a coronary revascularization procedure

TABLE 3 Performance characteristics of each of the five modules

Performance characteristics of each of the five modules

Hypertension

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 97.5 (91.3–99.7) 97.5 (91.3–99.7) 99.2 (95.4–100) 99.2 (95.4–100) 98.7 (93.1–100) 98.7 (93.1–100)

Sentence level 96.2 (92.7–98.4) 96.3 (92.9–98.4) NA NA 98.1 (95.2–99.5) 98.1 (95.3–99.5)

Dyslipidemia

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 97.1 (89.8–99.6) 97.1 (89.9–99.7) 100 (97.2–100) 100 (97.2–100) 100 (94.6–100) 100 (94.6–100)

Sentence level 94.7 (90.1–97.5) 94.8 (90.4–97.6) NA NA 99.4 (96.6–100) 99.4 (96.6–100)

Diabetes mellitus

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 100 (88.1–100) 100 (88.1–100) 98.2 (95.0–99.6) 98.2 (95.0–99.6) 90.6 (75.0–98.0) 90.6 (75.0–98.0)

Sentence level 90.6 (84.2–95.1) 90.8 (84.4–95.1) NA NA 95.1 (89.6–98.2) 95.2 (89.8–98.2)

Coronary artery disease

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 98.2 (90.1–100) 98.2 (90.1–100) 94.5 (89.5–97.6) 94.5 (89.5–97.6) 86.9 (75.8–94.2) 86.9 (75.8–94.2)

Sentence level 88.5 (83.5–92.4) 88.7 (83.8–92.5) NA NA 93.2 (88.9–96.2) 93.3 (89.1–96.3)

Stroke/TIA

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 95.1 (83.5–99.4) 95.1 (83.5–99.4) 98.7 (95.5–99.8) 98.7 (95.5–99.8) 95.1 (83.5–99.4) 95.1 (83.5–99.4)

Sentence level 85.7 (79.5–90.6) 86.1 (80.0–90.9) NA NA 94.1 (89.1–97.3) 94.3 (89.4–97.4)
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history of ischemic heart disease or that the patient has no personal

history of CAD were programmed to be ignored by the NLP system.

This intentional design was used to only identify the patient's personal

history of the diagnostic concept of interest across all five NLP

modules.

3 | RESULTS

For each NLP module, we calculated the following metrics on each

unique sentence-level reference: sensitivity and positive predictive

value (PPV). On the document level, we calculated the sensitivity,

PPV, and specificity of each algorithm. In addition, we calculated the

corrected sensitivity, corrected PPV, and corrected specificity for each

module to account for true positive references that were identified by

the NLP system but missed by the manual physician adjudication. For

the three modules that contained multi-layered outputs, we further

calculated the sensitivity, specificity, and PPV of each distinct

subcategory.

The performance of each of the five modules is given in Table 3.

The NLP modules demonstrated robust performance for all the stud-

ied disease states, but was particularly accurate for the hypertension,

dyslipidemia, and stroke modules with greater than 95% PPV for

note-level performance. For the three modules that had additional

subcategories (e.g., diabetes, CAD, and stroke), the performance of

each subcategory is presented in Table 4. For two of the subcate-

gories – type I diabetes and ST-segment elevation myocardial infarc-

tion – there were no references to these diagnostic concepts within

the test set notes. Accordingly, we could not calculate the perfor-

mance characteristics on these subcategories. Additionally, two sub-

categories, for example, references to a greater than 50% coronary

stenosis and unstable angina – had 10 or fewer references and are

reported separately in the Appendix S1.

4 | DISCUSSION

Through a meticulous development and validation process, we

designed five highly accurate NLP modules that can be used to assess

for the presence of important cardiovascular comorbidities in free-

text electronic health records. When putting our metrics in the con-

text of other methods of extracting such data—such as using ICD bill-

ing codes—it is clear that rigorous NLP modules have the potential to

significantly improve the accuracy of coding cardiovascular comorbid-

ity data. Across all five modules, we almost always achieved sensitiv-

ity, specificity, and PPV of greater than 90%. This compares to

sensitivities as low as 35% for stroke,6 61% for hypertension2 and

57% for coronary artery disease2 in previously published work on the

accuracy of ICD coding for the ascertainment of cardiovascular risk

factors.

Unlike administrative billing codes which are coded for episodi-

cally and intermittently, our NLP modules accurately extract data

from individual sentences within free-text documentation. This

allows for a significant increase in the sensitivity of extracting such

data, especially for patients who have only a limited number of

medical encounters. Additionally, because administrative billing

codes were not designed for medical research purposes, they are

subject to both miscoding and under-coding, realities which signifi-

cantly impact their validity. Our NLP modules demonstrate the

power of accurately extracting data from the rich narrative of free-

text documentation that is the backbone of clinical electronic

health data.

Another commonly used approach for computational analysis of

text is statistical analysis, also known as machine learning. Machine

learning methods can also attain high accuracy but typically result in

“black box” models where reasons for categorization of a particular

piece of text are not clear to an external observer. This leads to diffi-

culties in adaptation of machine learning-based NLP tools between

different institutions that may have distinct clinical vernacular and

forces development of NLP tools from scratch at every organization

and for every task, consuming scarce resources and impeding progress

of the field.29 With that in mind, in this study we pursued the

approach of a more transparent, human-designed heuristic-based NLP

technology that allows tracing of each step of text analysis as well as

easy modification of NLP tools to correct errors or add new function-

ality. We have placed the NLP modules we have designed in the pub-

lic domain.30 We expect that their portability and transparency will

allow them to serve as the foundation for a family of cardiovascular

NLP tools that could be used for population management, clinical

research, and clinical trial recruitment across multiple healthcare

organizations.

Additional strengths of our work include the rigorous manual

adjudication process by physicians of the training and test set notes,

the accuracy of our modules, and the ability of our NLP systems to

extract granular data from sentence-level documentation. Further-

more, given that the repository of notes used for both the training

and test sets spanned from the years 2000–2019 within a large medi-

cal system, our NLP modules likely capture the majority of linguistic

formulations used to describe the clinical diagnoses of interest.

Despite the accuracy of our modules, our NLP system has some

limitations. First, because our NLP modules extract data only from

narrative notation—without being able to corroborate diagnoses

with primary data such as imaging or laboratory results—it cannot

determine if a given sentence contains accurate or inaccurate infor-

mation. Accordingly, if a clinician mistakenly documented that a

given patient has a history of coronary artery disease, our systems

will not be able to recognize that error. Second, although the over-

all accuracy of our modules was excellent, the performance of our

modules on the disease subcategories (such as the type of diabetes,

CAD subcategory, and type of stroke) is harder to categorize given

that there was a limited number of such sub-diagnoses present in

the test set notes. Finally, because our clinical notes came from a

large cardiovascular repository from two academic medical centers

in the United States, the performance of our modules on other sets

of documentation or those from other institutions may be

different.
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TABLE 4 Performance characteristics of NLP sub-categories

Performance characteristics of NLP sub-categories

Diabetes module: type 2 diabetes

Sensitivity Specificity PPV

Original Corrected Original Original Corrected

Note level 100 (76.8–100) 100 (76.8–100) 100 (98.0–100) 100 (98.0–100) 100 (76.8–100) 100 (76.8–100)

Sentence level 96.6 (82.2–99.9) 96.6 (82.2–99.9) NA NA 100 (87.7–100) 100 (87.7–100)

Diabetes module: unspecified diabetes

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 100 (85.2–100) 100 (85.2–100) 98.3 (95.1–99.6) 98.3 (95.1–99.6) 88.5 (69.8–97.6) 88.5 (69.8–97.6)

Sentence level 88 (80.0–93.6) 88.2 (80.4–93.8) NA NA 92.6 (85.4–97.0) 92.8 (85.7–97.0)

CAD module: CAD unspecified

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 97.9 (88.7–100) 97.9 (88.7–100) 96.7 (92.5–98.9) 96.7 (92.5–98.9) 90.2 (78.6–96.7) 90.2 (78.6–96.7)

Sentence level 85.6 (77.9–91.4) 86.1 (78.6–91.7) NA NA 91.8 (85.0–96.2) 92.1 (85.5–96.3)

CAD module: MI

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 82.6 (61.2–95.1) 82.6 (61.2–95.1) 98.9 (96.0–99.9) 98.9 (96.0–99.9) 90.5 (69.6–98.8) 90.5 (69.6–98.8)

Sentence level 86 (72.1–94.7) 86 (72.1–94.7) NA NA 92.5 (79.6–98.4) 92.5 (79.6–98.4)

CAD module: revascularization

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 95.8 (78.9–99.9) 95.8 (78.9–99.9) 98.3 (95.1–99.6) 98.3 (95.1–99.6) 88.5 (69.8–97.6) 88.5 (69.8–97.6)

Sentence level 87.8 (78.2–94.3) 87.8 (78.2–94.3) NA NA 94.2 (85.8–98.4) 94.2 (85.8–98.4)

Stroke/TIA module: ischemic stroke

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 95.0 (75.1–99.9) 95.2 (76.2–99.9) 98.3 (95.2–99.7) 98.3 (95.2–99.7) 86.4 (65.1–97.1) 87.0 (66.4–97.2)

Sentence level 96.7 (88.7–99.6) 96.8 (88.8–99.6) NA NA 88.1 (77.8–94.7) 88.2 (78.1–94.8)

Stroke/TIA module: embolic stroke

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 80.0 (44.4–97.5) 80.0 (44.4–97.5) 100.0 (98.1–100) 100.0 (98.1–100) 100.0 (63.1–100) 100.0 (63.1–100)

Sentence level 70.6 (44.0–89.7) 73.7 (48.8–90.9) NA NA 92.3 (64.0–99.8) 93.3 (68.1–99.8)

Stroke/TIA module: unspecified stroke

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 100.0 (86.8–100) 100.0 (87.2–100) 98.9 (95.9–99.9) 98.8 (95.9–99.9) 92.9 (76.5–99.1) 93.1 (77.2–99.2)

Sentence level 90.2 (79.8–96.3) 90.3 (80.1–96.4) NA NA 84.6 (73.5–92.4) 84.9 (73.9–92.5)

Stroke/TIA module: TIA

Sensitivity Specificity PPV

Original Corrected Original Corrected Original Corrected

Note level 100.0 (59.0–100) 100.0 (59.0–100) 98.4 (95.5–99.7) 98.4 (95.5–99.7) 70.0 (34.8–93.3) 70.0 (34.8–93.3)

Sentence level 100.0 (73.5–100) 100.0 (75.3–100) NA NA 75.0 (47.6–92.7) 76.5 (50.1–93.2)
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The accurate extraction of data from clinical records is critically

important for prospective and retrospective clinical research, including

for recruitment for clinical trials and for population-based studies. As

demonstrated through our work, NLP has the potential to accurately

identify disease states from the electronic medical record, enabling

the robust description of baseline characteristics. Our five NLP

modules—specifically built to identify individuals with cardiovascular

disease comorbidities—is a highly accurate and open-source system

that will allow researchers to better understand the baseline charac-

teristics of the patients in their research cohorts.
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