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Gastric cancer, as one of the leading causes of cancer related deaths worldwide, causes about 800,000 deaths per year. Up to now, the
mechanism underlying this disease is still not totally uncovered. Identification of related genes of this disease is an important step
which can help to understand the mechanism underlying this disease, thereby designing effective treatments. In this study, some
novel gastric cancer related genes were discovered based on the knowledge of known gastric cancer related ones. These genes were
searched by applying the shortest path algorithm in protein-protein interaction network. The analysis results suggest that some of
them are indeed involved in the biological process of gastric cancer, which indicates that they are the actual gastric cancer related
genes with high probability. It is hopeful that the findings in this study may help promote the study of this disease and the methods
can provide new insights to study various diseases.

1. Introduction

Gastric carcinogenesis is a multistep process involving
genetic and epigenetic alteration of protein-coding pro-
tooncogenes and tumor-suppressor genes. Gastric cancer
(GC) is the fourth most commonly diagnosed cancer and is
estimated to be the second most common cause of cancer
related death and causes about 800,000 deaths worldwide per
year [1, 2]. Because of the improvement of the dietary struc-
ture, themortality rate shows a declining trendworldwide [3].
However, the incidences of gastric cancer are still remarkable
in areas where infection by Helicobacter pylori is prevalent
[4]. BesidesH. pylori, smoking and alcohol consumption also
increase the risk of developing gastric cancer significantly
[5, 6]. Compared with women, men have a higher incidence,
while estrogen may protect women against the gastric cancer
[7].

In the previous cases, over 90% gastric cancers are adeno-
carcinomas, which could be divided into two major types

in terms of the histopathology [8]. Intestinal type gastric
cancer is often related to environmental factors such as
H. pylori, while diffuse type gastric cancer is more often
associated with genetic abnormalities. Caldas et al. reviewed
that the diffuse type gastric cancer tended to occur in
female and young individuals [9]. Besides adenocarcinomas,
other types of gastric cancers like lymphomas occurred in
a very low incidence [10]. Since the gastric cancer leads to
high mortality, the early diagnose especially the molecular
diagnose is particularly important for the therapy.

So far, numerous genes have been found involved in
gastric tumorigenesis. Among the reported gastric cancer
related genes, most of them could have also been found
in other types of carcinomas. p53, famous for its tumor-
suppressing role, has a mutated rate ranging from 0 to 21%
in diffuse type GC and 36–43% in intestinal type GC [11];
E-cadherin, which plays a pivotal role in EMT (Epithelial
Mesenchymal Transition), is predisposed to mutagenesis in
sporadic diffuse type GC (33–50%) [12]; another star gene
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harboring high correlation with gastric cancer is RNUX3,
which manifests to be a tumor-suppressor gene of GC [13].
Although dozens of genes have been found related to gastric
cancer, they are insufficient to elucidate the tumorigenesis of
GC unless more relevant genes being uncovered.

It is time-consuming to discover novel gastric cancer
related genes by experiment alone, because the search space
is very large. Computational approach is an alternative way
which can help investigators screen out some related genes.
On the other hand, lots of computational approaches have
been developed to settle various biological problems, such
as drug design [14–19] and analysis of complicated biological
network [20–24]. In this study, a computational method was
built to discover novel gastric cancer related genes based
on some known related ones retrieved from Gastric Cancer
Database, UniProtKB, and TSGene Database. After applying
the shortest path algorithm in protein-protein interaction
network to search the shortest path connecting any pair
of known gastric cancer related genes, the candidate genes
were found. Further analysis suggests that some of them are
related to the formation and development of gastric cancer.
We hope that this contribution may give help to uncover
the mechanism of this disease, thereby designing effective
treatments.

2. Materials and Methods

2.1. Materials. Gastric cancers related genes are collected
from the following three datasets: (1) 102 genes are picked
up fromGastric Cancer Database (http://www.gastric-cancer
.site40.net/); (2) 128 reviewed gastric cancer related genes
were found in the UniProtKB (Protein Knowledgebase,
http://www.uniprot.org/uniprot/) by setting the keyword as
human gastric cancer oncogene/suppressor gene, where 86
are oncogenes and 42 are suppressor genes; (3) 9 genes
were obtained from TSGene Database (Tumor Suppressor
Gene Database, http://bioinfo.mc.vanderbilt.edu/TSGene/)
by searching the human gastric cancer in the Literature
Search box. After combining these genes, we obtained 150
gastric cancer related genes, which were available in Sup-
plemenary Material I (available online at http://dx.doi.org/
10.1155/2014/371397).

2.2. Protein-Protein Interaction (PPI) Network. It is known
that interactions of proteins are important for the major-
ity of biological functions. Many studies have shown that
proteins in one interaction always share similar functions
[25–29]. Since gastric cancers related genes may have some
common features, it is feasible to discover novel gastric
cancers related genes based on known related ones and PPI
network. In this study, the PPI network was constructed
based on the protein interaction information retrieved
from STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins, http://string.embl.de/) (version 9.0) [30],
a well-known database integrating known and predicted
protein interactions. In the obtained file, each interaction
consists of two protein IDs and a score measuring the like-
lihood of the interaction’s occurrence. For later formulation,

the score of the interaction between proteins 𝑝
1
and 𝑝

2
was

denoted by 𝐼(𝑝
1
, 𝑝
2
). To construct the weighted network,

proteins in the STRING were taken as nodes and two nodes
were adjacent if and only if the score of the interaction
between the corresponding proteins was greater than zero.
In addition, the score of the interaction was used to label the
weight of the corresponding edge as follows:

𝑤 (V
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2
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𝑖
(𝑖 = 1, 2) was the corresponding protein of node V

𝑖
.

2.3. Shortest Path Genes. As described in Section 2.1, 150
gastric cancer related genes were collected, which must have
some common features related to gastric cancer. On the
other hand, according to Section 2.2, two proteins in one
interaction, that is, they are adjacent in the constructed PPI
network, always share common features. It can be further
deduced that proteins in the shortest path connecting two
known gastric cancer related genes may share some common
features that the two known gastric cancer related genes
have. Therefore, we searched the shortest path between any
pair of known gastric cancer related genes by Dijkstra’s
algorithm, themost famous shortest path algorithmproposed
by Dijkstra in 1956 [31].

After collecting the shortest paths connecting any pair
of known gastric cancer related genes, we found that some
nodes/genes occurred in many paths, while the majority of
nodes/genes in PPI network were not in any path. To distin-
guish these nodes/genes, the betweenness of each node/gene
was calculated, which is defined as the number of the shortest
paths containing the node/gene as an inner node. Since
the concept of betweenness accounts for direct and indirect
influences of proteins at distant network [32], it has been
employed in the study of various natural and man-made
networks [33–38].

It is easy to see that genes with high betweenness may
share more features related to gastric cancer than those with
low betweenness, while the likelihood of gene with between-
ness equal to 0 to be the novel gastric cancer related gene
is zero. Accordingly, we picked out genes with betweenness
greater than 0 and termed them as the shortest path genes.
Since the main purpose of this study is to discover novel
gastric cancer related genes, the known gastric cancer related
genes were not included in the set of shortest path genes.

2.4. Further Filtering Based on Permutation Test. As de-
scribed in Section 2.3, some of the shortest path genes can be
obtained based on their betweenness. However, the between-
ness of some nodes may be strongly influenced by the
essential structure of the network. For example, the cut-
vertex of the network may always receive high betweenness
easier than other vertices. To control this false discovery, a
permutation test was conducted to further filter these shortest
path genes as follows.

(i) Randomly select 1,000 gene sets 𝐺
1
, 𝐺
2
, . . . , 𝐺

1000
in

PPI network with the same size of known gastric
cancer related gene set.
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(ii) Calculate the betweenness of each shortest path gene
on each gene set 𝐺

𝑖
(1 ≤ 𝑖 ≤ 1000).

(iii) The permutation FDR of the shortest path gene p was
computed by

FDR (𝑝) =
∑
1000

𝑖=1
𝛿
𝑖

1000
, (2)

where 𝛿
𝑖
was defined to be 1 if the betweenness of 𝑝

on 𝐺
𝑖
was greater than that of 𝑝 on the known gastric

cancer related gene set.

It is obvious that smaller permutation FDRof one shortest
path gene indicates that it is the actual gastric cancer related
gene with high possibility.

2.5. Gene Set Enrichment Analysis. DAVID [39] is a func-
tional annotation tool, which has been widely used to analyze
gene lists derived from different biological problems [40–
45]. Here, it was also employed for KEGG pathway and GO
enrichment analysis of the obtained gene set.The enrichment
𝑃 value was corrected to control family-wise false discovery
rate under certain rate (e.g., ≤0.05) with Benjamin multiple
testing correction method [46]. During the enrichment
analysis, all genes in the human genome were considered. 13
items in the output of DAVID and their meanings are listed
in Table 1. For detailed description, please see Huang et al.’s
study [39].

3. Results and Discussion

3.1. Candidate Genes. Of the 150 known gastric cancer related
genes, the shortest path connecting any pair of them was
searched in PPI network constructed in Section 2.2. After
counting the betweenness of each gene in PPI network,
466 shortest path genes with betweenness greater than zero
were retrieved. These 466 genes and their betweenness can
be found in Supplementary Material II. To exclude the
false discovery, the permutation test was conducted. The
permutation FDRs of 466 shortest path genes were calculated
by (2) and also listed in Supplementary Material II. It can
be observed that 144 genes were with permutation FDRs no
more than 0.1. These genes were considered to have a strong
relationship with gastric cancer.

3.2. Results of Gene Set Enrichment Analysis. DAVID, as a
functional annotation tool, was employed to analyze the
144 shortest path genes. The analysis results included two
categories: GO and KEGG. These results were available in
SupplementaryMaterials III and IV, respectively.The detailed
discussion based on these results was as follows.

From Supplementary Material III, 294 GO terms were
enriched by the 144 genes. We investigated the first 10 GO
terms in the list, which were shown in Figure 1. The “Count”
items in the output of DAVID for these 10 GO terms were
also shown in Figure 1. Among these 10 GO terms, 5 out
of the 10 GO terms are cellular component (CC) GO terms
including (1) GO:0005654: nucleoplasm (“count” = 30); (2)
GO:0031981: nuclear lumen (“count” = 34); (3) GO:0043233:

Table 1: Items in the output of DAVID and their meanings.

Item Meaning
Category DAVID category, that is, KEGG or GO
Term Gene set name

Count The number of genes associated with this
gene set

Percentage Calculated by “gene associated with this
gene set”/“total number of query genes”

𝑃 value Modified Fisher Exact 𝑃 value

Genes The list of genes from your query set that
are annotated to this gene set

List total The number of genes in your query list
mapped to any gene set in this ontology

Pop hits The number of genes annotated to this
gene set on the background list

Pop total
The number of genes on the background
list mapped to any gene set in this
ontology

Fold
enrichment

The ratio of the proportions on query
genes and the background information
which are associated with the gene set

Bonferroni Bonferroni adjusted 𝑃 value
Benjamini Benjamini adjusted 𝑃 value
FDR FDR adjusted 𝑃 value

organelle lumen (“count” = 37); (4) GO:0031974: membrane-
enclosed lumen (“count” = 37); (5) GO:0005829: cytosol
(“count” = 30). As we know, tumorigenesis is a very com-
plicated biological process which means the transform pro-
cesses could take place everywhere in the cells [47]. In
our analysis results, the related proteins distribute both
in nuclear and cytosol which is in accordance with the
characters of the gastric cancer. The remaining 5 GO terms
are biological process (BP) GO terms: (1)GO:0032268: regu-
lation of cellular proteinmetabolic process (“count” = 20); (2)
GO:0009725: response to hormone stimulus (“count” = 17);
(3) GO:0031399: regulation of protein modification process
(“count” = 15); (4) GO:0009719: response to endogenous
stimulus (“count” = 17); (5) GO:0010604: positive regulation
of macromolecule metabolic process (“count” = 25). Liu et
al. reported that the cancer cells usually harbor abnormal
metabolic status [48]. In our results 80% (4/5) BP are relative
to themetabolic stress response bymeans of direct regulation
of the metabolic process or indirect regulation by altering
the stimulus-related pathways. Besides, proteinmodification,
which is also enriched in our results, plays an important role
in the carcinogenesis by altering the pivotal proteins [49].
Although these genes may not be the indispensable factors in
gastric cancer, the common points among them would give
us the hints about the tumorigenesis of the gastric cancer.

FromSupplementaryMaterial IV, 8KEGGpathwayswere
enriched by 144 genes, which were shown in Figure 2. It can
be observed that 6 out of 8 KEGG pathways were with 𝑃
value less than 0.05, which were investigated as follows. The
first pathway was hsa04110: cell cycle pathway (“count” = 10).
10 genes including PCNA, MYC, and CCND1 are enriched
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Figure 1: The top 10 GO terms enriched by 144 genes. The 𝑥-axis lists GO’s ID and name, while the 𝑦-axis represents the number of genes
that shared the GO term among the 144 genes.
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Figure 2: The 8 KEGG pathways enriched by 144 genes. The 𝑥-axis lists pathway’s ID and name, while the 𝑦-axis represents the number of
genes that shared the pathway among the 144 genes.

in this pathway. One of the significant characters of gastric
cancer is the abnormal activated cell cycle [50]. Among
these genes, PCNA is responsible for the DNA synthesis and
CCND1 could alter cell cycle by regulating the CDK kinases
[51, 52]. Other 2 pathways found in our study are related to the
DNArepairwhich are also very critical for the carcinogenesis.
Hsa03450: nonhomologous end joining (NHEJ) (“count” = 3)
is a pathway that repairs double-strand breaks in DNA
and base excision repair (BER) is a cellular mechanism
that repairs damaged DNA throughout the cell cycle [53,
54]. Another intriguing pathway is hsa03040: spliceosome
pathway (“count” = 7) which was always abnormal in cancer
cells [55]. We speculate that the spliceosome could modify

the expression of the oncogenes or tumor-suppress genes
which eventually lead to the tumorigenesis. Finally, we also
find the hsa05221: acute myeloid leukemia (AML) pathway
(“count” = 7) and cancer related pathways in our list. The
results imply that the gastric cancer has the common mech-
anism as well as other cancers especially the AML. Look has
reviewed that RUNX1 is the key factor in the hematopoietic
development and highly correlated with AML [56]. However,
its homologous protein RUNX3 that shares 70% similarity
has been reported playing pivotal role in gastric cancer [57].
The finding unravels that cancer normally has the common
molecular mechanism as well as the specific pathway with
type-dependent pattern. Although several reported pathways
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are included in our study, the novel pathways with gastric
cancer would expand our views of mechanisms about the
tumorigenesis of gastric cancer. On the other hand, we have
observed that some genes in these pathways could play a very
important role in the carcinogenesis of gastric cancer.

3.3. Analysis of the Relationship of Some Candidate Genes
and Gastric Cancer. As described in Section 3.1, 144 genes
were discovered by our method. Some of them may have
strong relationship with gastric cancer and were discussed as
follows. Table 2 listed these genes and their betweenness and
permutation FDRs.

Proliferating Cell Nuclear Antigen (PCNA) (see row 2
of Table 2), also known as cyclin, is an auxiliary protein of
DNA polymerase-𝛿 that plays important roles both in DNA
synthesis and DNA repair [51, 58]. PCNA could act as a
homotrimer and helps increase the processivity of leading
strand synthesis duringDNA replication [59, 60]. In response
to DNA damage, this protein is ubiquitinated and is involved
in the RAD6-dependent DNA repair pathway [61, 62]. As we
know,DNA repair is themainway to remove the carcinogenic
lesions caused by UV or other common mutagens [63]. Pas-
cucci et al. have reviewed that the NER (nucleotide excision
repair) was highly correlated with skin cancer and intestinal
cancer [64]. Intriguingly, numerous works have considered
PCNA labeling rate as the prognostic indicator of gastric
cancer because its expression was consistent with malignant
potential of gastric cancer [65–67]. Ji et al. have found the
abnormal increase of PCNAexpression in 58 gastric carci-
noma tissues [68]. Similar conclusion was also achieved by
Takamura et al. who have performed immunohistochemical
study on 164 patients with gastric carcinomas [69]. Although
the strong correlation is observed between PCNAand gastric
cancer, the detailed mechanism of how PCNA promotes the
gastric cancer needs further elucidation.

Besides PCNA, another protein in highly conserved
cyclin family was also found in our study. CCND1 (see
row 3 of Table 2), with official full name of cyclin D1,
was firstly described by Motokura et al. in 1991 [70]. In
the following decades, the importance of CCND1 in cell
cycle and tumorigenesis was underlined by different labs.
Because of the amplification of the 11q13 regionwhereCCND1
locates, CCND1 is frequently overexpressed in human can-
cers accompanied with abnormalities that are driven by
multiple mechanisms including genomic alternations, post-
transcriptional regulation andposttranslational protein stabi-
lization [71–73]. On one hand, cyclin D1 could increase CDK
activity and consequently result in continuous proliferation
which is necessary for tumorigenesis [74, 75]. On the other
hand, cyclinD1may induce the tumorigenesis in certain types
of cancers by means of its nuclear receptor-agonistic activity
in the CDK-independent way [52, 76].

MYC (see row 4 of Table 2) is a regulator gene that codes
for a transcription factor, and it is frequently mutated in
many cancers. In Myc-related cancers, Myc is constitutively
expressed and leads to the abnormal expression of many
genes which may be involved in cell proliferation, differ-
entiation and apoptosis, and these uncontrolled biological

processes finally underlie the cancer. Myc is believed to
regulate expression of 15% of all genes [77]. Similar with
CCND1,Myc expression could be regulated transcriptionally,
posttranscriptionally, or posttranslationally [78]. Chung and
Levens have reviewed that the deregulated expression of Myc
is sufficient to lead to cellular transformation in vitro and
tumorigenesis in vivo [79]. Besides the transforming role,
Myc could also promote chromosomal instability by means
of its function as a transcriptional regulator [80]. In the
previous reports, Myc overexpression has been described
in over 40% of gastric cancer [81]. Among nearly half the
gastric cancer, copy number gains are frequently detected
along chromosome 8 where Myc locates [82, 83]. As the key
factor of tumorigenesis, Myc could provide potential target
for therapy for gastric cancer [84].

FOS (see row 5 of Table 2), well known as c-fos, encodes
a 62 kDa protein, which forms heterodimer with c-jun and
subsequently results in the formation of AP-1 complex. FOS
has been found to be overexpressed in a variety of cancers.
Bakin and Curran have found that c-fos could change
DNAmethylation pattern by regulating DNMT1 and thereby
cause the downregulation of tumor suppressor genes [85].
In addition, c-fos could lead to the loss of cell polarity
and EMT which is critical for the metastatic and invasive
growth of cancer cells [86]. Hu et al. also found that c-fos
is required for the expression of matrix metalloproteinases
that are indispensable for invasive growth of cancer cells
[87]. However, some recent studies have unraveled the tumor
suppressor activity of c-fos, including prohibition of the cell
cycle progression, promotion of cell death, or repressing the
anchorage-independent growth [88]. In coincidence with the
negative role of c-fos in tumorigenesis, Jin et al. analyzed
625 consecutive gastric cancers; 388 cases (62.1%) showed
loss of nuclear c-fos expression [89]. Consistent results were
concluded by Zhou et al. in 58 patients with gastric cancer
[90]. However, Mazurenko et al. reported that high level
of c-fos expression was observed in stomach carcinomas
[91]. The discordance may be caused by the different stages
of progression in different studies. In conclusion, c-fos is
a double-edged sword, which could promote or suppress
tumorigenesis of gastric cancer.

RUNX1 (see row 6 of Table 2), better known as AML1,
plays a critical role in hematopoietic development [92].
RUNX1 belongs to the RUNX family whose 3 members
(RUNX1, RUNX2, and RUNX3) share 70% resemblance.
Unlike its familial proteinRUNX3 that is a strong candidate as
a gastric cancer tumor suppressor. RUNX1 is always consid-
ered as a tumor suppressor for acute lymphoblastic leukemia
(AML) [56]. Usui et al. have examined mRNA expression
of all three RUNX genes in the gastric mucosa, and they
found that RUNX1 was coexpressed with RUNX3 in pit cells
[93]. Sakakura et al. observed remarkable downregulation
of RUNX1 and RUNX3 in 9 gastric cancer cell lines and
56 primary gastric cancer specimens [94]. Although RUNX1
is famous for its involving in AML, more lines of evidence
shed light to its anticarcinogenesis activity in other carcinoma
including gastric cancer.

Other genes found in our study have also been
reported relating with gastric cancer. Specific SNPs (Single



6 BioMed Research International

Table 2: Important candidate shortest path genes and their betweenness and permutation FDRs.

Ensemble ID of shortest
path genes Gene name Betweenness Permutation FDR

ENSP00000368438 PCNA 454 0.083
ENSP00000227507 CCND1 594 0.02
ENSP00000367207 MYC 779 0.01
ENSP00000306245 FOS 318 0.035
ENSP00000300305 RUNX1 224 0.002
ENSP00000262887 XRCC1 152 0.094
ENSP00000352516 DNMT1 169 0.093
ENSP00000379110 CXCL1 107 0.033

Nucleotide Polymorphism) in XRCC1 (X-ray repair cross-
complementing 1) (see row 7 of Table 2) are highly associated
with gastric cancer [95]. DNMT1 (DNA methyltransferase
1) (see row 8 of Table 2), which is overexpressed in gastric
cancer, is associated with increased risks of gastric atrophy
with its abnormal polymorphisms [96]. The expression of
CXCL1 (chemokine (C-X-C motif) ligand 1) (see row 9 of
Table 2) is higher in gastric cancer tissues and endows the
cancer cells with more powerful migration and invasion
ability [97]. Beyond these genes, more genes associated with
gastric tumorigenesis require more evidences for validation
or further exploration.

4. Conclusion

Identification of disease genes is one of the most important
problems in biomedicine and genomics. For gastric cancer, as
one of the leading causes of cancer related deaths worldwide,
it is eager to discover its related genes, which can help to
uncover its mechanism and design effective treatments. This
contribution presented a computational method to identify
novel gastric cancer related genes based on known related
ones by shortest path algorithm and PPI network. The
analysis implies that some genes discovered in this study have
direct or indirect relationshipwith gastric cancer. It is hopeful
that this contribution would give a new insight to study this
disease and other diseases.
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