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A B S T R A C T   

Purpose: Programmed cell death protein-1 ligand (PD-L1) is an important prognostic predictor for immuno-
therapy of non-small cell lung cancer (NSCLC). This study aimed to develop a non-invasive deep learning and 
radiomics model based on positron emission tomography and computed tomography (PET/CT) to predict PD-L1 
expression in NSCLC. 
Methods: A total of 136 patients with NSCLC between January 2021 and September 2022 were enrolled in this 
study. The patients were randomly divided into the training dataset and the validation dataset in a ratio of 7:3. 
Radiomics feature and deep learning feature were extracted from their PET/CT images. The Mann-whitney U- 
test, Least Absolute Shrinkage and Selection Operator algorithm and Spearman correlation analysis were used to 
select the top significant features. Then we developed a radiomics model, a deep learning model, and a fusion 
model based on the selected features. The performance of three models were compared by the area under the 
curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. 
Results: Of the patients, 42 patients were PD-L1 negative and 94 patients were PD-L1 positive. A total of 2446 
radiomics features and 4096 deep learning features were extracted per patient. In the training dataset, the fusion 
model achieved a highest AUC (0.954, 95% confident internal [CI]: 0.890–0.986) compared with the radiomics 
model (0.829, 95%CI: 0.738–0.898) and the deep learning model (0.935, 95%CI: 0.865–0.975). In the validation 
dataset, the AUC of the fusion model (0.910, 95% CI: 0.779–0.977) was also higher than that of the radiomics 
model (0.785, 95% CI: 0.628–0.897) and the deep learning model (0.867, 95% CI: 0.724–0.952). 
Conclusion: The PET/CT-based deep learning radiomics model can predict the PD-L1 expression accurately in 
NSCLC patients, and provides a non-invasive tool for clinicians to select positive PD-L1 patients.   

1. Introduction 

Lung cancer is one of the most prevalent cancers, and accounts for 
11.6% of cancer incidence and 18.4% of cancer-related mortality 
worldwide [1]. Non-small cell lung cancer (NSCLC) is the most common 
type of lung cancer, accounting for approximately 85% of all primary 
lung cancer cases [2]. In recent years, immune checkpoint inhibitors 
(ICIs) have emerged as a clinical hotspot and dramatically changed the 
treatment landscape of NSCLC [3]. ICI-based immunotherapy has shown 
remarkable success in improving survival outcomes of NSCLC. Pro-
grammed cell death protein-1 (PD-1) and programmed cell death 
protein-1 ligand (PD-L1), have been extensively used as predictive bio-
markers for ICI-based immunotherapy in clinical trials [4,5]. Among the 

various PD-L1 scoring methods, the tumor proportion score (TPS) is the 
most widely used in clinical practice [6]. The expression of PD-L1 is 
associated with the prognosis of patients with NSCLC, and studies have 
shown that patients with negative PD-L1 expression (TPS <1%) are not 
suitable for the treatment with anti-PD-L1 antibody, while patients with 
positive PD-L1 expression (TPS ≥1%) can benefit from anti-PD-L1 
antibody [7,8]. However, traditional methods of PD-L1 detection, such 
as biopsy specimens or surgically resected tissue, are invasive and 
cannot reflect the dynamic changes in PD-L1 expression of NSCLC 
non-invasively [9]. Hence, there is an urgent need for a non-invasive 
tool that can dynamically assess PD-L1 expression and select suitable 
NSCLC patients for ICI-based immunotherapy in clinical practice. Such a 
tool would be extremely valuable in guiding the selection of appropriate 
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Fig. 1. Flowchart of this study.  
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treatment options for NSCLC patients and improving their survival 
outcome. 

Radiomics is an emerging field that extracting and analyzing a lot of 
quantitative features from medical images, and it has the potential to 
predict cancer type, treatment response and prognosis [10]. It can be 
used to develop diagnostic and prognostic models for a variety of 
medical conditions, especially in cancer field [11,12]. The application of 
radiomics on PET/CT images has shown promising value in predicting 
various aspects of cancer, including tumor metabolism, tumor hypoxia, 
and even prognosis [13]. PET/CT examinations are widely used for 
NSCLC, as it can obtain more information of tumor metabolism and 
occult lesion detection [14]. Certain radiomics features were reported 
associating with genetic mutations and immunohistochemistry in 
NSCLC, and even have prognostic value in predicting progression-free 
survival or overall survival. Previous study has revealed that 
CT-derived radiomics model can non-invasively predict PD-L1 expres-
sion of NSCLC [15]. Deep learning techniques can also learn complex 
features from PET/CT images, and have shown superior performance in 
various image classification tasks [16]. Compared with artificially 
defined radiomics features, deep learning features are extracted by 
convolutional neural networks (CNNs) and contain more abstract 
medical image information [17]. However, no literature reports the 
combination of deep learning and radiomics for predicting PD-L1 
expression of NSCLC on PET/CT images. Fusing valuable radiomics 
and deep learning features may accurately predict PD-L1 expression in 
NSCLC. 

In this study, we recruited patients with NSCLC who had undergone 
preoperative PET/CT examination. We employed radiomics and deep 
learning methods to comprehensively extract relevant features from the 
patients’ PET/CT, and utilized these features to develop different pre-
dictive models for predicting the PD-L1 expression of NSCLC accurately. 

2. Materials and methods 

2.1. Patient selection 

This study enrolled a total of 136 patients with NSCLC from January 
2021 to September 2022. Of the patients, 42 were PD-L1 negative and 94 
were PD-L1 positive. The inclusion criteria were as follows: [1] patho-
logically confirmed NSCLC at initial diagnosis; [2] the PD-L1 status was 
determined by IHC; [3] patients underwent PET/CT imaging before 
treatment; [4] complete baseline data(sex, smoking history, T stage, N 
stage, clinical stage, histological type, 

age, diameter, SUVmax). The exclusion criteria were as follows: [1] 
patients with a history of previous malignancy or current concomitant 
malignancy; [2] patients who received chemotherapy, radiation ther-
apy, or surgical resection prior to PET/CT scan; [3] poor quality of 
PET/CT images or lack of PET or CT sequence. This study was approved 
by Medical Ethics Committee of the relevant hospital, with the approval 
number: XYFY2023-KL319–01. The study’s workflow is showed in 
Fig. 1. 

2.2. Immunohistochemical detection of PD-L1 expression 

PD-L1 detection was performed on surgically resected tissue speci-
mens using the IHC method. After the surgical excision, the specimens 
were fixed with 10% formaldehyde and embedded in paraffin. Subse-
quently, the specimens were sectioned, antigen-repaired, and blocked, 
followed by the dropwise addition of PD-L1 antibody (22C3 antibody, 
Dako, USA). The PD-L1 expression level was determined based on the 
tumor proportion score (TPS), which represents the percentage of 
partially or completely membrane-stained tumor cells at any intensity. 
The PD-L1 expression of NSCLC was classified into either negative (<1% 
or absence of reactivity) or positive (≥1%) according to the TPS result 
[18]. 

2.3. PET/CT image acquisition and reconstruction 

All patients underwent FDG-PET/CT examinations prior to surgery 
using the Discovery PET/CT Elite scanner (GE USA), which obtain CT 
images by the Light Speed 128-slice spiral CT machine. The imaging 
agent was 18 F-FDG, with a radiochemical purity of > 95%. Before the 
PET/CT examination, patients were asked to avoid strenuous exercise 
for 24 h and fast for more than 6 h from food and drink. After obtaining 
the patient’s height, weight, and blood sugar, the imaging agent was 
injected intravenously through the back of the hand or the elbow at a 
dose of 3.5–4.0 MBq/kg, while the fasting blood glucose was controlled 
below 150 g/L. After injection, patients rested quietly for 1 h and drank 
600 ml of water. Patients were then asked to urinate before scanning 
and drank about 600 ml of water again. After adjusting the localization, 
CT scanning was performed from the top of the skull to the mid-thigh per 
patient. The scanning parameters were as follows: 120KV, 180 mA, 
rotation time 0.5 S/rev, pitch 1.375, thickness 3.75 mm, and layer 
spacing 3.25 mm. A total of 8 bed positions were collected for PET, with 
a collection time of 3 min per bed position. Finally, the CT data were 
used for attenuation correction, and iterative reconstruction was per-
formed to obtain the whole-body CT, whole-body PET, and PET/CT 
fusion images. 

2.4. Tumor radiation feature segmentation and extraction 

In this study, the region of interest (ROI) was delineated by a nuclear 
medicine physician using 3D Slicer 4.10.1 software on each axial slice of 
CT and PET images. All ROIs were reviewed by two senior nuclear 
medicine physicians with more than 10 years’ experience, and a third 
senior nuclear medicine physician with more than 15 years’ experience 
made the final decision to ROI when disagreements occurred between 
two physicians. The actual boundary of PET was determined by 

Table 1 
Comparison of basic clinical features of patients with PD-L1 negative expression 
and positive expression.  

Characteristics PD-L1 (-) 
(n ¼ 42) 

PD-L1 (þ) 
(n ¼ 94) 

P value 

Age 65.71 ± 7.03 63 ± 11.33  0.091 
Diameter (mm), median 

(IQR) 
31 (25.25, 41.75) 32 (22.25, 

43.75)  
0.687 

Sex, n (%)    0.003 
female 20 (14.7%) 21 (15.4%)   
male 22 (16.2%) 73 (53.7%)   

Smoking history, n (%)    0.013 
no 33 (24.3%) 53 (39%)   
yes 9 (6.6%) 41 (30.1%)   

T stage, n (%)    0.773 
1 18 (13.2%) 41 (30.1%)   
2 16 (11.8%) 39 (28.7%)   
3 5 (3.7%) 11 (8.1%)   
4 3 (2.2%) 3 (2.2%)   

N stage, n (%)    0.717 
0 20 (14.7%) 37 (27.2%)   
1 2 (1.5%) 8 (5.9%)   
2 15 (11%) 34 (25%)   
3 5 (3.7%) 15 (11%)   

Clinical stage, n (%)    0.871 
I 17 (12.5%) 32 (23.5%)   
II 4 (2.9%) 10 (7.4%)   
III 13 (9.6%) 35 (25.7%)   
IV 8 (5.9%) 17 (12.5%)   

Histological type, n (%)    0.155 
SCC 10 (7.4%) 34 (25%)   
AC 32 (23.5%) 60 (44.1%)   
SUVmax, median (IQR) 11.35 (4.97, 

15.67) 
14 (9.42, 19.95)  0.024  
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reference the PET iamges to the CT images. 
After ROI delianation, the original CT and PET images and their 

corresponding ROIs were input into the PyRadiomic module in 3D slicer 
to extract radiomics features. The radiomics features of the PET/CT 
images could be divided into seven classes: [1] shape-based feature, [2] 
first-order histogram features, [3] gray-level cooccurrence matrix 
(GLCM) features, [4] Gray-level run length matrix (GLRLM) features, [5] 
Gray-level size zone matrix (GLSZM) features, [6] Neighboring gray 

tone difference matrix (NGTDM) features, and [7] Gray-level depen-
dence matrix (GLDM) features. To obtain more image-derived features, 
high-dimensional image analysis was performed on CT and PET images 
using image filters including Wavelet and Gassian filters. Finally, a total 
of 2446 features were extracted from the PET and CT images for further 
analysis per patient. 

Fig. 2. The optimal features were selected by the LASSO algorithm to construct the final radiology model (A) and deep learning model (C).Lasso coefficients (B,D) for 
preserved radiological features and deep learning features. 

Fig. 3. (A) and (B) showed the Spearman rank correlation coefficient between the radiological and deep learning features, respectively.  
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2.5. Deep learning feature extraction 

In this study, a convolutional neural network (CNN) based on the 
ResNet-101 architecture was developed to extract deep learning features 
from the PET/CT images. An experienced radiologist visually selected 
the level that included the largest tumor area and cropped a rectangular 
bounding patch covering the entire tumor area and about 5 mm peri- 
tumor region. Then the patches of CT and PET sequences were resized 
to a two-dimensional matrix of 512 × 512, as to adjust to the input of 
ResNet-101 model. All patches containing more than 75% of the tumor 
area were input into the ResNet-101 model. The model analyzed the 
images and extracting deep learning features from the fully connected 
layer. Finally, a total of 4096 features were obtained from PET and CT 
images per patient. 

2.6. Feature selection and model establishment 

The 136 patients were randomly split into two groups at a ratio of 
7:3, resulting 95 patients for model training and 41 patients for model 
validation. The large number of imaging features may cause overfitting. 
Thus, feature dimension reduction was necessary to ensure the model’s 
robustness. The machine learning model constructions were performed 
for radiomics feature and deep learning feature, respectively. Firstly, the 
Mann-Whitney U test was used to eliminate redundant radiomics fea-
tures with p-values > 0.05. Secondly, the LASSO algorithm identified 
the most significant non-zero coefficient features through repeated 
cross-validation. Thirdly, a linear logistic regression model was devel-
oped using selected radiomics features. The radiomics signature for each 
patient in the training cohort and validation cohort was calculated. For 
deep learning feature, by iterating above steps, a deep learning model 
was constructed, and the deep learning signature was calculated for each 
patient as well. Furthermore, logistic regression analysis was performed 
to integrate radiomics signature and deep learning signature and 
develop a nomogram which can calculate the total probability of posi-
tive PD-L1. 

2.7. Statistical analysis 

Various statistical methods were used to assess the group difference 
of clinical features in positive PD-L1 and negative PD-L1 NSCLC pa-
tients. Categorical variables (sex, smoking history, T stage, N stage, 
clinical stage, histological type) were analyzed using the chi-square test, 
while continuous variables (age, diameter, SUVmax) were statistical 
with the student’s t test or Mann-Whitney U test. Two-sided p-values 
< 0.05 were deemed statistically significant. Spearman correlation 
analysis was used to evaluate the association between features. More-
over, model performance was assessed using the area under curve 
(AUC), accuracy, sensitivity, specificity, positive and negative predictive 

values. 

3. Result 

3.1. Clinical characteristics 

A total of 136 patients with NSCLC were included in this study, 
comprising 42 PD-L1-negative patients and 94 PD-L1-positive patients. 
The clinical characteristics of patients are presented in Table 1. Among 
the patients, statistically significant differences were observed in SUV-
max (p = 0.024), sex(p = 0.003) and smoking history (p = 0.013) be-
tween the two cohorts. However, no significant differences were 
observed in other characteristics, including age, lesion diameter, clinical 
T stage, clinical N stage, and histological type. 

3.2. Feature selection and model establishment 

In this study, we extracted a total of 1223 radiomics features from 
PET images and 1223 radiomics features from CT images. A total of 1223 
quantitative imaging features including four categories:14 shape based 
features, 18 first order statistical features, 75 textural features from 
original images and 1116 transformation features. After the Mann- 
Whitney U test, 693 features were selected for further analysis. The 
LASSO algorithm was then used to select the most significant features. 
Out of the selected features, 7 features were derived from PET images 
and 3 features from CT images, including two categories:1 shape based 
feature and 9 transformation features. The features were used to 
establish a radiomics model (Rad_model) by linear logistic regression. 
The radiomics score for each patient was then calculated by the Rad_-
model (see Fig. 2). In the DenseNet-101 model, the fully connected layer 
and softmax layer were removed, and the output value of the nodes in 
last layer was used as deep learning features. In this way, we extracted 
2048 deep learning features from CT tumor-region images and 2048 
deep learning features PET tumor-region images. Using the LASSO al-
gorithm, we identified 6 features, with 4 extracted from PET images and 
2 extracted from CT images. Similarly, a linear logistic regression model 
(DL_model) was developed to calculate the deep learning score for each 
patient in both the training and validation cohorts (Fig. 2). 

We conducted Spearman correlation analysis for all radiomics and 
deep learning features, and no significant correlation was observed. The 
Spearman correlation coefficient between all features was consistently 
below 0.9, as showed in Fig. 3. 

To improve the performance of model, a fusion model (Nomo_model) 
was developed by combining Rad_model and DL_model scores (Fig. 4). 
Utilizing personalized predictions for the training cohort, the nomogram 
provided a visual representation of the prediction results. This facili-
tated a more accurate assessment of the PD-L1 expression based on 
multi-factors data. 

3.3. Performance evaluation 

The ROC curves of three models (Rad_model, DL_model, Nom-
o_model) were presented in Fig. 5 A and 5B for both the training and 
validation cohorts. In the training cohort, the Rad_model achieved an 
AUC of 0.829 (95% CI: 0.738–0.898), the DL_model achieved an AUC of 
0.935 (95% CI: 0.865–0.975), and the Nomo_model achieved the highest 
AUC of 0.954 (95% CI: 0.890–0.986). Similarly, in the validation cohort, 
the AUC scores were 0.785 (95% CI: 0.628–0.897), 0.867 (95% CI: 
0.724–0.952), and 0.910 (95% CI: 0.779–0.977) for the Rad_model, 
DL_model, and Nomo_model, respectively. Notably, the Nomo_model 
outperformed the other two models in both the training and validation 
cohorts, as AUC showed. 

The performance of the three models in both cohorts is summarized 
in Table 2. The Nomo_model exhibited sensitivities of 80.88% and 
76.92% in the training and validation cohorts, respectively. The speci-
ficities were the highest, with values of 96.30% and 100%, respectively. 

Fig. 4. A nomogram of the fusion model based on radiology scores and deep 
learning scores. 

B. Li et al.                                                                                                                                                                                                                                        



European Journal of Radiology Open 12 (2024) 100549

6

Fig. 5. (A) and (B) showed the ROC curves of three models (Rad, DL, Nomo) predicting the expression state of PD-L1 in the training and validation cohorts.(C) and 
(D) showed the distribution of feature values box plots for three models in the PD-L1-positive group and PD-L1-negative group in two cohorts.(E) and (F) showed a 
heat map of the expression of nomo scores in both cohorts for the PD-L1-positive group and the PD-L1-negative group. 
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The accuracies of the Nomo_model were 85.26% and 85.37% in the 
training and validation cohorts, respectively. In Fig. 5 C and 5D, the 
distribution of feature values is depicted for three models in both co-
horts. Notably, higher Nomo_model scores in PD-L1-positive patients 
were observed, with scores close to 1. Conversely, the lower Nom-
o_model scores were associated with PD-L1-negative patients, with 
scores closer to 0. Figs. 5E and 5 F presented a heat map illustrating the 

expression of Nomo_model scores in both cohorts. 
Figs. 6A and 6B displayed the calibration curves for the training and 

validation cohorts, demonstrating the favorable agreement between the 
predicted results and the true results. Using the fusion model to deter-
mine the PD-L1 status, patients can potentially benefit further. The de-
cision curves analysis was conducted in both the training and validation 
cohorts, as shown in Figs. 6C and 6D. 

Table 2 
Diagnostic performance of the three models in training and validation cohorts.   

Rad_score 
training 

Rad_score validation DL_score 
training 

DL_score 
validation 

Nomo_score 
training 

Nomo_score 
validation 

AUC(95%CI) 0.829(0.738-0.898) 0.785(0.628-0.897) 0.935(0.865-0.975) 0.867(0.724-0.952) 0.954(0.890-0.986) 0.910(0.779-0.977) 
ACC 77.89 65.85 87.37 75.61 85.26 85.37 
SEN 77.94 57.69 86.76 80.77 80.88 76.92 
SPE 77.78 80 88.89 66.67 96.30 100 
PPV 89.83 83.33 95.16 80.77 98.21 100 
NPV 58.33 52.17 72.73 66.67 66.67 71.43 
cutoff 0.47918 0.47918 0.44044 0.44044 1.75746 1.75746 

AUC, the area under the curve; ACC, accuracy;SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value;CUTOFF,cut off value. 

Fig. 6. The calibration curves of the training and validation cohorts(A and B).The decision curves analysis in training and validation cohorts(C and D).  
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4. Discussion 

This study highlights the significance of radiomics and deep learning 
for predicting the expression of PD-L1 in NSCLC. The fusion model 
outperformed both the radiomics and deep learning models, demon-
strating higher AUC and accuracy, thus exhibiting improved efficiency. 
In the training and validation cohorts, the fusion model achieved AUCs 
of 0.954 and 0.910, respectively. Moreover, the decision curve analysis 
illustrated greater clinical benefits, while the fusion model provided 
doctors with a non-invasive tool to determine the PD-L1 expression. 

PD-L1 expression has been observed in various tumor cells, including 
NSCLC [19–22]. Cancer cells often develop special mechanisms to evade 
immune surveillance, resulting in metastasis [23]. These mechanisms 
involve the activation of PD-1 receptors, which enable cancer cells to 
evade immune surveillance [24]. PD-L1 expression is considered an 
important predictive biological marker in clinical practice [25]. There is 
increasing clinical evidence supporting the effectiveness of PD1/PD-L1 
inhibitors in lung cancer [26]. Many studies have demonstrated that 
PD-1 or PD-L1 inhibitors offer greater benefits, prolonged overall sur-
vival, and improved tolerability in PD-L1-positive patients [27–31]. 

Immunohistochemistry (IHC) is currently used for assessing PD-L1 
expression [32]. Some studies have demonstrated the potential of 
radiomics using PET/CT images for non-invasive detection of PD-L1 
status [33,34]. However, deep learning radiomics offers several ad-
vantages over traditional methods for assessing PD-L1 expression. 
Firstly, deep learning radiomics predicts PD-L1 expression based on 
radiomics and deep learning features, eliminating the need for addi-
tional laboratory testing procedures and reducing the time required for 
operation. Secondly, it is a non-invasive approach that avoids patient 
discomfort during surgery, unlike IHC, which requires obtaining tumor 
tissue through biopsy or other invasive procedures. Thirdly, IHC inter-
pretation relies on pathologists, making the results susceptible to 
external factors such as interpreter ability. In contrast, deep learning 
radiomics is achieved through automated algorithms with minimal 
interference. Therefore, evaluating PD-L1 expression through deep 
learning radiomics model holds significant value. 

Radiomics and deep learning techniques have been widely explored 
to extract quantitative features from medical images, particularly in 
NSCLC. However, the application of a fusion model based on PET/CT 
deep learning radiomics for predicting PD-L1 expression in NSCLC is 
limited. Previous studies have demonstrated that when PD-L1 expres-
sion > 1% and > 50%, the corresponding AUCs of radiological pre-
dictions were 0.754 and 0.762, respectively. Combining clinical 
information with radiomics features improved the predictive perfor-
mance, with AUC values of 0.762 and 0.814 for PD-L1 expression of 
> 1% and > 50%, respectively [35]. Non-invasive models that effec-
tively predict EGFR mutation and PD-L1 expression are crucial for 
determining the therapy strategy for NSCLC patients [36]. Deep learning 
models have proven to be a non-invasive approach for accurately pre-
dicting high PD-L1 expression in NSCLC compared to immunohisto-
chemistry [37]. A study revealed that deep learning models based on 
PET/CT images outperformed radiomics models in diagnosing EGFR 
mutation status in NSCLC. The deep learning model achieved a higher 
AUC value (0.90, 95% CI: 0.85–0.95) in the training set of 138 patients, 
compared to the radiology model (AUC: 0.82, 95% CI: 0.75–0.89) [38]. 
Wei et al. successfully developed deep learning scores to predict PD-L1 
expression status, which has high prognostic value for predicting dura-
ble clinical benefit (DCB), progression-free survival (PFS), and overall 
survival (OS) in immunotherapy of NSCLC patients [39]. Similarly, in 
our study, the radiomics model (Rad_model) and deep learning model 
(DL_model) achieved AUCs of 0.829 (95% CI: 0.738–0.898) and 0.935 
(95% CI: 0.865–0.975), respectively, with slightly superior performance 
observed in the deep learning model (DL) for predicting PD-L1 
expression. 

This study has some limitations as well. Firstly, due to the retro-
spective nature of this study, certain relevant clinical characteristics 

were not included or were unavailable. Including comprehensive clin-
ical information in future studies can improve the performance of the 
model. Secondly, the manual delineation of ROI and image segmenta-
tion methods used in this study had limitations in terms of repeatability, 
time consumption, labor intensity, and the expertise required by the 
operator. Future research should focus on developing reliable and ac-
curate automated segmentation methods. Thirdly, the patient size was 
relatively small, and the study was conducted in a single institution. 
Large-sample, multi-center studies are warranted in the future to vali-
date the models. 

5. Conclusions 

This study demonstrates that PET/CT-based deep learning radiomics 
model can accurately predict PD-L1 expression in NSCLC. The fusion 
model might offer a novel and non-invasive tool for clinicians to identify 
PD-L1-positive patients. 
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