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Abstract
Purpose  To improve the quantitative accuracy and diagnostic confidence of PET images reconstructed without time-of-flight 
(ToF) using deep learning models trained for ToF image enhancement (DL-ToF).
Methods  A total of 273 [18F]-FDG PET scans were used, including data from 6 centres equipped with GE Discovery MI 
ToF scanners. PET data were reconstructed using the block-sequential-regularised-expectation–maximisation (BSREM) 
algorithm with and without ToF. The images were then split into training (n = 208), validation (n = 15), and testing (n = 50) 
sets. Three DL-ToF models were trained to transform non-ToF BSREM images to their target ToF images with different levels 
of DL-ToF strength (low, medium, high). The models were objectively evaluated using the testing set based on standardised 
uptake value (SUV) in 139 identified lesions, and in normal regions of liver and lungs. Three radiologists subjectively rated 
the models using testing sets based on lesion detectability, diagnostic confidence, and image noise/quality.
Results  The non-ToF, DL-ToF low, medium, and high methods resulted in − 28 ± 18, − 28 ± 19, − 8 ± 22, and 1.7 ± 24% dif-
ferences (mean; SD) in the SUVmax for the lesions in testing set, compared to ToF-BSREM image. In background lung VOIs, 
the SUVmean differences were 7 ± 15, 0.6 ± 12, 1 ± 13, and 1 ± 11% respectively. In normal liver, SUVmean differences were 
4 ± 5, 0.7 ± 4, 0.8 ± 4, and 0.1 ± 4%. Visual inspection showed that our DL-ToF improved feature sharpness and convergence 
towards ToF reconstruction. Blinded clinical readings of testing sets for diagnostic confidence (scale 0–5) showed that non-
ToF, DL-ToF low, medium, and high, and ToF images scored 3.0, 3.0, 4.1, 3.8, and 3.5 respectively. For this set of images, 
DL-ToF medium therefore scored highest for diagnostic confidence.
Conclusion  Deep learning–based image enhancement models may provide converged ToF-equivalent image quality without 
ToF reconstruction. In clinical scoring DL-ToF-enhanced non-ToF images (medium and high) on average scored as high as, 
or higher than, ToF images. The model is generalisable and hence, could be applied to non-ToF images from BGO-based 
PET/CT scanners.
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Introduction

Time-of-flight (ToF) positron emission tomography (PET) 
is a detector technology that measures the arrival times 
of the annihilation photons with an uncertainty governed 
by the coincidence timing resolution (CTR) of the scan-
ner [1]. The first generation of ToF PET scanners were 
equipped with either caesium or barium fluoride scintil-
lators coupled with photomultiplier tubes, providing CTR 
of 400–600 ps. However, neither their sensitivity nor spa-
tial resolution could compete with that of non-ToF bis-
muth germanate (BGO)–based scanners. With the advent 
of lutetium (Lu)-based scintillators with better sensitiv-
ity and spatial resolution, conventional photomultiplier 
tube–based ToF PET scanners became commercially avail-
able around 2006 with a CTR in the range of 450–600 ps. 
Since then, advancements in silicon photomultiplier detec-
tors have led to the next generation of ToF scanners with 
CTR of 214–380 ps [2]. Compared to Lu-based scintilla-
tors, BGO has a higher stopping power, therefore higher 
sensitivity for a given crystal size, at the expense of poor 
timing resolution.

Using ToF capability, the location of emission points 
along each line of response (LOR) is estimated and uti-
lised during PET image reconstruction to update image 
voxels only along each segment of response, defined by 
ToF resolution, instead of the whole LOR. Consequently, 
the cross-dependencies between image voxels are reduced, 
which results in (i) reduced noise propagation with fast 
and space-invariant convergence, which in turn improves 
the detectability of lesions [3, 4], and (ii) reduced sensitiv-
ity to errors in normalization, attenuation correction, and 
scatter correction [5, 6]. As the CTR is improved, cross-
dependencies between image voxels are reduced leading 
to further ToF benefits.

ToF technology together with advanced image recon-
struction algorithms (such as ordered subsets expectation 
maximisation — OSEM, or block sequential regularised 
expectation maximisation — BSREM [7]) have led to 
improved diagnostic confidence and lesion detectability 
[8]. With the recent advancements in artificial intelli-
gence, deep learning (DL) techniques have found promis-
ing applications in PET imaging from photon detection to 
image reconstruction [9–11]. Recently, deep convolutional 
neural networks have been extensively used to reduce PET 
acquisition time or radiotracer dose by reducing image 
noise [12–14] or reconstruction time with improved image 
convergence [15]. For ToF technology, DL has been used 
for data-driven time-of-flight estimation which can lead to 
about 20% improvement in CTR [16].

Given that the benefits of ToF technology are directly 
translated into image space and a number of current 

clinical PET scanners are non-ToF (i.e. BGO-based), there 
is a desire to improve the diagnostic value of non-ToF 
scanners compared to ToF scanners [17, 18]. In this study, 
we aim to leverage deep learning to enable ToF benefits 
for PET images reconstructed without ToF information. To 
the best of our knowledge, the proposed deep learning for 
ToF image enhancement (DL-ToF) is the first-ever attempt 
to transform non-ToF PET images to ToF-like images. 
Although related, this challenge differs substantially from 
the aforementioned uses of DL for noise-reduction due to 
the variety of ways in which ToF information influences 
the image appearance. The neural network is not required 
to add time of flight information to the PET coincidence 
data, but it is required to learn how ToF information 
alters many image characteristics, and then to replicate 
these changes when supplied with non-TOF input images. 
Three DL-ToF models with different levels of contrast-
enhancement-to-noise trade off (low: L, medium: M and 
high: H) were trained in supervised learning sessions for 
transforming non-ToF BSREM images, each reconstructed 
with a range of regularization parameters (beta), to ToF 
BSREM images, reconstructed with specific regularization 
values to reflect the intended level of contrast-to-noise. 
The performance of the three models was quantitatively 
and qualitatively evaluated using ToF and non-ToF PET 
scans for [18F]-FDG oncology exams.

Materials and methods

Data acquisition and processing

The PET list-mode data and CT-based attenuation correc-
tion (CTAC) images of a total of 273 whole-body oncology 
[18F]-FDG PET exams were retrospectively collected, as 
summarised in Supp. Materials Table 1, from six clinical 
sites equipped with Discovery MI (DMI) and D710 ToF 
PET/CT scanners. Using training datasets from various 
clinical sites improves the generalisability of DL-ToF mod-
els to account for the fact that each site uses different acqui-
sition protocols and reconstruction parameters. The DMI’s 
PET subsystem has ToF resolution of 385 ps and different 
sensitivity depending on the number of detector rings. The 
DMI system can be configured with 3, 4, or 5 rings of detec-
tors, for axial FOV of 15, 20 or 25 cm. The D710 has a ToF 
resolution of 550 ps and an axial FOV of 15.7 cm. The use 
of different scanners and imaging protocols at different sites 
led to a range of injected [18F]-FDG activity (mean ± SD: 
348 ± 118 MBq) and scan duration (161 ± 46 s/bed). Moreo-
ver, there were variations in patient size (body mass index, 
BMI, 27.3 ± 6.0 kg/m2). The [18F]-FDG uptake time varied 
between sites: 82 ± 26 min. For each subject, a whole-body 
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CT scan protocol was performed for PET attenuation cor-
rection using 100–120 kVp.

The 273 DMI/D710 exams were divided into training 
(n = 208), validation (n = 15), and testing (n = 50) sets. 
The validation and testing DMI exams were chosen by two 
nuclear medicine experts for pathologically interesting cases 
with small lesions. Each dataset was reconstructed using the 
BSREM algorithm into 4 image series, one ToF (target), 
and three non-ToF images (input) with different beta values. 
Supp. Materials Table 1 summarises the beta values chosen 
for each DL-ToF model, clinical site, and target-input pair. 
The beta value of ToF BSREM images were experimentally 
adjusted per site in order to achieve the same low noise level, 
based on visual inspection, across data from all sites. Each 
image was reconstructed with a matrix size of 256 × 256 
and field-of-view of 700 mm (x–y pixel size: 2.73 mm, slice 
thickness: 2.79 mm). The whole-body image volumes used 
for training and validation were axially divided into equally 
spaced contiguous 3D sub-volumes, each of 100 slices 
(28 cm).

Model training

A 3D residual U-Net network [19] was developed and imple-
mented in PyTorch 1.6 (www.​pytor​ch.​org) shown in Supp. 
Figure 1. DL-ToF networks were trained in a supervised 
session in which their predicted ToF BSREM images were 
compared to target ToF BSREM ones based on a mean 
squared error (MSE) loss function. Supp. Materials Table 2 
summarises the network and training hyperparameters that 
were optimised experimentally. The ADAM algorithm 
[20] was used to update the networks’ trainable parameters 
for a maximum of 100 epochs on a workstation with two 
RTX6000 GPUs. The validation set was used to monitor 
the network’s generalisation error to avoid over-fitting. The 
epoch at which the model had the lowest validation loss was 
chosen as a stopping point.

Evaluation

The performance of our trained DL models was quantita-
tively evaluated using the testing sets based on standardised 
uptake values (SUVs) including SUVmax (maximum voxel 
intensity) in lesions, SUVmean (mean intensity of voxels) in 
normal liver and lungs and the noise in the liver using vol-
umes of interest (VOIs) selected per subject. For each sub-
ject, 5 VOIs of size 7 × 7 × 7 voxels (~ 7 mL) were defined in 
the lungs, and 5 similar VOIs in liver. Noise in liver was 
calculated as standard deviation of the five VOI mean values. 
For each subject, up to 5 small lesions were visually identi-
fied and segmented using an adaptive thresholding method 
(42% of maximum minus minimum SUV in a 7 × 7 × 7 
bounding box). For the evaluation of DL-ToF models, the 

beta value of both non-ToF and ToF BSREM images were 
set to 350. The difference in SUV values (compared to the 
target ToF BSREM SUVs), scatter plots, and Bland–Altman 
plots were generated. The statistical significance of differ-
ences in SUVs was evaluated using the Wilcoxon signed 
rank test. Additionally, root-mean-square error (RMSE) 
between reference ToF images (x) and other images (y) over 
t h e  w h o l e - b o d y  ( W B )  wa s  c a l c u l a t e d  by 
RMSE =

�

1

N

∑N

i

�

xi − yi
�2 , where N is the total number of 

voxels in the body. Also, WB SUVmean was calculated by 
averaging the SUV values in the body.

Three radiologists, (KMB, PAF, and MH), blinded to 
image reconstruction, independently rated all 50 testing sets. 
Each patient had 5 image series (Non-ToF and ToF BSREM, 
DL-ToF low (L), medium (M) and high (H)); these were 
assessed, with corresponding CT, based on Likert scores 
considering three image features (lesion detectability, diag-
nostic confidence, and image noise/quality). The Likert scale 
used was 0 (non-diagnostic), 1 (poor,), 2 (satisfactory), 3 
(good), 4 (very good), and 5 (excellent) with image noise 
metrics scored on the same 0–5 scale as described previ-
ously [21]. In addition, the 5 series were ranked in order 
of preference from 1 (best) to 5 (worst) for each imaging 
feature category. Using SPSS v27, the interclass correlation 
coefficient (ICC) was calculated between the radiologists’ 
image scores to assess the level to which the average reader 
scores are generalisable to a wider population of readers 
[22]. Post hoc pairwise testing against both non-ToF and ToF 
BSREM images was then performed using Dunn’s method, 
with Bonferroni correction applied to the reported p-values.

Application to a BGO‑PET camera

Ten exams acquired on a GE Discovery IQ (DIQ) scanner 
were used to illustrate the generalisability of the trained 
models for a non-ToF BGO-based scanner. This final step of 
running DL-ToF models on data from a non-TOF, BGO PET 
scanner had the goal of demonstrating the potential of the 
DL approach. However, with no ground truth or target solu-
tion to compare against, we limited this part of the study to a 
small number of subjects, and the image analysis to a visual 
verification that the images were free of obvious artefacts 
and showed visual changes in accordance with expectations 
for the three DL models.

Results

Figures 1 and 2 compare the performance of our three DL-
ToF models in comparison with the input non-ToF BSREM 
(beta = 350) and target ToF BSREM (beta = 350) images 
for two representative, example patients with different 
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BMI scanned on a Discovery MI PET/CT scanner (further 
examples are shown in Supp. Figures 2–5). As shown by 
the arrows, the patients have multiple small lesions in differ-
ent areas (neck, mediastinum, breast, and vertebrae) which 
have a lower contrast in the non-ToF image. The DL-ToF 
models improve the detectability and contrast of the lesions 
towards their target ToF images, with DL-ToF(H) providing 
the closest match visually. Since the models were trained 
to provide different levels of smoothness, the liver noise as 
well as lesion contrast is different among these three models. 
As shown in Fig. 1, the DL-ToF models improve the overall 
image quality and feature sharpness of the non-ToF PET 
images.

Table  1 shows the quantitative performance of non-
ToF BSREM and DL-ToF methods on the DMI’s test-
ing set (n = 50) for SUVmax of the 139 identified lesions, 
and SUVmean in normal lungs and liver. The percentage 

difference from the target ToF BSREM method is provided 
(mean ± standard deviation), along with the result of the 
tests of statistical significance. As seen, DL-ToF methods 
reduce the lesion’s SUVmax difference from − 28.6 to 1.7%, 
depending on their level of smoothness. In this test dataset, 
the difference of 1.7% between DL-ToF(H) and ToF BSREM 
was not statistically significant. In the lungs, DL-ToF models 
reduce the SUVmean differences from 7.7% to less than 2%. 
These results demonstrate that DL-ToF models make lesions 
hotter and lungs colder; in other words, they improve the 
accuracy of the non-ToF BSREM images. Assessment of 
the noise in the liver, via the average of the liver standard 
deviations from 50 testing datasets, shows that the DL-ToF 
models provide different level of smoothness, and all pro-
vide some level of noise reduction. Supp. Materials Table 3 
shows the RMSE and SUVmean over whole-body and lesion/
lung/liver ROIs for the test cases.

Non-ToF BSREM DL-ToF (L) DL-ToF (M) DL-ToF (H) ToF BSREM

SUVmax: 2.0 SUVmax: 2.2 SUVmax: 2.9 SUVmax: 3.3 SUVmax: 3.6

Fig. 1   DL-ToF enhancement of a representative test subject with a 
BMI of 26.4 kg/m2 with an injected activity of 515 MBq scanned on 
GE Discovery MI (5-ring) PET/CT scanner (slice thickness 2.8 mm). 
Arrows point to lesions with lower detectability in non-ToF BSREM 

as well as the SUVmax of an example lesion (SUVmax values of all 
investigated lesions are summarised in Table 1 and shown in Fig. 3). 
Display window: 0–5 SUV

Table 1   Quantitative performance of the DL-ToF models evalu-
ated on 50 test exams, expressed as a percentage difference with ToF 
BSREM (taken as ground truth), for lesion SUVmax, lung SUVmean, 

liver SUVmean, and noise in liver (the standard deviation of noise 
averaged over all exams) for each type of reconstruction. P-values 
(parentheses) show significance of difference from ToF BSREM

Lesion SUVmax (%) Lung SUVmean (%) Liver SUVmean (%) Liver 
noise 
(SUV)

Non-ToF BSREM  − 28.6 ± 18.3 (< 0.0001) 7.7 ± 15.0 (< 0.0001) 4.3 ± 5.6 (< 0.0001) 0.16
DL-ToF(L)  − 28.7 ± 19.0 (< 0.0001) 0.6 ± 12.1 (0.179) 0.7 ± 4.6 (0.067) 0.10
DL-ToF(M)  − 8.0 ± 22.5 (< 0.0001) 1.3 ± 13.0 (0.083) 0.8 ± 4.4 (0.016) 0.13
DL-ToF(H) 1.7 ± 23.9 (0.57) 1.4 ± 11.5 (0.50) 0.1 ± 4.5 (0.86) 0.19
ToF-BSREM – – – 0.19
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Figure 3 shows scatter plots of lesion SUVmax for non-ToF 
BSREM and DL-ToF images compared to reference ToF 
BSREM images including slope and R-square of regression 
lines. As could be expected, the non-ToF BSREM method 
shows a lower lesion SUVmax and hence a less steep slope 
of the fitted line compared to ToF BSREM method. As the 
strength of DL-ToF is increased, the slope of fitted line for 
DL-ToF methods gets closer to identity: this indicates con-
trast convergence enhancement of the input non-ToF images. 
As shown, DL-ToF(H) increases the slope from 0.84 to 1.02 
and increases the coefficient of determination (0.96 to 0.97).

Figure 4 shows Bland–Altman plots comparing the con-
cordance of lesion SUVmax between target ToF BSREM 
and other methods. Consistent with the other quantification 
measures, the plots show a systematic difference in SUVmax 
which is reduced by DL-ToF methods.

Table 2 and Supp. Materials Table 4 show the scores and 
ranking results for different reconstruction methods for 50 
testing exams from three independent readers. Table 2 also 
provides p-values for the scores, using pairwise compari-
sons with respect to ToF BSREM methods. Supp. Materials 
Table 5 shows p-values with respect to non-ToF BSREM. 
The lesion detectability results show that DL-ToF(H) signifi-
cantly improves lesion detectability in the images so much 
that their p-values become lower than 0.001. In terms of 
diagnostic confidence, DL-ToF(M) achieves the best score 
whereas for image noise/quality DL-ToF(L) scores the 
best. These results highlight that the strength of DL-ToF 
can be chosen to provide a balance between lesion detec-
tion and noise reduction, according to the preference of 
the image reader. Results in Supp. Materials Table 4 also 

show DL-ToF(H) achieves the best rank for lesion detect-
ability, whereas DL-ToF (M) has the best rank for diagnostic 
confidence (i.e., better than ToF BSREM) and DL-ToF(L) 
achieves the best rank in terms of noise and image quality.

The application of the technique to data from a BGO non-
ToF DIQ PET scanner (on which the algorithm had not been 
trained) provided images which, visually, met our expecta-
tions. This is shown in Figs. 5 and 6, which although from 
different patients, can be compared to Figs. 1 and 2. Eight 
further examples are presented in Supplementary Figs. 6–9. 
In these cases, the models showed similar image enhance-
ment as was achieved with non-ToF DMI data. In Fig. 6, the 
patient presents attenuation correction artefacts near to the 
diaphragm, which are often reduced by ToF reconstruction 
[6]; in this instance, all DL-ToF models show reduction of 
the artefacts.

Discussion

In this study, the feasibility of utilising deep learning for 
enhancing the ToF features in PET images reconstructed 
without ToF capability was explored with the intended 
application of improving lesion detectability and diagnostic 
confidence for [18F]-FDG PET scans acquired in non-ToF 
PET scanners. Three DL-ToF models were trained with dif-
ferent levels of smoothness or ToF strength to demonstrate 
the flexibility of the proposed DL solution to meet radiolo-
gists’ preferences.

Our models were trained to transform non-ToF PET 
images reconstructed by the BSREM algorithm to their 

Fig. 2   DL-ToF enhancement of a representative test subject with a 
BMI of 31.6 kg/m2 with an injected activity of 514 MBq scanned on 
GE Discovery MI (5-ring) PET/CT scanner (slice thickness 2.8 mm). 

Arrows point to an example lesion with SUVmax shown (SUVmax val-
ues of all investigated lesions are summarised in Table 1 and shown 
in Fig. 3). Display window: 0–5 SUV
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corresponding ToF BSREM images as faithfully as possi-
ble. The BSREM algorithm was chosen over OSEM as it 
provides a higher convergence and lower noise, therefore 
giving more accurate quantification [7, 21]. The DL-ToF(H) 
algorithm that was developed, when applied on non-ToF 
BSREM (beta = 350) input data, achieves quantification 
errors less than 5% compared to the target ToF BSREM. 
On the other hand, the results show that all DL-ToF models 
provide some level of noise reduction, which translates to 
improved contrast-to-noise ratio (CNR), indicating improved 
feature sharpness and lesion detectability.

As shown in Fig. 3, in our primary testing set of 50 
exams, the identified lesions are mostly clustered around 
an SUVmax of 5 in the ToF BSREM images (median = 5.6). 
These lesions, as well as those of lower SUVmax, are often 
diagnostically important and affected by ToF reconstruction 
method. The scatter plots show that as one moves from DL-
ToF(L) to DL-ToF(H) the set of lesion SUVs are increased 
toward their target ToF SUVs.

The clinical reading results showed that DL-ToF models 
present favourable performance. For instance, in Table 2, 
DL-ToF(H), which has the least smooth DL-ToF model or 

highest ToF strength, achieves on average 3.83, 4.18, and 
3.39 scores for the key metrics of diagnostic confidence, 
lesion detectability, and image noise/quality compared to 
reference ToF images with the corresponding scores of 
3.53, 4.08, and 3.08, respectively. In our test set, the best 
score for lesion detectability was from DLT(H) with the 
best score for image noise/quality from DLT(L) and diag-
nostic confidence from DLT(M). Overall, in terms of diag-
nostic confidence, the DL-ToF(M) model provides a better 
trade-off in our test set as a lower noise and improved 
detectability are desirable features for an image recon-
struction or enhancement technique. It is the balance of 
good performance regarding lesion detectability and image 
noise that leads to best diagnostic confidence as shown by 
the blinded clinician scores and ranking. In some imple-
mentations of PET image reconstruction, including that 
used here, the use of ToF information can lead to faster 
convergence and hence a noisier image as compared to 
non-TOF for the same number of iterations. It is possible 
to smooth ToF images with a Gaussian filter or in the case 
of BSREM to use a larger beta value but this may come at 
the cost of a reduction in lesion detectability [7].
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Fig. 3   Scatter plots of lesion SUVmax for non-ToF BSREM and different DL-ToF models compared to ToF BSREM images. The grey dashed 
line is an identity line. Each dot corresponds to a lesion
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This study utilised a U-Net model, as an encoder-decoder 
CNN, that was trained using a diverse set of DMI datasets. 
The quality and diversity of the training set is one of the key 
factors in the performance and generalisability of a CNN 
model. To exemplify this generalisability, the models were 
also applied to ten patients scanned on a BGO non-ToF scan-
ner (GE Healthcare Discovery IQ), as shown in Figs. 5 and 6 

and Supplementary Figs. 6–9. These examples suggest that 
the models may work on data from scanners that were not 
part of the training dataset; examining this in more detail 
will be the subject of a follow-on study.

This study has a number of limitations. Our testing sets 
do not include randomly selected exams (i.e. combina-
tion of normal/abnormal) but rather patients with lesions 

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20
Mean

Non-ToF BSREMNon-ToF BSREM

DL-ToF (H)DL-ToF (H)

DL-ToF (L)DL-ToF (L)

DL-ToF (M)DL-ToF (M)

+1.96SD = 0.97

-1.96SD = -4.7 

Mean = -1.9 

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20

D
if
fe
re
n
ce

D
if
fe
re
n
ce

D
if
fe
re
n
ce

D
if
fe
re
n
ce

Mean

Mean = -1.9 

-1.96SD = -4.8 

+1.96SD = 1.0

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20
Mean

-1.96SD = -3.7

Mean = -0.46 

+1.96SD = 2.8

-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20
Mean

-1.96SD = -3.0  

Mean = 0.1

+1.96SD = 3.3

Fig. 4   Bland–Altman plots comparing the concordance of lesion SUVmax between ToF BSREM and other reconstruction methods. Each dot cor-
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Table 2   Clinical image quality scoring from three readers of 50 test 
whole-body scans based on different criteria, mean ± standard devia-
tion. 0 is non-diagnostic; 5 is excellent. Bold indicates the best (high-
est) score for each metric. The intraclass correlation coefficient (ICC) 

is also provided for each metric (95% confidence interval) to show 
reader agreement. P-values (in parentheses) are given with respect to 
ToF BSREM (with p-values with respect to non-ToF BSREM shown 
in Suppl. Table 5)

Scores Diagnostic confidence Lesion detectability Image noise/quality

Non-ToF BSREM 3.03 ± 0.40 (< 0.001) 3.03 ± 0.43 (< 0.001) 3.36 ± 0.40 (1.000)
DL-ToF(L) 2.98 ± 0.34 (< 0.001) 2.88 ± 0.35 (< 0.001) 4.52 ± 0.27 (< 0.001)
DL-ToF(M) 4.07 ± 0.47 (< 0.001) 3.99 ± 0.48 (1.000) 4.09 ± 0.34 (< 0.001)
DL-ToF(H) 3.83 ± 0.38 (0.11) 4.18 ± 0.39 (1.000) 3.39 ± 0.40 (0.96)
ToF BSREM 3.53 ± 0.53 4.08 ± 0.54 3.08 ± 0.55
ICC 0.67 (0.60, 0.74) 0.68 (0.61, 0.74) 0.58 (0.48, 0.66)
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that showed low activity or which were completely missed 
in non-ToF BSREM images. Therefore, our results might 
be biased to highlight the gap between ToF and non-
ToF reconstructions. However, our results with another 

testing set used during model validation (not shown in 
this study) demonstrated that our DL-ToF models show 
the greatest enhancement for patients with the highest 
BMI; this result is in line with the expected behaviour 

Non-ToF BSREM DL-ToF (L) DL-ToF (M) DL-ToF (H)

Fig. 5   DL-ToF enhancement of a representative test subject with a BMI of 53.8  kg/m2 and weight of 93.9  kg with an injected activity of 
344 MBq scanned on a GE Discovery IQ non-ToF PET/CT scanner (slice thickness 3.8 mm). Display window: 0–5 SUV

Non-ToF BSREM DL-ToF (L) DL-ToF (M) DL-ToF (H)

Fig. 6   DL-ToF enhancement of a representative test subject with a 
BMI of 26.0 kg/m2 and weight of 84.8 kg with an injected activity of 
160 MBq scanned on a GE Discovery IQ non-ToF PET/CT scanner 

(slice thickness 3.8 mm). The arrow shows attenuation artefacts and a 
small lesion in vertebra. Display window: 0–5 SUV
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of ToF reconstruction. Another limitation could be that 
the readers were shown all 5 sets of images (blinded) of 
a subject at the same time. This might bias the scoring 
of the images, although was considered advantageous, in 
order to facilitate the detection of false positive or missing 
lesions by comparing images all at once and furthermore is 
required in order to produce a rank ordering. Further, DL-
ToF models were not compared to any other ToF image 
enhancement technique given the novelty of our meth-
odology and they were not tested for non-FDG tracers. 
Therefore, this work opens new research topics for future 
studies. Future work should include further clinical evalu-
ation using a cohort of FDG exams with the possibility 
of getting the clinical feedback into the training cycle of 
our models.

Conclusion

This study developed three deep convolutional neural net-
works for ToF-like enhancement of PET images acquired 
in non-ToF PET/CT scanners. Our results demonstrate 
that the proposed networks improve the feature quantifi-
cation (lesions, liver and lungs), overall image sharpness 
(as seen with ToF, e.g. organ delineation, ribs, vertebrae), 
and overall diagnostic value (particularly in terms of lesion 
detectability and diagnostic confidence). Depending on the 
model ToF strength, DL-ToF(L) showed more noise reduc-
tion, whereas DL-ToF(H) had the greatest improvement in 
lesion detection. DL-ToF(M) presented a balanced perfor-
mance and best diagnostic confidence. We conclude that 
deep learning–enhanced image reconstruction can mark-
edly improve non-ToF PET images towards their corre-
sponding ToF images.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00259-​022-​05824-7.
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