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Abstract

Robustness and plasticity are essential features that allow biological systems to cope with

complex and variable environments. In a constant environment, robustness, i.e., insensitiv-

ity of phenotypes, is expected to increase, whereas plasticity, i.e., the changeability of phe-

notypes, tends to diminish. Under a variable environment, existence of plasticity will be

relevant. The robustness and plasticity, on the other hand, are related to phenotypic vari-

ances. As phenotypic variances decrease with the increase in robustness to perturbations,

they are expected to decrease through the evolution. However, in nature, phenotypic fluctu-

ation is preserved to a certain degree. One possible cause for this is environmental varia-

tion, where one of the most important “environmental” factors will be inter-species

interactions. As a first step toward investigating phenotypic fluctuation in response to an

inter-species interaction, we present the study of a simple two-species system that com-

prises hosts and parasites. Hosts are expected to evolve to achieve a phenotype that opti-

mizes fitness. Then, the robustness of the corresponding phenotype will be increased by

reducing phenotypic fluctuations. Conversely, plasticity tends to evolve to avoid certain phe-

notypes that are attacked by parasites. By using a dynamic model of gene expression for

the host, we investigate the evolution of the genotype-phenotype map and of phenotypic

variances. If the host–parasite interaction is weak, the fittest phenotype of the host evolves

to reduce phenotypic variances. In contrast, if there exists a sufficient degree of interaction,

the phenotypic variances of hosts increase to escape parasite attacks. For the latter case,

we found two strategies: if the noise in the stochastic gene expression is below a certain

threshold, the phenotypic variance increases via genetic diversification, whereas above this

threshold, it is increased mediated by noise-induced phenotypic fluctuation. We examine

how the increase in the phenotypic variances caused by parasite interactions influences the

growth rate of a single host, and observed a trade-off between the two. Our results help elu-

cidate the roles played by noise and genetic mutations in the evolution of phenotypic fluctua-

tion and robustness in response to host–parasite interactions.
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Author summary

Plasticity and phenotypic variability induced by internal or external perturbations are

common features of biological systems. However, under evolution for given environmen-

tal conditions, phenotypic variability is not advantageous, because it leads to the deviation

from the fittest state. This has been demonstrated by previous laboratory and computer

experiments. As a possible origin for the remnant phenotypic variance, we investigated

the role of host–parasite interactions such as those between bacteria and phages. Different

parasite-types attack hosts of certain phenotypes. Through numerical simulations of the

evolution of the host genotype–phenotype mapping, we found that hosts increase pheno-

typic variation by increasing phenotypic fluctuations if the interaction is sufficiently

strong. Depending on the degree of noise in gene expression dynamics, there are two dis-

tinct strategies for increasing phenotypic variances: stochasticity in gene expression or

genetic variances. The former strategy, which can work over a faster time scale, leads to a

decline in fitness, whereas the latter reduces the robustness of the fitted state. Our results

provide insights into how phenotypic variances are preserved and how hosts can escape

being attacked by parasites whose genes mutate to adapt to changes in parasites. These

two host strategies, which depend on internal and external conditions, can be verified

experimentally via the transcriptome analysis of microorganisms.

Introduction

Robustness and plasticity are two important properties of biological systems. To maintain

function and high fitness against internal noise, environmental variation, and genetic changes,

the fitted state must be robust to such disturbance, whereas the phenotype needs to possess

plasticity to adapt to environmental variation. Indeed, the evolution of robustness and plastic-

ity has been investigated extensively both theoretically and experimentally [1–5].

In this context, phenotypes are shaped by dynamic processes involving several genetically

determined variables, as well as external and internal noise. Hence phenotypes can vary not

only as a consequence of genetic variation, but even between isogenic individuals [6–10]. On

the other hand, the dynamical process varies by the genetic changes, so that there also exists

phenotypic fluctuations by the genetic variation [11–13]. The sum of both sources of pheno-

typic variation defines the genotype–phenotype mapping [14–16]. The evolution of genotype–

phenotype mapping, thus, is essential to understand the evolution of robustness and plasticity,

and has been explored extensively both in numerical [4, 17] and laboratory experiments [18,

19].

The magnitude of these phenotypic fluctuations generally decreases as a result of evolution

under a given environment, because, with this decrease, the system deviates less from the fitted

state [20–23]. In fact, experiments and simulations of adaptive evolution under fixed condi-

tions have shown that fluctuations decrease over the course of evolution [24], and evolvability,

i.e., the rate of increase in the fitness or the phenotypic change per generation, declines.

Accordingly, as evolution progresses, the robustness of the phenotype increases, while the phe-

notypic fluctuations decrease. The decreased phenotypic fluctuation will then be accompanied

by the decreased adaptability to environmental variation, as discussed by generalizing the fluc-

tuation-response relationship in statistical physics [17, 25, 26].

In nature, however, phenotypic fluctuations and evolutionary potentiality persist. Even

after evolution in a constant environment, the phenotype in question is not necessarily con-

centrated on its optimal value, instead its variance often keeps a rather large value. For
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instance, even for isogenic cells (clones), fluctuations in the concentration of each protein

remain sufficiently high. This leads to the following questions: Why are phenotypic fluctua-

tions not reduced further, which, in principle, would be possible by evolving appropriately

negative feedback processes for stabilization? How are phenotypic fluctuations or plasticity

sustained?

One possible cause for the preservation of plasticity or fluctuation is environmental fluctua-

tion [27–29]. In natural populations, environment is not fixed; instead, it is variable. If pheno-

typic fluctuation is reduced excessively, the plasticity required to adapt to new environmental

conditions would be lost. The plasticity of a biological system, would then decrease its capacity

to cope with environmental changes.

For every species, interactions with other species are one of the most important “environ-

mental” factors that affect its existence. Even if a certain “external” environmental condition

itself is fixed, the types and populations of other species may change because of species–species

interactions [30]. For example, in the interaction between hosts (prey) and parasites (preda-

tors), the former may change their phenotype to escape the attack by latter’s, which, in turn,

will change the distribution of the latter phenotypes to continue attacking the former [31, 32].

Thus, each species may retain evolutionary plasticity to cope with dynamic changes in other

species. Furthermore, phenotypic variation in one species may influence the other species,

which can result in a dynamic change in inter-species interactions. If sufficient species–species

interaction exists, the dynamic variation of phenotypes may be mutually sustained across mul-

tiple species.

As a first step to investigate the phenotypic fluctuations originating from such species–spe-

cies interactions, we present a study of a simple two-species system that comprises hosts and

parasites. Within this system, distinct parasite types that can attack hosts by possessing a spe-

cific phenotype exist; the host phenotypes are determined by genotype–phenotype mapping

that incorporates possible fluctuations. Hosts are expected to evolve to achieve a phenotype

that optimizes fitness and increases the robustness of the successful phenotype by reducing

phenotypic fluctuations. in addition, they are expected to evolve plasticity, i.e., phenotypic

adaptability, to cope with parasite attacks. We use a host gene-expression dynamics model to

study the evolution of genotype–phenotype mapping and the resultant phenotypic fluctua-

tions, and explore the evolution of phenotypic robustness and plasticity in response to interac-

tions with parasites.

Here, we address the following questions: first, how are robustness and plasticity of pheno-

types, which tend to exhibit opposite trends, maintained through evolution caused by interac-

tions between the host and the parasite species? Second, are phenotypic fluctuations sustained

to cope with parasite attacks? As mentioned before, there are two sources of phenotypic fluctu-

ations: genetic variation and stochasticity in genotype–phenotype mapping (i.e., noise in the

dynamics that shape the phenotype). Then, we address a third question: which of these sources

of phenotypic fluctuation is dominant in sustaining the level of phenotypic fluctuation?

Finally, we discuss the dependence of the evolution of phenotypic fluctuation and plasticity on

the strength of the host–parasite interaction and the sensitivity of phenotype dynamics to

noise.

Models

Gene regulatory networks

We employed a simple model for gene expression dynamics based on a sigmoidal function to

study the evolution of the genotype–phenotype map. There are dynamics of protein expression

level for each protein (gene) i. This model comprises a network consisting of genes that
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mutually activate or inhibit each other’s expression. In this model, there are M genes whose

gene expression level, xðlÞi (i = 1, 2, . . ., M), corresponding to the host genotype l at time t is

described by

dxðlÞi ðtÞ
dt

¼ g f ð
XM

j>k

Jijx
ðlÞ
j ðtÞ
ffiffiffiffiffiffiffi
aM
p þ Ii � yiÞ � xðlÞi ðtÞ þ �

 !

þ sZ
ðlÞ
i ðtÞ; ð1Þ

where Jij denotes the matrix representing the influence of gene j on the expression of gene i.
When j activates (represses) the expression i, it takes the form Jij = 1(−1), while Jij = 0 if j does

not influence i. The sigmoidal function f(z) is given by

f ðzÞ ¼
1

1þ expð� bðzÞÞ
; ð2Þ

with β = 25; this implies that f(z) closely resembles a step function. Furthermore, θi represents

the threshold of the input required for the expression of gene i. Therefore, whether the gene

(protein) is expressed (f(z)� 1) or not (f(z)� 0) depends on whether the sum of inputs from

the expression of other genes(proteins) is larger than θi. In Eq (1), the value θi is selected ran-

domly from a uniform distribution between 0.05 and 0.3. The term representing the interac-

tion with other genes is scaled by
ffiffiffiffiffiffiffi
aM
p

, where α denotes the path density, that is, the fraction

of nonzero values of Jij. We adopted this scaling so that xi is comparable with the order of θi
regardless of total gene number M(= 64). (Because the connection is sparse, many of Jij = 0,

and the average number of inputs for gene is αM. We normalized the interaction with other

genes by the square root of the path number αM so that the variance of Jij is independent of

αM.) Moreover, there are lout(= 8) “output genes” i = 1, 2, . . ., lout, which determine the fitness

as defined below. To eliminate the potential for the output genes to influence others, the sum-

mation is taken only for j> lout. The term η(l)(t) denotes a Gaussian white noise originating

from molecular fluctuations in chemical reactions.

Here, the noise is applied to the expression of each gene, and it is not correlated across

genes. The value of σ represents the strength of this noise (In the case where the gene expres-

sion of x is negative, we set x to zero.) For constant f(z), Eq (1) defines an Ornstein-Uhlenbeck

process, and to give the equilibrium variance of σ2/(2γ). Initially, all gene expression levels are

set smaller than the threshold θi. Furthermore, � denotes the spontaneous expression level,

which is smaller than θi. Ij denotes the external input for linp(= 8) “input genes,” with Ij = 1 for

j = M − linp + 1, M − linp + 2, . . ., M, and Ij = 0 for j�M − linp. The input genes are always/con-

stitutively expressed. In order for xi to be expressed, xi must receive external or internal inputs

from other xj values to advance beyond θi.
Initially, we select Jij at random to obtain Jij = 1(−1) with a probability of 0.15 so that α =

0.3. We set the initial number of host cells as N and total number is constant at N = 300

throughout all simulations. Here, we set M = 64, lout = 8, and linp = 8. The model parameters

used in this study are set as in Table 1.

Raw fitness and reproduction

The raw fitness of the host alone, i.e., in the absence of parasites, is determined by the fraction

of output genes that are expressed as

mðlÞðtÞ ¼ m0

Xlout

j¼1

xðlÞj ðtÞ ð3Þ

where xj denote the expression of the output genes and μ0 denotes the basal fitness. Therefore,
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the state with all output genes expressed (xj = 1, for j = 1, 2, . . ., lout) is an optimal phenotype

for achieving maximal growth.

We introduce parasite attacks into the model. There are Np ¼ 2lp parasite genotypes that

are coded as i1; i2; . . . ; ilp with ij = 0 or 1. For example, for lp = 3, there are 23 = 8 genotypes

coded by 000, 001, . . ., 111. Each parasite attacks hosts that possess the corresponding target

gene expression, i1; i2; . . . ; ilp , that is, each parasite attacks the host whose gene expression pat-

tern, xj (1� j� lp), matches (i1; . . . ; ilp). Here, we term the lp genes as “target genes.” The target

condition for the attack of each parasite is given by s(xi) = 1 for xi> 0.5 and s(xi) = 0 otherwise

(as the threshold function is close to a step function, xi takes either�0 or�1). For instance, a

host whose expression pattern (s(x1), s(x2), s(x3))� (0, 1, 0) is attacked by the parasite (i1, i2,

i3) = (0, 1, 0). Let m (m ¼ 1; . . . ; 2lp) be the parasite type whose i1; i2; . . . ; ilp matches with host

xðlÞi for i = 1, . . ., lp. The growth rate m̂i
ðlÞ of each host genotype l decreases owing to the effect of

the parasite m as

m̂ðlÞðtÞ ¼ m0ð
Xlout

j¼1

xðlÞj ðtÞ � cPmÞ ð4Þ

here Pm denotes the population density of the m-th parasite that matches with the host gene

expression xðlÞi for (i = 1, . . ., lp) as mentioned and c denotes the strength coefficient of the

attack by the parasite. The evolution of hosts is modelled by an individual-based approach

with a fixed population size akin of the Moran process. Each host has its own genotype (gene

regulatory networks) and the growth rate m̂ determined by the gene expression levels calcu-

lated by numerical simulations in Eq (1). The volume of the host cells grows according to

dvðtÞðlÞ

dt
¼ m̂ðlÞðtÞvðtÞðlÞ ð5Þ

Table 1. Model parameters and variable definitions.

Symbol Description value

M Total number of host genes 64

N Total number of host cells 300

linp Number of input genes 8

lout Number of output genes 8

Ij Input strength 1

γ Time constant 0.1

α Average path density 0.3

� Spontaneous expression level 0.01

β Sensitivity in the expression 25

μ0 Basal growth rate 0.0002

m Mutation rate 0.03

lp Total number of parasite genes 3

Np Number of parasite types 8

Tp Parasite generation time 100

Dp Mutation rate of parasite 0.01

https://doi.org/10.1371/journal.pcbi.1008694.t001
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When the volume exceeds a threshold value of 2 (v(0) set to 1), the host cell is divided into

two parts. The total number of hosts N is set to be constant over time, and thus, whenever a

cell divides, another cell is randomly selected and removed from the original population.

Here, after division, the initial expression of xi is reset to take a random value smaller than

the threshold θi. The division time of the host is determined by the individual growth rate that

ranges between 500 and 1,000 time units. At this time scale, the host gene expression reaches a

steady state. The gene expression of hosts reaches a steady state after around 200 time units.

Mutation is introduced in the division process and added to the network Jij with a low muta-

tion rate m = 0.03. An (i, j) path in the network matrix Jij is selected at random and its value is

changed to one of the others to preserve the total path number. For example, if Jij = 1(−1) and

Jkj = 0, then they are changed to Jkj = 1(−1) and Jij = 0. Here, we randomly select a gene k 6¼ i,
i 6¼ j, k 6¼ j. Then, the path j! i is replaced by j! k to represent the mutation of a path in

gene regulatory networks. We prohibited direct connections between the “input” and “output”

genes. Initially, Jij is selected randomly with ±1 with the rate α = 0.3, and α remains constant

throughout the simulation. (However, the result is independent of this choice.)

It should be noted that once cells settle down to different fixed-point attractors, no more

switching occurs in time. The on/off difference in the gene by cells occurs due to the develop-

mental noise from the initial condition, which subsequently results in phenotypic variance in

the population.

Parasite population dynamics

Unlike host phenotype (gene expression levels), which is partially stochastic, the parasites’ phe-

notype is determined uniquely by its genotype. Hence parasites of a given genotype share a

common phenotype and parasite population dynamics can be modelled by deterministic equa-

tions (instead of individual-based simulations).

The population of each parasite Pi increases in proportion to the host population with the

corresponding phenotype, where the host density Hi to be attacked by the parasite strain i is

determined by the host population that satisfies s(xj) = ij. Further, there is a mutation from

other parasite types P0js. Because parasite types are represented by a binary string of length

lp, they are represented in a lp-dimensional hypercube space. Each distinct genotype uj ¼

ði1; . . . ; ilpÞ is represented by a vertex on the cube. Mutations in the parasite genotypes occur

by flipping each gene il = 0$ il = 1 at the mutation rate Dp. This is represented by diffusion in

the hypercube (e.g., 010$ 000) determined by a diffusion constant Dp. Therefore, the popula-

tion dynamics is expressed as

dPi

dt
¼ c=TpðHi �

�HÞPi þ Dp

XNp

j¼1

kijðPj � PiÞ ð6Þ

where κij takes unity only if the binary string of j can change to that of i via a single mutation,

otherwise it equals zero. We assume competition within all the parasite genotypes, such that

the total number of populations is assumed to be fixed, to avoid the divergence of parasite pop-

ulations. Accordingly, we normalize the density Pi such that
P2

lp

i¼1
Pi ¼ 1. Thus, the reduction

term �H ¼
P

Hi

2
lp is introduced ensuring that

P2
lp

i¼1

dPi
dt ¼ 0 and

P2
lp

i¼1
Pi ¼ 1 remain satisfied. We

computed the population dynamics of parasites with a given generation time Tp (s). We set the

initial density Pi to take the same value for each type, i.e., Pi ¼
1

2
lp (The result below, however,

is independent of this initial distribution). The generation time of parasites is shorter than that

of hosts. Therefore, the fittest type would quickly become dominant.
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Phenotypic variances attributed to noise and mutation

The model includes a noise component that allows gene expression level xðlÞi to vary even

among individuals sharing the same gene regulatory network. We define the phenotypic vari-

ance V ðlÞp ðiÞ as the variance of the phenotype xðlÞi over the entire host population with different

genotypes. Here, the variation of xðlÞi to give VðlÞp ðiÞ arises both from noise and from network

mutations. In addition, we compute the isogenic phenotypic variance V ðlÞip ðiÞ of the gene

expression level xðlÞi within each host genotype l. Because of the noise term σηi in Eq (1), the

expression level xi for the same host genotype (network) varies between individuals and this

variance is positive. We define two phenotypic variances to distinguish between these sources:

Vip(i) and Vg(i)[23, 25]. The variance VðlÞip ðiÞ is defined as the variance of gene expression levels

in an isogenic population, i.e., the phenotypic variance of xi caused by noise in the gene expres-

sion dynamics within the clonal population of hosts, i.e., sharing the common Jij. In contrast,

VðlÞg ðiÞ is defined as the phenotypic variance due to genetic mutation, as computed by the

variance of �xi ðlÞ within a population of initial genotype i in which each individual receives

one random mutation, where �xi ðlÞ is the average over the clonal distribution of host l. Details

describing the calculation of variances Vip and Vg are provided in the Methods section. Here,

as we are interested in the variance of the expression of output genes, we term the average vari-

ances of the output genes (i = 1, 2, . . ., 8) as Vip, Vg, and Vp, thereby omitting the l notation. In

addition, we define the average variances of the target genes corresponding to parasite attacks

as Vt
ip and Vt

g .

Note that developmental noise (the ση term in Eq (1)) has no significant effect on host fit-

ness once gene expression dynamics have reached a stable state with all xi close to 0 or 1. This

is because host growth depends only on mean gene expression levels and parasite attack

depends on rounded values (whether xi is larger or smaller than 0.5). However, noise is impor-

tant, because when amplified in the GRN, it may cause the initial dynamics to converge to a

different stable state (i.e., noise-induced switches in gene expression). Regarding phenotypic

variances, we discuss two types of robustness: mutational robustness and developmental

robustness. Mutational robustness describes the “ability” of a GNR to prevent changes in

gene-expression patterns due to mutations in the network structure, and developmental

robustness describes the ability to prevent changes in expression patterns due to noise-induced

fluctuations in gene expression level during the initial network dynamics.

Results

Parasite interaction accelerates host diversity

We started simulations with N host cells of an initial gene-regulatory network created by creat-

ing random paths with probability α = 0.3. We took 50 replicated populations to obtain the sta-

tistics. The initial condition for each cell is given by a state in which only the input genes are

expressed: all other genes are initialized with expression levels drawn uniformly between 0 and

0.05. This same initial condition was also applied to the daughter cells after each cell division.

In the following results, gene regulatory networks (GRNs) that went extinct as a result of para-

site interactions are excluded immediately from the sample at the initial time t = 0.

Fig 1 shows the population dynamics and fitness values of the host in three parasite envi-

ronments (c = 0, 2, and 4) in the absence of noise (σ = 0). In the absence of parasite interaction,

i.e., at c = 0, the host population is dominated by GRNs that generate a phenotype expressing

all target genes, such as type “111” (black line), which dominate the host population (see Fig

1A). Then, if sufficient interactions with the parasites occur, the host population evolves into
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Fig 1. Dynamics of host phenotypes under interaction with parasites. The populations of hosts Hi corresponding to

the parasite type (i1; i2; . . . ; iNp
) are plotted against the generation time. The number of parasite types is Np = 23 = 8,

which corresponds to the on/off expression of the three target genes of the host. The population of each host type i for

Hi represents {s(x1), s(x2), s(x3)} = “000,” “001,”. . ., and “111” is indicated by different colors. The interaction strength

is c = 0 (A), 2 (B), and 4 (C). The noise level is σ = 0.0. In the absence of parasites (c = 0), the population is dominated

by the “111” type in which all output gene expression levels are turned on, whereas other phenotypic types with low

growth rates (“110,” “101,” and “011”) also coexist at c = 2 and 4. In addition, N = 300, M = 64, linp = 8, lout = 8, and lp =

3 (see Table 1).

https://doi.org/10.1371/journal.pcbi.1008694.g001
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multiple groups with different phenotypes (Fig 1B and 1C). This is explained by the selection

pressure to avoid parasite attacks. When the host population is concentrated on the fittest type

“11111111,” which includes the target gene expressions “111,” the parasite population is also

concentrated on the corresponding type matching the target “111,” which results in suppres-

sion of the population of the fittest host types by the interaction with the parasite. Conse-

quently, other host types with less preferred/less fit target patterns have more chances to

survive. In short, parasites induce negative frequency-dependent selection pressure, and the

effective fitness (Eq (4)) varies over time because of the change in the distribution of parasite

genotypes. Thus, multiple phenotypes and genotypes can coexist within a host population.

Note that in the absence of noise, the expression dynamics of isogenic individuals always con-

verge to the same pattern.

Next, we computed the phenotypic variance Vp that is the variance of output gene expres-

sion levels over the host population with polymorphic genotypes (i.e., network Jij) and plotted

it as a function of the interaction strength c to determine the extent to which host–parasite

interactions enhance phenotypic diversity (Fig 2). Independent of the level of developmental

noise, Fig 2 shows a marked increase in the phenotypic variance at a threshold interaction

strength c = ct� 1. This diversification indicates that multiple phenotypes coexist within the

population, as shown in Fig 1B and 1C. In contrast, below the transition point ct, the variance

decreases and the host population is concentrated on the fittest phenotype, as shown in

Fig 1A.

This critical interaction strength ct� 1 follows from the fitness function in Eq (4). The host

growth rate is maximized when the expression level of all output genes is close to xj = 1. If

the parasite population is concentrated on the type that attacks this fittest phenotype, the pop-

ulation growth is reduced to cPm� c, with Pm as the population fraction of the parasite type

m(= 1, . . ., lp). To allow the phenotype to escape from the parasite attack, one target gene

Fig 2. Total phenotypic variance Vp of the output genes against the parasite interaction strength. The variance Vp
of the output genes plotted against the parasite interaction strength c (bars represent standard deviation). Vp is

computed from the expression levels of the output genes over the host population (N = 300 individuals) and plotted as

the average Vp over 2500–3000 generations. Each color represents a different noise strength: σ = 0.03 (blue), 0.02

(orange), 0.01 (black), and 0.001 (red).

https://doi.org/10.1371/journal.pcbi.1008694.g002
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should be switched off, which reduces the raw growth rate by one unit. Then, the raw fitness

loss needs to be smaller than the gain by the escape c. Since, Pm� 1, the total fitness gain is

positive if c≳ 1. Indeed, Fig 2 shows that, for c> ct, the variance increases substantially. When

the interaction is strong (e.g., c = 4), the number of coexisting host genotypes approaches the

maximal number 2lp = 8, which corresponds to the total number of parasite types. (see Fig 1C).

In our model, phenotypic variance can have two different origins: genetic variation and

noise-induced phenotypic variation. These correspond to two strategies to sustain phenotypic

diversity. We investigated how the choice of each of the two adaptive strategies depends on c
and σ, by computing the noise-induced isogenic phenotypic variation, Vip, and the variance

induced by mutations, Vg.

Evolution of robustness and phenotypic fluctuation

Fig 3 shows evolutionary time courses for the variance components Vip and Vg (for both out-

put and target genes) for various combinations of c and σ. The temporal averages of Vip and Vg

after evolution of the system reaches a stable state are shown in Figs 4 and 5, respectively.

These results are independent of the choice of the initial network. Initial values of Vg are high

because random networks are not canalized and are highly sensitive to mutation. In addition

to the critical interaction strength ct, we can see (e.g., from Figs 4 and 5 against c and σ) the

existence of a critical noise level σc� 0.02, above which Vip increases markedly. Based on these

two thresholds, behaviors of host gene expression states can be classified into four regimes:

Regime I: Noninteracting, nonrobust (σ< σc� 0.02 and c< ct = 1)

When the noise is below the threshold σc = 0.02 and the interaction is weak (c< ct = 1), Vip is

low, whereas Vg is maintained at a high level (Fig 4). The phenotype varies considerably by

mutation, which indicates that mutational robustness does not evolve. (A large Vg implies

that the phenotypes are not particularly robust against mutations.) Host phenotypes (i.e.,

gene expression) fluctuate around the fittest type, as shown in Fig 1A, where most of the tar-

get genes are expressed, whereas the variances are sustained at moderate values because of

genetic variation in the network structure.

Regime II: Noninteracting, robust (σ> σc and c< ct)

The evolution of developmental robustness against the noise in gene expression dynamics

occurs when the noise is above a threshold of σc = 0.02 and the interaction is weak (c< ct =

1). In this region, the strength of the interaction is weaker than at the transition point ct = 1,

which means that the attack by the parasite is not sufficient to cause phenotypic diversifica-

tion (Fig 2). Fig 4 shows that the values of both Vip and Vg are low relative to the case with σ
< σc and c< ct. The phenotype is not significantly changed by genetic variation. Vip and Vg

both decrease while satisfying the inequality Vip> Vg (see Fig A in S1 Appendix), and this

leads to the evolution of robustness to both noise and mutation. This supports previous

studies [17, 23, 25]. The host population loses both genetic and phenotypic inhomogeneity,

which indicates that the output genes are all switched on and exhibit minimal variation

with respect to the fittest type.

Regime III: Interaction-induced genetic diversification (σ< σc� 0.02 and c> ct)

The evolution of genetic diversification occurs when the noise level is below the threshold σ<
σc and the interaction strength exceeds the transition point ct. Vg remains at high levels,

whereas Vip remains small, as shown in Fig 5. Phenotypic diversity is generated by genetic

diversity. For each given genotype, the generated phenotype is unique and exhibits almost
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Fig 3. Evolutionary time course of the average phenotypic variations Vip and Vg. The time course of the average phenotypic variations Vip and Vg (i.e., Vt
ip and Vt

g).

The plot is from the first generation rather than 0th generation. Note that host types that went extinct during the simulation have been excluded. This explains the

different initial variance levels between parameter combinations. (A) Average Vip and Vg over all output genes are plotted against the generation for different values of

the noise level σ and interaction strength c, as indicated by different colors. Red: Example of evolution with no host–parasite interactions. Hosts are occupied by

individuals with the fittest phenotype, thereby losing phenotypic diversity (σ = 0.02). Both the isogenic phenotype variation Vip and the genetic variance Vg decrease.

Orange: Case with c = 2 and σ = 0.01, which shows that Vip decreases, whereas Vg maintains high values, implying the evolution of genotypic diversity. Green: c = 2 and

σ = 0.03. Both Vip and Vg increase. Blue: c = 4 and σ = 0.05. Vip decreases slightly, whereas Vg maintains low values. (B) Vt
ip and Vt

g for the target genes. The line colors

represent the equivalent conditions as in (A).

https://doi.org/10.1371/journal.pcbi.1008694.g003
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Fig 4. Dependencies of Vip and Vg on the noise level σ and interaction strength c. Vip and Vg for all output genes upon noise level σ (horizontal axis)

and interaction strength c (vertical axis). The variance values for each parameter are displayed using color maps. The variance is computed by taking the

average of 2500–3000 generations. The color maps indicate that the host–parasite interaction enhances Vip and Vg. Parameter values of σ and c for each

square are shown at their left and bottom edge (e.g., the bottom-leftmost square is the results for σ = 0.001 and c = 0) Each parameter regime is

categorized into one of four regimes based on the values of Vip and Vg (see the text for details).

https://doi.org/10.1371/journal.pcbi.1008694.g004

Fig 5. Transition of Vg and Vip with noise strength. Dependence of the average variances Vip (red) and Vg (blue) for

output genes (solid lines) and Vt
ip (red) and Vt

g (blue) for target genes (dotted lines) upon the noise level σ for a strong

host–parasite interaction (c = 3). Bars represent the σ standard deviation. Vt
ip exceeds Vt

g at σc� 0.02. Based on the data

in Fig 4, the phenotypic diversification occurs for all parameter values here, but the main origin of the phenotypic

variances changes from the mutation to the noise at σ� σc.

https://doi.org/10.1371/journal.pcbi.1008694.g005
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no variation. Multiple groups with different genotypes coexist because of interactions with

diversified parasites. The stronger the interaction, the more phenotypes arise, which leads

to a larger Vg and higher genetic diversity in the population. For moderate c> ct, the geno-

types with the fittest type “111,” coexists with genotypes having one target gene switched off

(“110,” “101,” “011,” etc.), whereas for c = 4, even more host types appear, leading to coexis-

tence, including expression patterns where only one target gene switched on (“100,” “010,”

“001,” etc.)

Regime IV: Interaction-induced phenotypic variation (σ> σc and c> ct)

As exemplified by the case of c = 3 and σ = 0.02, the phenotypic variation of the output gene

expression (Vip) increases in the initial stage of evolution (up to 500 generations; see Fig 3).

Both Vip and Vg maintain high values, while satisfying Vip> Vg. Host phenotypes are diver-

sified without resorting to genetic diversification. Here, isogenic hosts can have more than

one phenotype. Gene expression levels are diversified by noise, which implies the pheno-

typic variation of the isogenic population. Variances in expression levels are highest for tar-

get genes, whereas those of the other output genes are maintained at high levels (see Fig B

in S1 Appendix). Accordingly, the fitness is reduced.

Transition between Regime III and IV against noise strength

We now explore the transition between the last two regimes. Fig 5 shows the dependence of

the variances Vip and Vg of the output genes on the noise level σ for c = 3. Below the threshold

noise level σc, Vg exceeds Vip, indicating that there is little robustness against mutation; the

diversity of the target gene expression levels is based primarily on genetic variation. In con-

trast, when the noise level exceeds σc, Vip> Vg and the diversification of gene expression pat-

terns is achieved over isogenic phenotypic variation, i.e., due to noise.

Note that, in Fig 5 Vg decreases slightly with σ once σ exceeds the critical value σc. This

reflects previous results for c = 0 (i.e., in the absence of parasites), which showed that muta-

tional robustness decreases as a correlated response to the evolution of developmental robust-

ness against increasing noise levels (Fig A in S1 Appendix). This is because, for a larger noise

strength, the acquisition of developmental robustness to noise is needed which also leads to an

increase in robustness to genetic mutations. These factors have been investigated in detail in

previous studies [23]. When c is nonzero, Vg is larger than the case for c = 0, but its decrease

against σ for the case with c = 0 still remains, so that Vg shows slight decrease against σ.

Evolution of the noise-induced on/off switches

As mentioned above, once expression levels of host target genes have settled down close to one

of the fixed points x = 0 or 1, continued variation due to the noise term in Eq (1) has no effect

on the interaction with the parasite. The noise is important, however, for the initial network

dynamics that determine which of these fixed points is approached in the first place. In order

to separate the contributions of noise-induced on/off-switches from those of the noise itself,

we define a variance V 0ip which only reflects the former. More precisely, V 0ipðiÞ is the variance of

the on/off variable zi = tanhβ(xi − 0.5) with β = 100 and defined V 0ipðiÞ as the variance of zi,
computed in the same manner as Vip(i).

Fig 6 shows the dependence of the variances V 0ip (output genes) and Vt
ip
0 (target genes) on

the noise level σ for c = 3. The key difference to Fig 5 is that for σ> 0.02, V 0ip remains essentially

constant for both target and output genes, suggesting that the variance due to noise-induced
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switches cannot be increased arbitrarily, and that the continued increase of Vip seen in Fig 5 is

merely a reflection of the increase in white noise. The reason that Vt
ip
0 does not increase much

beyond σ> 0.02 will be because the level of phenotypic variation reached by the noise, in con-

junction with genetic variation, is sufficient to produce the maximal phenotypic variation.

Indeed, Vp with c = 3 in Fig 2 is the same regardless of the noise strength. Evolutionary time

courses for both Vip and V 0ip are shown in Fig E in S1 Appendix. For target genes, both mea-

sures increase from their initial value and then stay at a high level, with no evidence for evolu-

tion of developmental robustness. For non-target output genes, in contrast, Vip and V 0ip
decrease over time relative to the values in the initial random networks. This shows that the

decrease in the variance has not been observed in the target gene implying that the develop-

mental robustness has not evolved. Also, as discussed in the previous section, Vg decreases

with σ, but not more than the case with c = 0, suggesting that there exists some coupling

between the Vt
ip
0 and Vt

g . On the other hand, the variance of the non-target output gene (V 0ip)
decreases compared to the initial network, and the developmental robustness evolves in corre-

lation with mutational robustness (Vg). At around the noise level (σ = σc� 0.02), the variances

V 0ip and Vt
ip
0 show remarkable increase. Albeit less significant as compared to Vt

ip
0, V 0ip also

increases. Although only the on/off of the target gene is relevant to protect against the parasite

attack, the noise-induced switch is increased for other genes, due to the coupling in GRN. In

the figure, Vt
ip
0 is of the same level beyond σ = 0.02. The required switching frequency is of the

same level, once at σ� σc it occurs. (It increases with the interaction strength c, though).

Dependencies of the variances on genetic change and noise

In the absence of parasites, the variances Vip and Vg decrease as the host phenotype adapts to

the environment. This indicates the evolution of robustness to mutation and noise (regime II).

Under the pressure of the host–parasite interactions, the gene expression dynamics evolved to

Fig 6. Transition of Vt
ip
0 with noise strength. Dependence of the average variances V 0ip for output genes (solid lines)

and Vt
ip
0 for target genes (dotted lines) due to noise-induced switches plotted against the noise level σ for a strong host–

parasite interaction (c = 3). We used the function zi = tanhβ(xi − 0.5) with β = 100 and defined V 0ipðiÞ as the variance of

zi. Bars represent standard deviation.

https://doi.org/10.1371/journal.pcbi.1008694.g006
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diversify the phenotypes in the manner described above. Here, we discuss the increase in Vip

and Vg through evolution.

First, we plot the evolutionary time course of Vip and Vg starting from the initial random

networks Jij setting with parameters c = 3, σ = 0.03 in Fig 7A. The variances Vt
ip and Vt

g of target

genes both increase rapidly because of interactions with parasites. (GRNs that went extinct

due to parasite infections of the 0th generation are excluded. Therefore, the variance Vip tends

to be larger at c = 3 initially.) As shown in Fig 7A(b), the two variance terms exhibit consider-

ably closer correlation between Vip and Vg for the expression of the target gene. Moreover,

both variances maintain large values, and the host can escape parasite attacks by producing a

different phenotype via mutation. In contrast, Fig 7A(a) shows that the variances of other out-

put genes decreased and developmental robustness increased for those phenotypes that were

not attacked by parasites. This decrease, however, is much smaller than that observed in the

absence of the host–parasite interactions (see Fig F in S1 Appendix). The decrease implies that

the expression of target and non-target output genes is partially decoupled, but the reduction

of the decrease suggests some coupling. The evolution of robustness and phenotypic fluctua-

tion occurs in the same GRN’s.

Coping with parasites by phenotypic variation

Next, we investigated whether high variability in phenotype (i.e., phenotypic fluctuation) can

evolve in response to the introduction of parasites, even after developmental robustness has

evolved. To investigate this issue, we first set c = 0 and let the system evolve, and once the host

had adapted to the environment and acquired robustness (i.e., after Vip and Vg had decreased

from their high initial values), we switched on the interaction by increasing c from 0 to 3. The

time course of the variance is shown in Fig 7B. After switching the interaction strength, the

host growth rate decreases temporarily before increase in phenotypic variation evolves (see Fig

G in S1 Appendix). Then, both the variances Vt
ip and Vt

g increase. Thus, notwithstanding the

prior evolution of developmental robustness, phenotypic fluctuations can evolve in response

to parasite infection. The phenotypic fluctuations (Vip) in the host population show a notable

increase within 2000 generations. In addition to the target genes, the fluctuations in the expres-

sion level of the output genes also increase. Hence, the output and target genes are not

completely decoupled.

A comparison of Fig 7A and 7B shows that the final variances are nearly identical. This

means that the variances in both target and output genes after evolution are independent of

the initial conditions. To increase the phenotypic variance of the target genes, variances of

other gene expressions need to be maintained to a certain degree because of gene interactions

through the GRN. This trend of a weak increase in the phenotypic variance for all genes holds

for c> ct (see Figs C and D in S1 Appendix).

Trade-off between growth and tolerance

We examined how the increase in the phenotypic variances caused by parasite interactions

influences the growth rate of a single host. Parasites concentrate their attacks on the hosts with

the most frequent phenotype in the population. Fig 8 plots the relationship between Vip and

the raw fitness, and it shows the trade-off between the two. Individuals exhibiting high plastic-

ity tend to have lower growth rates because of the uncertainty in the expression of output

genes; however, they are attacked less by the parasites. As the variance Vip is larger, the parasite

attacks are reduced. Consequently, the host genotypes with larger Vip have a larger chance of

survival, even if their growth rate as a single cell is lower. In contrast, in region III with large

Vg, host populations are adapted to parasite infection through genetic variation. In this case,
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Fig 7. Time course of the variances (Vip, Vg) after switching interaction strength. (A) The time course of the variances (Vip, Vg) for output genes (a) and the variance

(Vt
ip, Vt

g) for target genes (b) plotted over generations for c = 3 when starting with initial random networks (circle; dotted lines). The variances are computed from the

isogenic variance over 100 iterations. The time course over generations is plotted for the variances of gene expression. The plots cover 3500 generations. We set the noise

level to σ = 0.03> σc. The two variances of the non-target output genes decrease, while Vg< Vip is maintained throughout the evolutionary course (a). Conversely, under
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low phenotypic fluctuations and high raw fitness are compatible. Here, target genes and non-

target output genes are well decoupled and raw fitness tends not to decrease even if the expres-

sion of target genes is variable (Fig 8 σ = 0.01 and σ = 0.001 case). Therefore, the fitness costs

are higher for the variance by noise (Vip) than that by the genetic variation (Vg). The lack of

fluctuations, however, makes the host population more susceptible to parasite infections when

genetic variation is suddenly reduced because of extinction.

Discussion

In this study, we investigated the evolution of phenotypic variances using host gene expression

dynamics within a regulatory network in the presence of a host–parasite interaction. If the

interaction is weak, the host with the fittest phenotype evolves to reduce phenotypic variances.

In contrast, if the interaction is sufficiently strong, the phenotypic variance of the host

increases as strains evolveadaptation to decrease attack by specific parasites. We identified two

strategies—either to increase the noise-induced phenotypic variation (Vip) or to increase the

genetic variance (Vg)—depending on the strength of the noise in the stochastic gene expres-

sion. If the noise strength is below the threshold, the diversification is primarily genetic in ori-

gin, whereas above the threshold noise-induced phenotypic variation dominates, leading to

host–parasite interactions, Vt
ip and Vt

g show a correlated increase (b). (a) shows that the variances of other output genes not attacked by parasites decreased. However,

this decrease is much smaller than that corresponding to the absence of host–parasite interactions. (B) The time course of the variances (Vt
ip, Vt

g) for target genes (a) and

variance (Vip, Vg) for output genes (b) over generations for σ = 0.03 when switching interactions c from 0 to 3 (asterisks; bold lines). For the first 2500 generations, the

evolution of the host was modeled without parasites (c = 0). Up to this generation, the evolution of developmental and mutational robustness was complete Vip and Vg
decreases. Then, we introduced the interaction with the parasites by changing c from 0 to 3. The variances were computed from the isogenic variance over 20 iterations.

The time course of (Vip, Vg) and (Vt
ip;Vt

g) over generations after this switch is plotted for the output and target genes. The color bar indicates the number of generations

since the switch. The variances Vt
ip and Vip both increase because of interactions with the parasites, which results in the evolution of phenotypic variation. Although this

increase is prominent for target genes (b), those for other output genes also show a slight increase up to 2000 generations (a). Variances Vt
ip and Vt

g finally reach the same

values as those in (A). Other model parameters: N = 300, M = 64, linp = 8, lout = 8, and lp = 3.

https://doi.org/10.1371/journal.pcbi.1008694.g007

Fig 8. Trade-off between phenotypic variation (Vip) and fitness. Trade-off between isogenic phenotypic variation

(Vip) of the output genes and raw fitness
Plout

i¼1
xi. Each value is computed by the average from 2500–3000 generations.

Each color represents a different interaction strength: c = 0 (black), c = 1 (green), c = 2 (red), c = 3 (blue), and c = 4

(yellow). Each marker shape represents a different noise strength: σ = 0.05(�), σ = 0.04(?), σ = 0.03(⊳), σ = 0.02(�), σ =

0.01(4), and σ = 0.001(⊲).

https://doi.org/10.1371/journal.pcbi.1008694.g008
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the increase in variances Vip and Vg. In the latter case, both variances increase in correlation,

and thus, which enhances phenotypic variation and helps avoid parasite attacks.

In a fixed environment without inter-species interactions, both variances Vip (due to noise)

and Vg (due to mutation) tend to decrease, which causes loss of phenotypic variation and evol-

vability. Under host–parasite interactions, the GRN evolves to increase these variances, even

after robustness has evolved and the variances have diminished. We classified the diversifica-

tion of phenotypes into four regimes based on the interaction strength c and noise level σ. The

regimes were classified according to the respective degrees of phenotypic variance caused by

phenotypic noise (Vip) and genetic variation (Vg).

It should be of interest to investigate how the structure of evolved GRN depends on each

regime. For example, we examined the distribution of 3-genes motifs [33] for each regime. We

detected the increase of motifs that activate target genes in all regimes; however, so far we

could not detect a clear difference in the motif distribution among the four regimes yet. The

characterization of network structure inherent to each regime remains as a future problem.

Whether biological populations deal with environmental changes by genetic variation or

phenotypic variation has been discussed both theoretically and experimentally [3, 34–36].

Indeed, the relevance of species–species interactions to phenotypic variation and genetic diver-

sification has been discussed extensively [37–39]. Therefore, it is interesting to examine how

the two strategies for phenotypic diversification studied here are adopted therein.

Here, we observed a trade-off between phenotypic variation and raw fitness. Hosts that

evolved the increase in phenotypic variation to deal with parasite interactions tended to exhibit

a decrease in raw fitness (i.e., the growth rate). Interestingly, such a trade-off has been observed

for predator-induced phenotypic plasticity [39–42] and in bacteria-phage experiments [43],

where the bacteria gain resistance to the phage by reducing the competition for resources. Fur-

thermore, it has been suggested that excessively strong phenotypic plasticity may reduce adapt-

ability to climate change [44].

In contrast, host populations that exhibit phenotypic diversification by increasing genetic

variation (Vg) to reduce the rate of infection do not show a significant decrease in fitness.

However, in this case, their phenotypes are less robust against noise or mutation.

The generation of diverse phenotypes against uncertain environmental changes is known

as a “bet-hedging strategy” [45–51]. The question of whether to cope with environmental

changes by genetic evolution or by phenotypic plasticity has been discussed in relation to the

speed of environmental change. The diversification strategies originating from either Vip or

Vg, as discussed here will provide the basis for the increase in phenotypic variance, which is

required for “bet-hedging.”

Moreover, the time scale of environmental change is expected to be an important factor in

determining which adaptation strategy is selected. Nevertheless, in the present model, the

hosts do not receive parasite information explicitly. The effect of parasite infection on the host

is considered only as a negative effect on population growth. The influence of the parasite does

not have any effect on the host gene expression dynamics. The characteristics of gene expres-

sion dynamics are determined by the noise level σ, which indicates that the transition point σc
is independent of the time scale of the parasite population dynamics (see Fig H in S1 Appen-

dix). Furthermore, because the population density is fixed, the interaction strength is constant

in time, which means that the hosts do not become extinct even if they cannot cope with rapid

changes in parasite dynamics. It would be interesting to study the evolution of a model in

which the host receives the influence of the parasite directly as the input to phenotypic dynam-

ics. For example, in the perceptron model that produces a favorable phenotype for an input,

different strategies emerge depending on the environment [50]. By introducing such parasite

inputs, host adaptation strategies are enriched.
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In summary, we demonstrated the evolution of phenotypic variation and robustness under

host–parasite interactions based on the change in phenotypic variances. Depending on the

strength of the interaction and the noise level in the gene expression dynamics, either pheno-

typic variation or genetic diversification evolves. A stronger manifestation of genetic diversifi-

cation results in speciation. In our forthcoming paper, we aim to show how the isogenic

phenotypic variation induced by host–parasite interactions will lead to genetic speciation.

Methods

We define the two phenotypic variances Vip and Vg as follows.

1. Gene expression can take different values even among individuals of the same genotype

because of noise during the development process. The variance, denoted as V ðlÞip ðiÞ, is

defined by the variance of xðlÞi ðtÞ for gene i of the l-th host genotype in the isogenic popula-

tion, i.e., among those with the same genotype (network JðlÞij ).

2. VðlÞg ðiÞ is defined as the phenotypic variance caused by the genetic variation resulting from

mutation for hosts of the genotype l. We first computed �xðlÞi , i.e., the average of xðlÞi over

noise, for each genotype l to distinguish the variance by mutation and that by noise. Then,

we computed the variance of �xðlÞi over a heterogenic population created by adding random

one-step mutations to the interaction matrix JðlÞij of this genotype l. In the simulation, there

are up to N individuals with different genotypes JðlÞij , each of which potentially takes a differ-

ent gene expression pattern. To calculate the VðlÞip ðiÞ and VðlÞg ðiÞ, L individuals with different

genotypes are selected at random from the population. For each genotype individual (with

genotype l), we created Nc clones. Then, we carried out the simulation for each clone under

noise. We computed the variance in gene expression xðlÞi ðtÞ caused by noise for each gene at

t = 1000, after gene expression reaches a steady state. This gives rise to the value VðlÞip ðiÞ, that

is, the noise-induced variance of gene i for genotypes l. Besides the variance, the average �xi l

is obtained for each clone l. Subsequently, we created genetic variation in JðlÞij by adding a

single random mutation to the network. From each of mutated genotype l0, we computed

the average �xi ðl
0Þ over Nc clones. From L different mutated genotypes, V ðlÞg ðiÞ was computed

as the variance of the �xi ðl
0Þ over L different mutants. We used L = 30 and Nc = 50 for all

simulations.
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the average phenotypic variations Vip and V 0ip. Fig F: Evolutionary change of the variances for
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Vip and Vg of the output genes against the parasite interaction strength.
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