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Animal-mediated pollination is required for the reproduction of the majority

of angiosperms, and pollinators are therefore essential for ecosystem

functioning and the economy. Two major threats to insect pollinators are

anthropogenic land-use change and the spread of pathogens, whose effects

may interact to impact pollination. Here, we investigated the relative effects

on the ecosystem service of pollination of (i) land-use change brought on by

agriculture and urbanization as well as (ii) the prevalence of pollinator para-

sites, using experimental insect pollinator-dependent plant species in natural

pollinator communities. We found that pollinator habitat (i.e. availability of

nesting resources for ground-nesting bees and local flower richness) was

strongly related to flower visitation rates at the local scale and indirectly

influenced plant pollination success. At the landscape scale, pollination

was positively related to urbanization, both directly and indirectly via elev-

ated visitation rates. Bumblebees were the most abundant pollinator group

visiting experimental flowers. Prevalence of trypanosomatids, such as the

common bumblebee parasite Crithidia bombi, was higher in urban compared

with agricultural areas, a relationship which was mediated through higher

Bombus abundance. Yet, we did not find any top-down, negative effects of

bumblebee parasitism on pollination. We conclude that urban areas can be

places of high transmission of both pollen and pathogens.
1. Introduction
Loss of biodiversity in general, and of pollinator diversity in particular, is

thought to be primarily driven by human-induced land-use change [1,2].

(Semi-) natural habitats, rich in diverse floral food resources and pollinator

nesting opportunities, are fragmented and degraded during conversion to

highly impervious urban and intensively managed agricultural areas [3]. Thus,

impacts of both increasing urbanization and agricultural intensification on wild

pollinator communities are considered to be, on the whole, negative [4–6].

However, responses may vary depending on the magnitude of the land-use

change and type of land-use conversion [7], leading to neutral or even positive effects
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on pollinators [8–10] and the ecosystem service of pollination

[11,12]. Moderate human land-use can potentially support

pollinator populations at the landscape scale by increasing hetero-

geneity of the surrounding habitat mosaic and thus enhance

availability and accessibility of suitable habitats [2]. At the local

scale, moderate human land-use can also provide alternative fora-

ging and nesting resources for bee pollinators [2,9,13]. Indeed,

increasing evidence suggests that moderately urbanized environ-

ments can facilitate pollinator persistence. For example, flower-

rich suburban gardens have been found to promote quicker bum-

blebee colony growth [14] and higher nest densities compared

with farmland [15] or other types of rural habitats [16]. Appropri-

ately managed urban areas are therefore potentially important

reservoirs of pollinator biodiversity [17,18].

In addition to land-use change, pathogens can also

negatively affect pollinator populations and pollination. Patho-

gens are known to reduce pollinator fitness and abundance

and alter their foraging behaviour [19], thus potentially caus-

ing cascading, negative multi-trophic effects on pollination.

For example, Gillespie & Adler [20] showed that the seed set

of plants (e.g. Trifolium pratense) associated with bumblebee

(Bombus spp.) visitation was negatively correlated with preva-

lence of the native microsporidian parasite Nosema bombi in

these pollinators.

However, no study has so far considered top-down effects of

parasitism on pollination across changing landscapes and thus

the interactive effects of anthropogenic land-use change and

parasitism on mutualistic plant–pollinator interactions and

pollination service provision. For example, as anthropogenic

land-use can influence pollinator abundance, it could indirectly

affect the prevalence of pathogens, which, all else equal, would

be predicted to be higher in high density host populations

and vice versa [21]. As urbanized areas seem to support high

densities of some pollinators such as bumblebees [16,22], this

could potentially further promote parasite abundance and

transmission [21] and reduce pollination service provision.

Bumblebees offer us an excellent model system to study the

indirect effects of parasitism on mutualisms [20]. The majority

of Bombus spp., are generalist pollinators, foraging on many

native wild and crop plants in diverse terrestrial habitats in

temperate regions [15]. Furthermore, some species are quite

resilient to land-use change and can be found across a gradient

of habitat disturbance. Bumblebees are also attacked by a

number of parasites, including the trypanosomatid Crithidia
bombi and the microsporidium Nosema bombi. Crithidia bombi
is a common gut parasite that affects colony reproduction

and foraging performance [19,23–25]. The less common

N. bombi infects the entire animal and has been shown to

reduce worker survival and colony fitness [26–28]. Thus,

these two parasites could potentially influence both the quan-

tity and quality of plant–pollinator interactions and alter the

provision of pollination service to plants [20].

We conducted an empirical study on flower visitation and

pollinator parasitism across an array of sites varying in human

land-use from agricultural to urban and, at the same sites, eval-

uated pollination service provision using experimental arrays

of wild flowers. We then used piecewise structural equation

modelling (SEM) (i) to examine how an agricultural to urban

land-use gradient and local habitat features affected pollinator

visitation rates and parasitism of bumblebees and (ii) to deter-

mine the interacting impacts of bumblebee abundance and

parasitism on the ecosystem service of pollination of those

experimental plant communities.
2. Methods
(a) Study system and sites
Fieldwork was conducted in July and August 2013 at nine indepen-

dent sites within the federal state of Saxony-Anhalt, Germany. Sites

were selected using land cover maps within a Geographic Infor-

mation System (GIS), to differ in their degree of anthropogenic

land-use. Within each site, we selected a 25� 25 m plot near its

geographical centre with diverse floral resources, and ensured a

minimum distance of 3 km between sites (figure 1 and see elec-

tronic supplementary material, table S1). Although other types of

habitat were present, urban and agricultural land-use constituted

more than 75% of the landscape surrounding all sites.

We used greenhouse-raised Trifolium pratense, Trifolium
repens, Borago officinalis, and Sinapis alba plants as phytometers

at all nine sites and evaluated their pollination success to

estimate the provision of pollination services. All plant species

are insect-pollinated and self-incompatible [29,30], differing in

their dependence on pollinators with short (for the plants B. offi-
cinalis and S. alba) and long (for Trifolium spp.) mouthparts.

Seeds of all plants were obtained by a local seed provider

(Rieger Hofmann GmbH). After germination, seedlings were

grown for two months in an insect-free greenhouse before

placement at study sites.

Five potted plants per species with already open flowers

marked with coloured tape were placed out at each field site

for four days, facing south to reduce the effects of differential

shading (B. officinalis and S. alba in July, Trifolium spp. in

August). Plants were randomly placed at 1 m distance along a

transect of 10 � 1 m within each plot. We monitored all flying

insects visiting experimental plants for a single day at each site.

We visited our sites in a random order between 6 July 2013

and 19 August 2013. We needed a total of 32 days to visit all

sites across our gradient. Individual plants were observed for

20 min twice per site, once in the morning and once in the after-

noon, for a total of 200 min observation time per focal plant

species per site (for sampling effort-based flower visitor mor-

phogroup accumulation curves, see electronic supplementary

material, figure S1), between 09.00 and 17.00 h, on dry, warm,

non-windy days (electronic supplementary material, table S1). Visi-

tor identity (morphogroup: Coleopteran; hoverfly; other Dipteran;

Lepidopteran; bees of the families Andrenidae, Colletidae, or Halic-

tidae; Bombus spp.; honeybee) and duration of visit, defined as the

total time the visitor contacted reproductive structures of the

flower, were also recorded. From these data, we calculated the vis-

itation rates of all flower visitors for each experimental plant

species, as the number of visitors per flower unit per minute. Fur-

thermore, we calculated the visitation rates of Bombus spp. and

used them as a surrogate for Bombus abundance at each site.

Once field experiments were finished, focal plants were

returned to the insect-free greenhouse until seeds were formed.

Seeds from marked flowers were counted at the level of the

floral display unit and used as a measure of the ecosystem ser-

vice of pollination. An additional greenhouse experiment was

performed to test the pollinator dependency of all experimental

plant species. Five plants of each species were maintained

during the entire flowering period in the insect-free greenhouse.

Flowers were marked, and seed set was assessed in the same way

as in field experimental plants.
(b) Local and landscape variables
At each site, we quantified local flowering plant species richness,

as an estimator of floral resource availability, and percentage of

bare soil, as an estimator of nesting resource availability for

ground-nesting bees (Andrenidae, Colletidae, Halictidae), using

10 1 m2 quadrats randomly placed in each 25 � 25 m plot.

At each sampling site, we also quantified habitat composition at



(a)

(b)

N

study site 750 m
radius
arable land

semi-natural

urban area

orchard
roads-railroads

waterways-lakes

buildings

Figure 1. (a) Study area and study sites in the federal state of Saxony-Anhalt (Germany) in the surroundings of Halle (Saale); (b) examples of three study sites,
showing their landscape heterogeneity and composition within a 750 m radius of a site’s geographical centre.
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five spatial scales at radii of 500, 750, 1 000, 1 500, and 2 000 m. For

each sampling site, we quantified habitat composition at all scales

using Quantum GIS [31] and land-cover data obtained from

Geofabrik GmbH (http://www.geofabrik.de/); electronic sup-

plementary material, table S2). Landscape diversity (Hs) was

calculated using the Shannon index: Hs ¼ 2
P

pi� ln pi, where pi

is the proportion of each land-cover type i [32]. To identify the

most appropriate scale for landscape analysis, we correlated the

pollinator visitation rates with landscape diversity at each of our

study sites at the five scales and compared the resulting correlation

coefficients. Correlation coefficients peaked at 750 m (electronic

supplementary material, table S3), which was then chosen as the

spatial scale for subsequent landscape-scale analyses.

To further examine the effects of anthropogenic land-use,

we calculated a land-use index, ranging from pure agricultural

(21) to pure urban (þ1), based on the proportional area of

each land class within a 750 m radius (figure 1 and electronic

supplementary material, table S1).
(c) Bumblebee parasitism
Both female and male bumblebees of the morphogroups Bombus
terrestris/lucorum, Bombus pascuorum, and Bombus lapidarius/
soroeensis proteus were collected from each site between 1 and 19

August 2013. Sampling was not quantitative; rather we aimed to

collect reasonable sample sizes of both sexes of each Bombus mor-

phogroup so as to determine pathogen prevalence across males

and females of each morphogroup. At each site, bees were sampled

within a 500 m radius from established experimental plants.

We sampled female and male individuals. Bees were kept in

100% ethanol and stored at 2208C. In total, we sampled and

analysed 164 females and 150 males from all sites and Bombus
morphogroups (electronic supplementary material, table S4).

We took pictures of each bumblebee’s forewings using a

digital camera mounted on a dissection microscope (Olympus

DP21). Each individual was scored based on a four-point wing

wear scale, and the score obtained was used as a surrogate for

age in subsequent statistical analysis [33].

http://www.geofabrik.de/
http://www.geofabrik.de/
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To determine the presence of Crithidia and Nosema, DNA of

hosts and parasites was extracted using a modified Chelex proto-

col [34]. We homogenized the abdomen of each bee in 500 ml

sterile distilled water, and 200 ml of each homogenate was centri-

fuged for 10 min at 20 000 g. The supernatant was then discarded

and the remaining pellet was further homogenized in 100 ml of a

5% Chelex solution and 5 ml of 1% proteinase K. Samples were

processed in a thermocycler using the following programme:

1 h at 558C; 15 min at 998C; 1 min at 378C; and a final step for

15 min at 998C. Chelex beads were then removed from the

DNA samples by centrifugation at 12 000 g for 5 min. DNA

was stored at –208C until further processing. Polymerase chain

reactions (PCRs) were conducted using primers that target por-

tions of the small subunit rRNA region of each parasite taxon.

For N. bombi detection, we used the primers NbombiSSUJf1

(CCATGCATGTTTTTGAAGATTATTAT) and NbombiSSUJr1

(CATATATTTTTAAAATATGAAACAATAA) [35] and for Crithi-
dia spp. detection (including C. bombi), we used the primers SEF

(CTTTTGGTCGGTGGAGTGAT) and SER (GGACGTAATCGG

CACAGTTT) [36]. We performed separate reactions for each

parasite taxon in a Biometra TProfessional thermocycler using

2 ml DNA template, 2X Promega PCR buffer, 0.4 mM of each

primer, 0.2 mM of each dNTP (deoxynucleotide), and 0.5 U of

GoTaq Polymerase (Promega) to a total volume of 10 ml. The fol-

lowing thermal cycling programme was used for the PCRs: initial

denaturation step of 948C for 2 min, followed by 40 cycles of 948C
for 45 s, annealing temperature at 508C (NbombiSSUJf1/Nbom-

biSSUJr1) or 578C (SEF/SER) for 45 s and 728C for 45 s, plus a

final extension step of 728C for 5 min. PCR amplicons were visu-

alized on a QIAxcel (Qiagen) capillary fragment analyser, using

an acceptance threshold of 0.1 relative fluorescence units.

(d) Statistical analysis
Prior to statistical analysis, we used Mantel tests and spline cor-

relograms (R package ‘ade4’, [37]; package ‘ncf’, [38]) to test for

potential spatial autocorrelation in our dataset. There was no sig-

nificant spatial autocorrelation for seed set, visitation rates, and

prevalence of each Bombus spp. parasite ( p . 0.05; electronic

supplementary material, table S5).

To reduce any effect of multi-colinearity and to derive more

comparable estimates, we standardized all quantitative predic-

tors to a mean of zero and standard deviation of one. Prior to

each analysis, we used variance inflation factors (VIF) to check

for collinearity among our explanatory variables. Collinearity

was assessed with a cut-off value of 3 [39].

We used the SEM to investigate hypotheses involving the

relationships between environmental variables, visitation rates,

abundance of flower visitors, and Bombus spp., parasite prevalence

on pollination. No statistical methodology, including SEM, can by

itself demonstrate causation. However, SEM can be used for exam-

ining alternative hypotheses and identifying direct and indirect

correlations between variables within a defined mechanistic

path that incorporates logically plausible causal links; this is poten-

tially a statistically more powerful approach to the analysis of our

dataset than other multivariate methods, such as multiple

regression, which test all links among all pairs of variables,

whether logically plausible or not. Traditional SEM estimation

methods assume that all observations are independent, and all

variables follow a multivariate normal distribution [40]. In our

analyses, we used piecewise SEM that allows fitting generalized

linear models to a range of distributions and can account for hier-

archy in the data by incorporating hierarchical or nested variables

in a mixed model framework [41]. We constructed our a priori
piecewise SEMs based on previous studies that have tested indi-

vidual links and hypotheses included in our overall path model

[12,20,21,42–45].

We used piecewise SEM [46] for each plant species separately to

analyse the direct effects of anthropogenic land-use, local nesting,
flower resources and Bombus spp. parasite prevalence on pollination

service provision or indirect impacts via changes in visitation rates

and duration of visits of both all flying insects (Coleoptera; hoverfly;

other Diptera; Lepidoptera; bees of the families Andrenidae, Colle-

tidae or Halictidae; Bombus spp.; honeybee) and of only bumblebees.

Individuals of each experimental plant species nested within a site

were treated as a random effect factor.

To explore the potential of multiple factors affecting parasite

prevalence among Bombus spp., we also performed piecewise

structural equation models. We modelled Crithidia and Nosema
prevalence separately as dependent on Bombus abundance, using

bumblebee age as a covariate, bumblebee morphogroup as a

random effect factor, and a binomial error distribution. We

hypothesized that local flower richness and anthropogenic land-

use can affect parasite prevalence, both directly and indirectly

through affecting Bombus abundance. To further explore differ-

ences in factors affecting parasite prevalence, we conducted

separate piecewise SEMs for bumblebee males and females.

Nosema prevalence was not modelled for females owing to

insufficient positive samples (n ¼ 2).

We performed all mixed models using the package ‘lme4’

v. 1.0-4 [47] and piecewise SEM analyses using the package ‘piece-

wiseSEM’ [41]. From an overall model based on a priori knowledge

of interactions with all hypothesized effects, we used a backwards

stepwise elimination process based on Akaike Information

Criterion modified for small sample sizes (AICc) to remove non-

significant pathways. Furthermore, we used the d-separation

(d-sep) test to evaluate whether the non-hypothesized inde-

pendent paths were significant and whether the models could be

improved with the inclusion of any of the missing path(s) [46].

Path coefficients and deviance explained were then calculated for

each model. We report both conditional (R2
c , all factors) and mar-

ginal (R2
m, fixed factors only) coefficients of determination for

generalized linear-mixed effect models. All correlations between

exogenous variables are reported in the supplementary material

(electronic supplementary material, table S6), and none of

them influenced the final paths presented in figures 2 and 3. All

statistical analyses were performed in R v. 3.0.2 [48].
3. Results
All plants in our experimental communities produced more

seeds per flower unit in the open pollination treatment (B. offi-
cinalis, 3+0; S. alba, 3+0; T. pratense, 30+3; T. repens, 26+4)

compared with the control plants in the glasshouse (B. officina-
lis, 0+0; S. alba, 0+0; T. pratense, no seeds; T. repens, no seeds;

Mann–Whitney U-test, p , 0.05), demonstrating their need

for insect visitation to set seed.

(a) Factors affecting pollination service provision
Visitation rate and total visit duration were strongly correlated

(B. officinalis, r ¼ 0.78, p , 0.001; S. alba, r ¼ 0.72, p , 0.001;

T. pratense, r ¼ 0.62, p , 0.001; T. repens, r ¼ 0.74, p , 0.001).

Therefore, we ran separate analyses with each variable. Here

we present the results for visitation rate (for the visit duration

results, see electronic supplementary material, table S7).

For piecewise SEMs relating environmental variables, visita-

tion rates, and Bombus spp., parasite prevalence on pollination,

the stepwise model selection process yielded a final path

model well supported by the data (B. officinalis: x2 ¼ 4.31,

d.f.¼ 4, p ¼ 0.365; S. alba: x2 ¼ 3.36, d.f. ¼ 4, p ¼ 0.499;

T. pratense: x2 ¼ 1.78, d.f. ¼ 4, p ¼ 0.77; T. repens: x2 ¼ 5.95,

d.f.¼ 4, p ¼ 0.203). Owing to substantial reduction in model

fit, the final SEM for our experimental plant species did not

include Crithidia and Nosema prevalence variables. Thus,
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Figure 2. Final path model of anthropogenic land-use and local habitat factors and their relationships with pollination service provision in: (a) Borago officinalis,
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Bombus spp. parasitism was not significantly related to

pollination success of our experimental plants.

Borago officinalis plants were mainly visited by honeybees

(41%, 48 interactions), halictid bees (17%, 21 interactions),

and bumblebees (15%, 18 interactions; see supplementary

material, table S8). The overall visitation rate of B. officinalis
was only related to the percentage of bare soil ( p ¼ 0.005,

R2
adj ¼ 0:17; figure 2a and see electronic supplementary

material, table S9a), whereas seed set was not directly related

to overall visitation rates ( p ¼ 0.07; figure 2a and see electro-

nic supplementary material, table S9a). Borago officinalis
plants produced more seeds with increasing urbanization

( p ¼ 0.003, R2
m ¼ 0:49, R2

c ¼ 0:54; figure 2a and see electronic

supplementary material, table S9a).

Sinapis alba plants were mainly visited by hoverflies (75%,

135 interactions) and halictid bees (15%, 28 interactions; see

electronic supplementary material, table S8). Overall visitation

rates to S. alba flowers were positively associated with

local flower richness and negatively by increasing urbanization

( p ¼ 0.05, p , 0.001; R2
adj ¼ 0:51, respectively, figure 1b and

see electronic supplementary material, table S9b). However,

overall visitation rates were not directly related to S. alba
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seed set (figure 2b). Pollination success of S. alba also increa-

sed in more urban compared with more agricultural areas

( p ¼ 0.004, R2
m ¼ 0:22, R2

c ¼ 0:42; figure 2b and see electronic

supplementary material, table S9b).

Trifolium pratense plants were mainly visited by bumble-

bees (53%, 46 interactions) and butterflies (41%, 36

interactions; see electronic supplementary material, table S8).

Overall, Bombus visitation rates were positively related to the

pollination success of T. pratense plants ( p ¼ 0.04, R2
m ¼ 0:12,

R2
c ¼ 0:12; figure 2c and see electronic supplementary material,

table S9c). An increased level of urbanization was indirectly,

positively related to seed set via its positive association with

bumblebee visitation rates to T. pratense plants ( p , 0.001;

R2
adj ¼ 0:82; figure 2c and see electronic supplementary

material, table S9c). Yet we also found a negative association

between local flower richness and bumblebee visitation rates

to T. pratense plants ( p , 0.001; R2
adj ¼ 0:82; figure 2c and see

electronic supplementary material, table S9c).

Trifolium repens plants were mainly visited by bumblebees

(30%, 15 interactions), butterflies (14%, seven interactions),

and halictid bees (12%, six interactions; see electronic supple-

mentary material, table S8). Both local flower richness

and percentage of bare soil were positively related to overall

visitation rates to T. repens plants ( p , 0.001 and p , 0.001;

R2
adj ¼ 0:65; respectively, figure 2d and see electronic sup-

plementary material, table S9d). However, the direct

relationship between overall visitation rates and T. repens seed

set was minor because it lay below the statistical threshold for

inclusion in our final SEM for this plant species (figure 2d).

The degree of urbanization nevertheless was significantly

positively related to the seed set of T. repens plants ( p ¼ 0.04,

R2
m ¼ 0:18, R2

c ¼ 0:56; figure 2d and see electronic

supplementary material, table S9d).
(b) Factors affecting pathogen prevalence among
bumblebees

Of the 314 bumblebees sampled, 19% (range 0–37% per site)

were infected with Crithidia, including 24% of males (0–43%

per site) and 13% of females (0–32% per site). Crithidia preva-

lence was lower in Bombus pascuorum (7%) than in Bombus
terrestris/lucorum (26%, x2 ¼ 12.57, p ¼ 0.001) and Bombus
lapidarius/soroeensis proteus (22%, x2 ¼ 8.82, p ¼ 0.006) mor-

phogroups. Nosema bombi infected on average 6% of all
sampled bees (range 0–14% per site), 11% of males (0–18%

per site), and 1% of females (0–10% per site). Nosema preva-

lence was higher in Bombus lapidarius/soroeensis proteus (14%)

than in Bombus terrestris/lucorum (2%, x2 ¼ 10.99, p ¼ 0.002)

and Bombus pascuorum (0%, x2 ¼ 18.56, p , 0.001).

For piecewise SEMs exploring the potential of multiple

factors affecting parasite prevalence among Bombus spp.,

the stepwise model selection process yielded a final path

model well supported by the data (pathogen prevalence:

x2 ¼ 8.53, d.f. ¼ 8, p ¼ 0.384; Crithidia prevalence in female

hosts: x2 ¼ 1.46, d.f. ¼ 4, p ¼ 0.844; Crithidia prevalence

in male hosts: x2 ¼ 2.14, d.f. ¼ 4, p ¼ 0.711). The final

model for Nosema in males resulted in a poor fit with no

significant paths.

There was a positive relationship between Bombus abun-

dance and the prevalence of Crithidia, both in the entire

dataset ( p , 0.001, figures 3a and 4a) and when analysed sep-

arately by host gender (females: p ¼ 0.002; males: p , 0.001;

figure 3b). Crithidia parasitism was significantly associated

with host gender ( p ¼ 0.03; figure 3a), with a higher preva-

lence in male bumblebees. The degree of urbanization was

indirectly but positively related to Crithidia prevalence, via

its positive relationship with Bombus abundance ( p , 0.001,

figures 3 and 4b; p , 0.001). Only in host males was host

age positively related with Crithidia prevalence ( p ¼ 0.006,

figure 3b). Surprisingly, we did not find a significant associ-

ation in the prevalence of Crithidia between males and

females across sites (Pearson correlation, r ¼ 0.43, p ¼ 0.27).

The prevalence of Nosema was significantly associated only

with host gender, with higher prevalence in males ( p , 0.001;

figure 3a). Nosema prevalence was not related to Bombus
abundance ( p ¼ 0.27; figure 3a).
(c) Interacting effects of urbanization and Bombus spp.,
parasitism on pollination service provision

As our results have shown, there was a direct (for B. officinalis,
S. alba, and T. repens) and indirect positive relationship between

urbanization and pollination success, mediated through

elevated overall insect visitation rates (for B. officinalis) or elev-

ated Bombus spp. only visitation rates (for T. pratense; figure 2).

Yet, across our land-use gradient, we found indirect positive

relationships between urbanization and Crithidia prevalence,

mediated through increased Bombus abundance (figure 3).
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Thus, urban areas in our study were strongly and positively

(though indirectly) related with pollination success through

increased overall and Bombus spp. visitation rates, despite

increased Crithidia prevalence with urbanization, which itself

was mediated by Bombus abundance.
cietypublishing.org
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4. Discussion
We found that both bumblebee abundance and pollination to

wild flowers increased in urban versus rural agricultural

sites. Although bumblebee parasitism also increased with

host abundance, pollinator parasitism did not have any dis-

cernible impact on pollination service provision, even for the

bumblebee-dependent species, T. pratense. We also found that

the availability of nesting resources for ground-nesting bees

(Andrenidae, Colletidae, Halictidae) and local flower richness

were independently and positively related to visitation rates

and pollination of our experimental plant communities.

Seed set of pollinator-dependent self-incompatible plants

could be affected both directly and indirectly by a variety of

factors. Direct effects occur owing to the lack of compatible

pollen donor plants in the vicinity and absence of pollinators

(pollinator visit ‘quality’ and ‘quantity’, respectively), and

indirect by local flower richness and abundance that them-

selves influence pollinator visitation rates [49]. In our field

experiments, we found that an increase in flower visitation

rates was not always directly associated with increased seed

set (for B. officinalis, S. alba, and T. repens). This might be

due to insufficient sampling, introducing noise to our dataset.

Alternatively, or in addition, it may indicate the importance

not only of the availability of pollinators in the vicinity to

ensure pollination but also of a potential role of the quality

of those interactions in terms of the number of compatible,

viable pollen grains deposited on stigmata [45]. Increasing

nesting resources for ground-nesting bees and flower richness

were correlated with overall higher visitation rates by all

flower visitors, further emphasizing the importance of

local habitat quality for pollinator communities and thus

for potential pollination success of wild and crop plants.

Finally, our results revealed a positive relationship between

urbanization and seed set, highlighting the importance of

surrounding land cover in impacting plant–flower visitor

interactions that could potentially reflect the increased

nesting and food resources for pollinators, especially bees,

in moderately urbanized areas (electronic supplementary

material, table S6).

To investigate the possible indirect effects of parasitism on

pollination, we studied bumblebees and their associated

parasites. Within our study, we focused on two important

bumblebee parasites that are transmitted horizontally via the

oral–faecal route: Crithidia and N. bombi [50]. Similar to

other studies, Crithidia was found to be more abundant

compared with N. bombi [21,43,51]. Furthermore, in our

study, prevalence of both parasites was higher in males com-

pared with females. It has been suggested that these higher

infection rates may be the result of either life-history differences

between the two sexes, with males investing less in immune

defence [52], or because infected workers are less likely

to leave the nest to forage [51,53]. They may, though, simply

reflect a seasonal difference; pathogen prevalence is

higher towards the end of summer, a time when males are

relatively more abundant. Surprisingly, our results showed
no correlation between Crithidia prevalence in males and

females. This could reflect differences in their dispersal

and foraging behaviours, exposure to different communities

of pathogen propagules at floral sites of transmission, or their

susceptibility to these pathogens. As recent studies highlight

the potential role of Bombus males as pollinators [54,55],

our findings could possibly also translate into differences in

the effects of parasitism on the pollination service provided

by each sex.

Across host–parasite systems, parasite prevalence is influ-

enced by host population size, and vice versa [56]. We found a

positive association between the prevalence of Crithidia and

overall Bombus abundance; the prevalence of Crithidia and

the abundance of bumblebees increased in more urbanized

areas compared with agricultural. These findings suggest

that a high prevalence of bumblebee parasites in urban areas

could simply reflect the presence of more abundant host popu-

lations and greater rates of pathogen transmission [57]. Yet, our

results showed no association between Bombus parasites

studied and seed set produced by our focal plants, even for

the bumblebee-dependent species, T. pratense. We hypothesize

that higher abundances of bumblebees in urban areas resulted

in higher success of pollination, which more than compensated

for the putative increase in transmission and prevalence of

Crithidia owing to increasing host abundance.
5. Conclusion
Moderate urbanization at the landscape scale and availability

of both nesting and flower resources at the local scale posi-

tively influenced pollinators and pollination. At the same

time, prevalence of parasites in bumblebees, such as Crithidia,

was higher in urbanized areas compared with agricultural

areas, a relationship mediated by elevated Bombus abun-

dance. However, we did not find evidence for top-down

negative effects of pollinator parasitism on pollination.
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