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Microbial source tracking (MST) analysis is essential to identifying and mitigating the
fecal pollution of water resources. The signature-based MST method uses a library of
sequences to identify contaminants based on operational taxonomic units (OTUs) that
are unique to a certain source. However, no clear guidelines for how to incorporate OTU
overlap or natural variation in the raw water bacterial community into MST analyses
exist. We investigated how the inclusion of bacterial overlap between sources in the
library affects source prediction accuracy. To achieve this, large-scale sampling –
including feces from seven species, raw sewage, and raw water samples from water
treatment plants – was followed by 16S rRNA amplicon sequencing. The MST library
was defined using three settings: (i) no raw water communities represented; (ii) raw
water communities selected through clustering analysis; and (iii) local water communities
collected across consecutive years. The results suggest that incorporating either the
local background or representative bacterial composition improves MST analyses, as
the results were positively correlated to measured levels of fecal indicator bacteria
and the accuracy at which OTUs were assigned to the correct contamination source
increased fourfold. Using the proportion of OTUs with high source origin probability,
underpinning a contaminating signal, is a solid foundation in a framework for further
deciphering and comparing contaminating signals derived in signature-based MST
approaches. In conclusion, incorporating background bacterial composition of water
in MST can improve mitigation efforts for minimizing the spread of pathogenic and
antibiotic resistant bacteria into essential freshwater resources.

Keywords: microbial source tracking, fecal contamination, bacterial community analysis, microbial community
profiling, 16S rRNA amplicon
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INTRODUCTION

Access to clean water is of global importance, and so critical to
human wellbeing that it was identified as the main risk to society
(World Economic Forum, 2015). Presently, worldwide health
is being challenged by the spread of pathogens and antibiotic-
resistant bacteria through the fecal pollution of freshwater. The
diversity of fecal sources, e.g., urban wastewater and stormwater
release, private sewage, animal farming and wildlife, has caused
chronic freshwater pollution in many locations. This adverse
impact on water quality is expected to be magnified by population
growth and climate change (Vörösmarty et al., 2000). As such,
the evaluation of water quality, identification of possible sources
of pollution and decontamination of those sources are important
steps to preventing the spread of waterborne diseases.

Fecal pollution of water bodies can also occur as episodic
contaminations from point sources. In these cases, microbial
source tracking (MST) works to determine the sources of
the introduced fecal bacteria. However, the chronic release of
fecal material at a subtle, but persistent rate can create mixed
signatures between the environmental water and fecal sources
without necessarily elevating the abundance of classic fecal
indicator bacteria (FIB). Long-term anthropogenic effects, which
have globally affected water sources and markedly decreased
general water quality (Evans et al., 2005; Lotze et al., 2006;
Halpern et al., 2008), are most likely accompanied by increased
levels of fecal-related bacteria. In addition, as many bacteria
demonstrate a cosmopolitan distribution, they can occupy
different niches and occur in both water and fecal environments
(McLellan and Eren, 2014). These potential overlaps should be
considered in a MST analysis to avoid false-positive results in
terms of overestimations of the amount of fecal material in the
water and erroneously identified sources, both of which could
mislead mitigation efforts.

High-throughput sequencing techniques are rapidly
becoming the gold standard in microbial community analyses.
One such technique is 16S ribosomal RNA (rRNA) amplicon
sequencing. Amplicon rRNA-sequencing is a culture-free
method that is noticeably faster than traditional culture-based
methods and enables researchers to analyze the entire microbial
community within a sample. Furthermore, the method is cost-
effective, as many samples can be combined in a sequencing
run. In light of MST, 16S rRNA amplicon sequencing has
mostly been used to identify new fecal pollution indicators
and target different bacterial orders within the dominant fecal
phyla Bacteroidetes and Firmicutes, such as Bacteroidaceae,
Clostridiaceae, and Lachnospiraceae (McLellan and Eren, 2014).
As an alternative, operational taxonomic unit (OTU) abundance
combined with statistical classification methods can determine
the proportions of potential pollution sources in a MST sample
(i.e., a sink community) (Smith et al., 2010; Knights et al.,
2011; Casanovas-Massana et al., 2015). This approach requires
a library of microbial communities that are representative
of source environments believed to be contaminating the
local environment (Ahmed et al., 2015; Dubinsky et al., 2016;
Brown et al., 2017). One popular signature-based approach,
the SourceTracker software (Knights et al., 2011), leverages a

Dirichlet-Multinomial model to infer pathogen proportions in
the sink community.

There is no consensus for how to define the reference library
in the signature-based MST approach; for example, should the
natural water community be present in the source tracking
library as a proxy for background bacterial composition? This
leads to another question: if no such representative background
communities are available, what can be done instead? Some
recent studies (Newton et al., 2013; Ahmed et al., 2015, 2017;
Brown et al., 2017) have used locally sampled fecal sources,
yet no samples describing the natural variation in bacterial
community composition of sink samples were included in
their source tracking libraries. When studying the impact of
human-associated fecal material at recreational coastal sites
of Australia (Victoria), Henry et al. (2016) included bay and
river water communities in the library together with likely
fecal and human-associated sources of contamination. Dubinsky
et al. (2016) performed signature-based MST along swimming
beaches of the Russian River watershed in California. They
used a library of human waste, animal fecal communities, and
blank samples to account for contamination during analytical
procedures, and background water samples with low FIB
counts from the same watershed to control for the influence
of local, prevalent microbial communities. In this way, there
is strong variation in how sequence-based, library-dependent
MST approaches have been carried out with respect to the
inclusion of background water communities, and an evaluation
of alternative library definitions would be of interest to the MST
community.

Most studies using signature-based MST to assess water
quality have focused on the prediction of contaminations
(e.g., Ahmed et al., 2015, 2017). Only limited research has
assessed the taxonomic composition and signal strength in
contaminated water samples. These approaches could provide
insight into how bacterial communities interact and evolve in
aquatic environments. For example, even though the estimated
proportion of a certain contaminant is large with small standard
deviation, the signal might include many taxa that commonly
occur in the local water and thus, represents a false-positive.
Brown et al. (2017) assessed the content of goose fecal matter
and treated wastewater effluent contaminations at Lake Superior,
Minnesota by investigating the abundance of the most common
taxa underpinning each signal: the reported taxa was identified as
well-known fecal community members in the literature. Further
efforts in this direction would provide evidence for the reliability
of the signature-based method and information about how
common fecal sources affect the microbiome when released into
water.

This study aimed to evaluate how accounting for bacterial
overlap in the MST library affects source tracking accuracy.
A large-scale sampling effort yielded 397 fecal (including feces
from eight different host species) and background raw water
samples (collected between 2013 and 2015 from six different
locations), which were then sequenced and analyzed. We
improved prediction of the correct fecal source by accounting
for the bacterial overlap that exists in contaminating sources and
local water.
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MATERIALS AND METHODS

Water Sample Collection
Raw water samples were collected from inlets at six different
water treatment plants in Sweden (Figure 1A and Table 1).
A total of 175 raw water samples were collected between
September 2013 and February 2015. These water treatment
plants were selected from a large number of candidates
because of fundamentally different traits, i.e., FIB levels (E. coli
and coliforms), chemical oxygen demand and turbidity. Sixty
liters of raw surface water were concentrated using dead-
end ultrafiltration with Rexeed 25AX filters (Asahi Kasei
Corporation, Tokyo, Japan) at a filtration rate of 2 L
per minute (Smith and Hill, 2009) and eluted for a final
volume of 600–700 mL. The filters had been pretreated
with fetal calf serum (PAA Laboratories, Waltham, MA,
United States) to prevent the adhesion of microorganisms.
Filters were then returned to the National Food Agency
(Uppsala, Sweden), where concentrates were eluted using
back-flushing with 500 mL elution buffer [phosphate-buffered
saline containing 1% Tween 80 and 0.01% Antifoam A
(both from Sigma-Aldrich, St. Louis, MO, United States)]
for a final volume of 600–700 mL. E. coli, coliforms and
enterococci were detected from unconcentrated water that
was collected in parallel using Colilert R© and Enterolert R©-
E kits according to the manufacturer’s instructions (IDEXX,
Hoofddorp, Netherlands). For DNA isolation, 2 ml of water
was centrifuged at 16,000 × g for 1 h, after which 1.9 mL
of the resulting supernatant was discarded and DNA was
extracted from the remaining volume using a SoilMaster DNA
Extraction Kit according to the manufacturer’s recommendations
for environmental water samples (Epicentre Biotechnologies,
Madison, WI, United States). To increase DNA yield, the samples
were treated with proteinase K and incubated at 37◦C for 10 min
without shaking. The resulting DNA pellet was resuspended in
60 µL of TE buffer and either frozen and stored or immediately
subjected to PCR analysis. Sample preparation, PCR reaction
preparation and thermal cycling were performed in separate
rooms.

Fecal and Sewage Reference Sample
Collection
A total of 212 fecal samples from seven species of wild and
domestic animals that are likely to pollute raw water in Sweden
were collected between autumn 2013 and spring 2015. The
collected feces included calf, cow, dog, domestic bird, horse,
pig, sheep, and wild bird feces. To obtain a wide geographical
spread for the samples, official veterinarians from several regions
across Sweden were involved in the sample collection (Figure 1A
and Table 1). Samples were transported on ice and analyses
were started within 24 h of collection. DNA preparation was
performed using a QIAamp DNA Stool Mini Kit (Qiagen)
following the manufacturer’s instructions. A total of 10 untreated
sewage samples were collected from eight different municipal and
private wastewater treatment plants (Supplementary Table 1),
with 50 ml of unprocessed sewage collected at the inlet and

transported on ice. DNA from the untreated sewage samples was
isolated using the SoilMaster DNA Extraction Kit as described
above.

Amplicon Preparation and Sequencing
DNA was amplified using the No. 5 Hot Mastermix 2.5x kit
(5 PRIME, Hilden, Germany) with bacteria/archaeal primers
515F/806R specific for the hypervariable V4 region of the 16S
rRNA gene (Caporaso et al., 2012). The forward and reverse
primers were modified to incorporate a 12 bp Golay error-
correcting barcode that enables sample multiplexing (Caporaso
et al., 2012). All samples were amplified in triplets and
pooled after PCR amplification (94◦C for 3 min; 35 cycles
of 94◦C for 45 s, 50◦C for 1 min, 72◦C for 1.5 min; 10
min rest to finish). The PCR product was run on a 1%
agarose gel and the DNA concentration was estimated with a
Qubit fluorometer (Invitrogen, Carlsbad, CA, United States).
The amplicons were pooled at equimolar concentrations and
purified with the Ultra Clean PCR Clean-Up kit (MoBio,
Carlsbad, CA, United States) following the supplier’s instructions.
The DNA concentration of the pooled amplicon product was
measured with a Qubit fluorometer and adjusted to 2 nM. The
library was denaturated and diluted as described by Illumina
(MiSeq System User Guide, Part # 15027617 Rev. C), before
it was loaded onto a MiSeq cartridge (Illumina, San Diego,
CA, United States) and sequenced using a 500 bp paired-end
sequencing protocol.

Quality Control and Raw Data
Processing
The Quantitative Insights Into Microbial Ecology (QIIME)
pipeline, version 1.9, was used for processing raw sequence data
(Caporaso et al., 2010). After demultiplexing and quality filtering
using default parameter values, the remaining adapter sequences
were removed using cutadapt, version 1.2.1 (Martin, 2011).
Associated forward and reverse reads were merged using FLASH
(Magoč and Salzberg, 2011). Chimeric reads were detected and
removed from the data using USEARCH, version 6.1 (Edgar,
2010). The obtained reads were then matched to the reference
database Greengenes, version 13.8, based on 97% sequence
identity (McDonald et al., 2012) and clustered into OTUs through
a closed-reference approach using UCLUST (Edgar, 2010), with
taxonomies assigned to the representative sequence of each
OTU.

Throughout the study, low abundance OTUs were filtered
out from the data following recommendations by Bokulich
et al. (2013) on Illumina-generated amplicon data: singletons
and OTUs with less than 0.001% of the total number of reads
were removed. In addition, OTUs were retained only if they
were observed in a minimum of three samples. Alpha diversities
were estimated using the phylogenetic diversity metric (PD
whole tree; Faith and Baker, 2006). A principal coordinate
analysis (PCoA) was performed based on UniFrac distance
(Lozupone and Knight, 2005) of the rarefied sequence data,
where the rarefaction level was set to 15,000 sequences. Taxa
composition and PCoA were visualized using the R package
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FIGURE 1 | (A) Map of sampling sites, including raw water, feces, and sewage inlets. The water treatment plants were located in: (1) Stockholm; (2) Östersund; (3)
Trollhättan; (4) Motala; (5) Borås; and (6) Härnösand. (B) Taxonomic composition, at the order level, of the contaminating sources included in the MST library. All
communities in each source environment are concatenated. (C) PCoA plot showing transformed distances between rarefied fecal library assemblages using
unweighted UniFrac distances.
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TABLE 1 | Statistics regarding fecal indicator bacteria (FIB) levels and phylogenetic diversity (PD; Faith and Baker, 2006) in the samples from raw water sources,
collected between 2013 and 2015.

Water source Coliforms (MPN/100ml) E. coli (MPN/100ml) Enterococci (MPN/100ml) Phylogenetic diversity

Stockholm Major lake 69.6 (183.9) 1.6 (1.7) 1.07 (2.02) 96.3 (25.1)

Östersund Major lake 10.4 (27.8) 3.1 (10.1) 0.26 (0.53) 74.8 (13.6)

Motala Major lake 58.9 (164.2) 0.36 (0.90) 0.36 (0.72) 77.1 (24.1)

Borås Minor lake 155.9 (413.7) 15.6 (12.4) 5.13 (7.99) 87.5 (14.0)

Härnösand Minor lake 61.6 (145.2) 0.55 (1.38) 0.86 (1.73) 79.8 (17.6)

Trollhättan Major river 337.2 (697.3) 89.3 (199.5) 29.7 (92.7) 92.4 (19.2)

Average values are shown with standard deviation in parentheses.

phyloseq (McMurdie and Holmes, 2013). The number of OTUs
shared between environments was calculated using the script
shared_phylotypes.py in QIIME after rarefaction to a depth of
1,000,000 sequences per source environment.

Selection of Background Microbiomes
Three alternatives were considered when establishing the MST
library for each sink sample (Figure 2A). The first option,
referred to as the “without background” representative library
(WB-MST), was a library that only represented fecal and sewage
sources, i.e., background water communities were excluded.

The raw water samples that were classified as potential
background samples and included in the cluster analysis
were classified as uncontaminated according to FIB levels
(E. coli <25 MPN/100 ml and coliforms <100 MPN/100ml).
A preliminary MST analysis included all the water communities
from the same location that satisfied the background FIB levels.
Communities which showed fecal contamination were believed
to have been contaminated during sample processing and were
thus excluded from the group of potential background samples
(Supplementary Material 1). A model-based clustering analysis
(Holmes et al., 2012) of the selected potential background
samples and the sink samples was performed in the R package
DirichletMultinomial (Morgan, 2014). Between two and eight
Dirichlet components were fitted to the data so that the optimal
number of components could be identified. The number of
components that yielded the best model selection score based on
the Laplace approximation criterion was chosen. The number of
samples selected to represent background water corresponded to
the number of samples representing sources of contamination in
the library. For each sink sample, the water communities that
clustered together were selected as representative background
communities in the source tracking library, after which an
optimal partition, including between 10 and 25 communities in
the same group as the sink sample, was chosen. If the desired
number of communities was not met, the second most optimal
partition was chosen and so forth until a reasonable number
of communities was selected. This approach is referred to as
Dirichlet Multinomial selected background representative library
MST (DM-MST).

To build a library which included locally representative, good-
quality water communities, we removed atypical samples that did
not meet the FIB score criteria described above. A preliminary
MST analysis was then performed, and samples with less than

0.99 estimated assignment probability to the background water
source were not considered as a background representative
community. This approach is referred to as the local background
representative library MST (LB-MST).

Source Tracking Analyses
SourceTracker, version 1.0.0 (Knights et al., 2011), was utilized
for performing the MST analyses on 155 out of the 175 raw
water samples, after removing samples contaminated during
lab processing, delayed during delivery and sampled less than
48 h apart (see Supplementary Material 1). The training set
employed a rarefaction depth of 10,000 sequences following
recommendations by Ahmed et al. (2015). Sink samples were
not rarefied to maximize the taxa resolution and facilitate
the identification of low abundance OTUs of possible fecal
origin. Default values were used for all the other parameters
in SourceTracker based on suggestions by Henry et al. (2016).
To calculate the posterior probability of an OTU belonging
to a certain source environment for multiple sink samples, we
modified the script sourcetracker_for_qiime.R provided in the
SourceTracker package by normalizing the posterior probability
of each OTU to one for each sink sample. The modified function
is provided at http://github.com/FOI-Bioinformatics/MST. The
method requires a library of potential contaminating sources.
To be included in the library, samples had to consist of more
than 15,000 reads, which corresponds to a lower limit, and
each source consisted of 10–25 samples. For those environments
with more than 25 communities available, one or a few of
the communities sampled from the same geographic location
were removed (Supplementary Material 1). A leave-one-out
cross-validation (LOO-CV) analysis of the library, implemented
in the SourceTracker software, was carried out to investigate
the ability to discriminate between potential contaminating
sources.

The signals were visualized using the graphlan package
(Asnicar et al., 2015), and OTUs with estimated posterior
probabilities of source assignment greater than 0.7 are
highlighted in red. To avoid the inclusion of too many low
probability OTUs, only OTUs with source probabilities greater
than 0.1 were kept. The alluvial diagram was made using
the online tool http://raw.densitydesign.org/, with each OTU
assigned to its most probable source. A few OTUs with equal
source probability were removed as no single source origin could
be assigned.

Frontiers in Microbiology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 2364

http://github.com/FOI-Bioinformatics/MST
http://raw.densitydesign.org/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02364 September 28, 2018 Time: 16:12 # 6

Hägglund et al. Improved Microbial Source Tracking

Statistical Analyses
A Wilcoxon rank sum test with continuity correction,
implemented in the R statistical package (R Core Team,
2016), was used to determine whether between-group differences
in mean values in source contaminating proportion were
statistically significant. The contamination proportion for each
community was obtained through MST analyses using three
different library setups as described earlier.

Multivariate homogeneity of group dispersions was calculated
for each environment to examine the variance of source
environments in the library. This analysis was performed with the
betadisper function in the R package vegan (Oksanen et al., 2013);
Bray–Curtis dissimilarity index distances between individual
communities and group centroids were handled by reducing the
original distances to principal coordinates.

To estimate correlation parameters across water quality
measures (i.e., estimated contaminations obtained from the MST
analyses and FIB levels), a multivariate generalized linear mixed
model (GLMM) was fitted to the data. The mean proportion of
the response j for sample i could be assumed to be:

g
(
mij

)
= βjk + uij, (1)

where g(.) is the link function, βjk is the location-level predictor
variable (with numeric code k) where the sample i was taken
for response j, i = 1,...,155, k = 1,...,6, and j = 1,...,6, and uij is
the residual of sample i for response j. Here, ui = (ui1,...,ui6) is
multivariate, normally distributed with a zero mean vector and
covariance matrix with unknown parameters, which accounts
for correlation between water quality measures. The log link
function was used for count response data (i.e., for FIB data)
while the identity link was used for contaminations. For each
sample, all contaminating source proportions were added to a
single score. These contaminations were log-transformed prior to
analysis to satisfy parametric assumptions of normality. FIB levels
lower than one unit per 100 mL were assumed to be zero. To
avoid inducing strong auto-correlations, communities sampled
less than 48 h apart were removed (three samples). Eqn. (1)
corresponds to the first level of the hierarchical model, while the
location-specific regression is the second level of the model:

βjk = βj + ujk, (2)

where βj is a vector of response-specific coefficient and ujk
is the error term of location k for response j. The inclusion
of location-level predictor variables ensured that correlation
between locations was taken into consideration.

To detect differences in the source accuracy of the obtained
fecal signals between WB-MST, DM-MST, and LB-MST analyses,
the OTUs with posterior probability of source assignment greater
than 0.7 were analyzed. A GLMM with a log link function and
total number of OTUs as an offset was used to analyze the data.
Contaminants with low estimated proportions (less than 0.3%),
which may nevertheless exist within the noise threshold, were not
considered so that unrepresentative proportions of OTUs could
be avoided. In addition, contaminating signals from communities
sampled less than 48 h apart were removed. The mean number of

OTUs behind each signal could be written as:

g (ml) = al + βik + βlm + β1x1l + β2x2l, (3)

where al adjusts for the total number of OTUs underlying signal
l (l = 1,...,496), βik is a predictor for a sample i within location
k, βlm is a source-specific coefficient (m = 1,..., 11) behind signal
l, and β1 and β2 are regression coefficients related to whether a
DM selected background (x1l = 1, x2l = 0) or a local background
(x1l = 0, x2l = 1) was used for obtaining signal l. Level two of the
model can be written as:

βik = βk + uik, (4)

where βk is a vector of location-specific coefficient, uik is the
residual for sample i within location k. The final level of the model
can be expressed as:

βk = β0 + uk, (5)

where β0 is the overall intercept in the model and uk is the residual
for location k. The models were implemented in the Bayesian
software package rstan (Carpenter et al., 2017). In both regression
analyses, Cauchy distributions with location parameter x0 = 0 and
scale parameter γ = 5 were assigned to the standard deviation
parameters while weakly informative normal distributions with
mean µ = 0 and variance σ2 = 10 were assigned to the regression
coefficients. In the first model (eqns. 1,2), a LKJ prior distribution,
with shape parameter η = 1 (i.e., a uniform density) was assigned
to the correlation matrix, and Cholesky factorization was used to
speed up computations. In total, 8 parallel chains were run for
1,000 iterations each. Samples obtained in the first 500 iterations
were discarded as burn-in.

RESULTS

Screening of Raw Water Communities
Raw water samples, consecutively collected over a period of
18 month, from the inlets of six Swedish water treatment plants
were sequenced (Figure 1A and Table 1). These water sources
reflect diverse sources of contamination, human and agricultural
activities, weather conditions, and water trophic and nutrient
status. The hypervariable V4 region of the 16S rRNA gene was
amplified and sequenced, after which community profiles were
generated for all six locations from a total of 175 samples.
Following quality filtering, 22 million reads were obtained. The
reads were clustered into 1,616 OTUs at ≥97% similarity.

The overall quality of raw drinking water, in terms of FIB,
varied greatly across locations. Trollhättan samples showed
the highest average levels of E. coli and coliforms whereas
the lowest levels were observed in Östersund, Motala, and
Härnösand (Table 1). Phylogenetic diversity was greatest in raw
water from Stockholm and Trollhättan, while Östersund raw
water showed the least diversity. The most abundant orders
were Actinomycetales (mean frequency 22.6%, minimum 1.1%,
maximum 38.4% of the total number of reads), Burkholderiales
(12.6%, 4.4–44.4%) and Flavobacteriales (8.3%, 0.2–60.3%)
(Supplementary Figure 3). The abundance of some orders
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varied greatly between locations and seasons. For example,
Alteromonadales was sometimes highly abundant in raw water
from Stockholm (maximum 32.1%) and Motala (maximum
43.6%), and at other times not detected at all. Similarly,
Methylococcales was detected in Östersund and Härnösand,
but not detected or only found at low frequencies at other
locations. Aeromonadales and Pseudomonadales were detected
at all locations but the abundance of both orders varied between
seasons, i.e., Aeromonadales was abundant during autumn in
Borås (maximum 21.2%) and the abundance of Pseudomonadales
increased during late summer and autumn in Trollhättan
(maximum 33.5%).

Differences in Community Composition
Between Environments Enable Source
Tracking Analysis
An extensive set of representative sources of contamination of
raw water in Sweden was set up in order to perform MST
analyses. Fecal samples from seven animal species, totaling 212
samples, were collected, from various locations (Figure 1A and
Supplementary Table 1). In addition, ten untreated sewage
influent samples were collected from eight wastewater treatment
plants serving populations ranging from 500 to 171,000 people.

The taxa composition of the fecal sources, at the order
level, was predominated by Bacteroidales, Lactobacillales, and
Clostridales, which accounted for between 27% (sewage inlet)
and 92% (cow feces) of the source environments (Figure 1B
and Supplementary Figure 1). Some orders were only abundant
in a few fecal groups: Fusobacteriales was present in dog feces
(16.6%) and sewage (4.6%); Enterobacteriales was present in
wild bird (18.9%), domestic bird (4.8%), and calf (5.2%) feces;
and Verrucomicrobia was present in horse (8.0%) and sheep
(1.6%) feces. Some striking similarities in taxa composition
were observed between sources; notably, cow and sheep feces
were dominated by Bacteroidales and Clostridiales (92 and 87%,
respectively) while wild and domestic bird feces mainly consisted
of Lactobacillales, Enterobacteriales, and Pseudomonadales (82
and 64%, respectively). No OTUs were present in all fecal
communities. The most present OTU, assigned to the family
Enterobacteriaceae, were detected in 90% of all samples. In
addition, 4951 OTUs were present in only one sample, mostly in
sewage environments (average n = 181 unique OTUs per sewage
community).

To observe the differentiation across fecal bacterial
communities, an ordination analysis was conducted. The
first principal component (PC1) explained as much as 24.0% of
the total community variation and separated cow and sheep fecal
communities from dog and bird communities (Figure 1C). PC2
explained 9.5% of the variation and separated wild bird, cow, and
sheep feces from pig feces and sewage. Among the fecal sources,
dog, domestic and wild birds and calf displayed the largest
within source variability, with an average Bray–Curtis distance
to the centroid of 0.412, 0.438, 0.403, and 0.396, respectively. In
contrast, sheep, sewage, cow and horse showed noticeably less
within source variability, with an average distance to the centroid
of 0.186, 0.240, 0.248, and 0.251, respectively. It was possible

to trace each of the fecal communities to their true source in a
LOO-CV analysis (Supplementary Figure 2), suggesting that
each source group is well separable and can be further utilized in
the MST analysis.

OTU Overlaps Were Most Prominent
Between Sewage, Dog Fecal and Raw
Water Sources
After the raw water and contamination communities were
characterized, the shared bacterial contents were investigated to
better understand how the differences between alternative MST
library setups might influence the results. OTU overlap was
calculated once all the communities were merged according to
their respective sources.

Not surprisingly, the raw water sources shared a large number
of OTUs, with the samples containing between 1,080 and 1,200
shared OTUs (Figure 2B). The contaminating sources showed a
more variable number of shared OTUs: a minimum of 343 OTUs
were shared by wild bird and calf feces and a maximum of 1,282
OTUs were shared by dog feces and sewage sources. The highest
and lowest average numbers of overlapping OTUs between raw
water and all fecal sources were observed in the Stockholm (565.1,
std dev of 259.4) and Motala water sources (479.1, std dev 266.8),
respectively. Interestingly, sewage and dog fecal samples had the
most OTUs in common with the raw water sources, ranging from
914 to 1,051 and from 870 to 993 shared OTUs, respectively.
Other fecal sources showed a relatively small amount of OTU
overlap with raw waters, e.g., calf samples (163 to 250 OTUs).
We hypothesize that these differences in shared OTUs will
negatively impact MST accuracy if they are not accounted for via
representative water communities. The negative impacts could
include bias in estimations of source proportions and increased
false-positive results due to erroneously detected sources.

Representative Water Communities
Improve Correlation Between Estimated
Contamination and FIB Abundance
To assess the performance of the signature-based MST methods
with alternative library representations, we compared the
contaminating proportions of sequence reads obtained in the
MST analyses with traditional cultivation-derived water quality
scores. The measured FIB scores were used as a reference for
water quality score since this is an internationally recognized
indicator of fecal contamination (World Health Organization,
2011). All of the estimated contaminating proportions obtained
in the MST analyses were summed into a single score for each
sink community, which served as a proxy for the total fecal
load of the community. We expected that bias in estimated
contaminating proportions would reduce correlations with FIB
abundance.

Microbial source tracking analysis requires a library of
bacterial profiles that are representative of the analyzed
contaminating sources to classify the community. Here, three
alternative library settings were investigated (Figure 2A). We
refer to these settings as the local background representative
library MST (LB-MST), Dirichlet Multinomial selected
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FIGURE 2 | (A) Overview of how the three microbial source tracking (MST) library setups for source tracking analyses incorporate raw water communities, with the
155 sink assemblages representing a subset of the total group of 175 raw water assemblages. (B) Shared operational taxonomic units (OTUs) between different
contamination sources and the six sampled raw water sites. Each source of pooled samples was rarefied to an even depth of 1,000,000 reads. Source
environments are ordered in contaminating and raw water sources.
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background representative library MST (DM-MST) and
without background representative library MST (WB-MST)
setups. Both of the setups that include background communities
will identify signatures that deviate from natural variation in the
taxonomic composition of the water shed, while the WB-MST
setup will infer contaminations without any information about
natural variation and thus report both chronic and temporary
point sources of pollutions.

The WB-MST analysis found all of the raw water assemblages
to be contaminated, with total contaminating proportions
ranging from 0.001 to 0.760 and distributed mainly across dog,
sewage and wild bird sources (Supplementary Figure 4). The
LB-MST and DM-MST analyses (Supplementary Figures 5,
S6) found 59 and 67 out of 155 communities, respectively,
to be contaminated, with the criterion for contamination that
the total proportion was greater than 0.3% and stemmed from
a source represented in the library. These analyses suggested
the contamination sources to be sewage and cow feces. If
the unknown partition was interpreted as a contaminating
source, an additional 10 and 32 communities were contaminated
according to the LB-MST and DM-MST analyses, respectively.
Thus, the number of contaminated samples and the identified
contaminating sources differed substantially between the WB-
MST setup and setups that included background information.

To compare the performance of the three MST setups to
the corresponding FIB abundance data, we were interested
in inferring correlations between obtained contaminations and
FIB scores. A multivariate hierarchical GLMM was fitted to
the contamination proportion data and FIB abundance. The
model included contamination results from the three MST
setups as different response variables and sample location as
a grouping variable. We interpreted contamination from an
unknown source in the DM-MST and LB-MST analyses as a
contaminating source because it represents a deviation from the
normal background composition of the sink assemblage. The
contaminations obtained in the WB-MST analysis resulted in
negative estimated correlations with Enterococci and Coliform
abundance (Table 2), although the zero was included within
the body of the 95% credible interval (CI). Contaminations
predicted through the DM-MST and LB-MST analyses were
positively correlated with Coliform abundance, with the zero
outside the body of the 95% CI. Contaminations predicted
through both models were also positively correlated with
Enterococci abundance, but with the zero within the 95% CI.
Interestingly, only contaminations obtained from the LB-MST
analysis were strongly correlated with E. coli abundance; results
from the other two analyses only showed a weak non-significant
correlation with E. coli abundance. Results from the LB-MST
analysis mirrored the results of traditional fecal indicators, i.e.,
significantly correlated with E. coli and Coliform abundance
and, to a lesser extent, Enterococci abundance. Contaminations
obtained in DM-MST and LB-MST analyses yielded strong
positive correlations, while a negative estimated mean correlation
of contaminations between WB-MST and DM-MST analyses
and between WB-MST and LB-MST analyses were obtained,
although the zero was within the range of the 95% most credible
values.

TABLE 2 | Point estimates of correlations between fecal indicators and the
proportion of contaminations obtained in the MST analysis of raw water samples.

Response 1 Response 2 Mean Median Std 2.5% CI 97.5% CI

WB-MST DM-MST −0.237 −0.228 0.187 −0.621 0.132

LB-MST −0.073 −0.066 0.192 −0.490 0.293

E. coli 0.093 0.099 0.210 −0.356 0.482

Enterococci −0.339 −0.343 0.195 −0.702 0.046

Coliforms −0.174 −0.162 0.186 −0.572 0.180

DM-MST LB-MST 0.763 0.762 0.076 0.621 0.905

E. coli 0.050 0.047 0.102 −0.151 0.256

Enterococci 0.158 0.154 0.109 −0.059 0.372

Coliforms 0.400 0.398 0.082 0.239 0.560

LB-MST E. coli 0.260 0.257 0.096 0.071 0.451

Enterococci 0.093 0.093 0.111 −0.115 0.312

Coliforms 0.398 0.393 0.080 0.239 0.554

E. coli Enterococci 0.736 0.741 0.069 0.584 0.855

Coliforms 0.540 0.541 0.082 0.372 0.691

Enterococci Coliforms 0.536 0.539 0.089 0.339 0.693

The three MST library setups are: without background (WB-MST), with a local
background (LB-MST), and background selected through clustering analysis (DM-
MST). Mean, Median, Std, 2.5 and 97.5% Credible Intervals (CI) refer to respective
posterior point estimates.

TABLE 3 | The estimated proportions of contamination (standard deviation within
parentheses) from the without background (WB-MST), with local background
(LB-MST), and with DM-selected background (DM-MST) models.

MST setup Good
water
quality

Unknown
source
added

Number
of

samples

Mean
proportion

classified as
contamination

WB-MST Yes No 110 0.38 (0.17)

LB-MST Yes Yes 110 0.0032
(0.0064)

DM-MST Yes Yes 110 0.0057
(0.0098)

WB-MST No No 45 0.303 (0.176)

LB-MST No Yes 45 0.035 (0.069)

DM-MST No Yes 45 0.045 (0.077)

Communities were divided into groups according to FIB threshold levels, with
potential background water sample characterized by E. coli <25 MPN/100 ml
and coliforms <100 MPN/100ml. The column ‘Unknown’ indicates whether the
proportions grouped under unknown sources were merged with the fecal source
proportions in DM-MST and LB-MST setups.

The three MST setups were further tested by comparing the
obtained contaminations in samples with good water quality (FIB
levels below 25 MPN/100ml for E. coli and 100 MPN/100ml for
Coliforms). Both the DM-MST and LB-MST analyses showed
average proportions of contamination that were 100-fold lower
than what was obtained through the WB-MST analysis (Table 3,
P < 2.2e−16 for both comparisons). A similar trend was noted
for water samples with slightly lower quality scores, but both WB-
MST and DM-MST contamination results were 10-fold lower
than what was obtained through LB-MST (P = 1.709e−13 and
P = 1.596e−15, respectively). The average contamination scores
increased as water quality deteriorated for both DM-MST and
LB-MST, while an opposite trend was observed for WB-MST.

Frontiers in Microbiology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 2364

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02364 September 28, 2018 Time: 16:12 # 10

Hägglund et al. Improved Microbial Source Tracking

Prediction Accuracy Is Higher in Models
That Include Background Assemblages
An important aspect of signature-based MST analysis is the
accuracy of the obtained contaminating signals, as low prediction
accuracy suggests a higher likelihood for false positives in terms
of both inferred proportion and source. We evaluated signal
quality generated by the three MST setups by assessing the OTU
content of each contamination signal. To do so, we investigated
the inferred posterior probability of all OTUs to originate from
the respective source, estimated by the SourceTracker software,
by counting how many OTUs that obtained an source origin
probability greater or equal to 0.7: these are called source
accurate OTUs. The average proportions of source accurate OTUs
observed for the WB-MST, DM-MST, and LB-MST analyses were
0.046 (0.069), 0.200 (0.202), and 0.197 (0.195), respectively, with
standard deviations shown in parentheses. A generalized linear
model was fitted to the data using a log link function, with site,
sample within the site, and source of the contamination set as the
grouping variables. The effect of WB-MST on the proportion of
accurate OTUs was set as the baseline, after which the effects of
the alternative MST setups were estimated. The results show that
both DM-MST and LB-MST positively influence the proportion
of accurate OTUs relative to the WB-MST analysis (β1 = 1.34;
95% CI: 1.28, 1.39 for DM-MST and β2 = 1.30; 95% CI: 1.24,
1.35 for LB-MST). In addition, the narrow 95% CIs suggest high
precision in the estimates and the zero (i.e., baseline effect) was
well outside the 95% CIs. This implies that going from the WB-
MST setup to a DM-MST setup (without changing any other
predictors) would increase the expected proportion of accurate
OTUs almost fourfold (i.e., eβ1 = e1.34 = 3.82).

The Analysis of a Real-Life
Contamination Event Demonstrates How
the Inclusion of Background
Communities Impacts the Predicted
Source of Pollution
To further compare the performances of the three MST setups,
a real contamination scenario was analyzed in depth. In April
2014, raised FIB values at the inlet of the water treatment plant
in Östersund indicated a fecal contamination event. Levels of
E. coli and Coliforms were 53 and 147 MPN/100ml, respectively,
which are markedly higher than the usual levels at this location
(Table 1). Sewage was simultaneously detected at a nearby
marina, and believed to be the source of the contamination.
An inlet sample was analyzed with all three MST approaches
to detect the contaminating sources. All three MST setups
detected sewage as a contaminating source, although the WB-
MST analysis reported a higher proportion of the dog fecal source
(Table 4).

Microbial source tracking analyses are favored because they
can provide the taxonomic composition of each obtained
signal, the number of OTUs within the signal, as well as
the amount of source accurate OTUs. The OTUs in the dog
signal obtained by WB-MST analysis represented a variety
of phyla, such as Proteobacteria, Bacteroidetes, Firmicutes,

Actinobacteria, and Planctomycetes (Figure 3A). The same set of
phyla was represented in the unknown signal, while the sewage
signal mainly comprising OTUs assigned to Proteobacteria,
Bacteroidetes, and Firmicutes (Supplementary Figure 7). Many
of the sewage source accurate OTUs belonged to the genus
Arcobacter, within the class Epsilonproteobacteria. The observed
proportion of source accurate OTUs supporting dog, sewage,
and unknown signals were 0.16, 0.13, and 0.50, respectively
(Table 4). This suggests that dog fecal and sewage signals mainly
included OTUs with low source assignment probabilities (i.e.,
shared between sources).

We chose to only visualize the results obtained using
DM-MST analysis because the DM-MST and LB-MST setups
produced strikingly similar results. The OTUs identified
in the sewage signal using DM-MST analysis represented
the same set of phyla obtained through the model without
background (Figure 3B). More specifically, the signal
consisted of Acinetobacter (Gammaproteobacteria), Arcobacter
(Epsilonproteobacteria), and Bacteroides (Bacteroidetes) genera
as well as the Lachnospiraceae and Ruminococcaceae families
within the Firmicutes phylum, all of which have been identified
from freshwater contaminated with raw sewage (Newton et al.,
2013). The observed proportions of source accurate OTUs were
greater when the DM-MST or LB-MST setups were used than
when the WB-MST setup was used (0.45 for both compared
to 0.13) (Table 4). The background source signal from the
DM-MST analysis consisted of a large set of OTUs in which all
major phyla were represented (Supplementary Figure 8A), and
both the LB-MST and DM-MST analyses were characterized
by high proportions of source accurate OTUs (0.92 and 0.87,
respectively). The horse signal included only a few OTUs (Table 4
and Supplementary Figure 8B), with a low proportion of source
accurate OTUs (0.05 and 0.17 for LB-MST and DM-MST,
respectively).

We also investigated the reads underpinning the obtained
signals to compare the performances of the MST setups.
Approximately 85% of the WB-MST reads in the sewage signal
supported the background signal obtained in DM-MST analysis
and were assigned to Proteobacteria and Bacteroidetes phyla
(Figure 3C). This implies that models that do not account for
OTU overlap (i.e., between the background and sewage) run
the risk of overestimating source proportions. Unsurprisingly,
almost all of the reads underpinning dog and unknown source
signals in the WB-MST analysis were suggested to originate from
the background source in DM-MST analysis (Supplementary
Figure 9). However, some reads assigned to the dog and unknown
signals in the WB-MST analysis supported the sewage signal in
the DM-MST analysis. In fact, approximately 74% of the reads in
the sewage signal obtained from the DM-MST analysis were also
included in the WB-MST sewage signal, whereas 6 and 19% of
the reads assigned to sewage in the DM-MST analysis, most of
which belonged to Firmicutes phylum, had been grouped in the
dog and unknown sources, respectively, during WB-MST. This
implies that information about contamination may be assigned
to wrong sources if the overlap between raw water and fecal
communities is not accounted for. The reads forming the basis
for the background signal in DM-MST was distributed across all

Frontiers in Microbiology | www.frontiersin.org 10 October 2018 | Volume 9 | Article 2364

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02364 September 28, 2018 Time: 16:12 # 11

Hägglund et al. Improved Microbial Source Tracking

TABLE 4 | Proportions of contamination, by source, estimated by the three MST setups: without background (WB-MST); with a local background (LB-MST); and with a
background selected through clustering analysis (DM-MST).

Source MST setup Proportion (%) Std No of OTUs (n) No of Accurate OTUs (n)

Background WB-MST − − − −

Background LB-MST 98.6 0.016 586 537

Background DM-MST 97.5 0.031 561 488

Dog WB-MST 63.9 0.201 264 41

Dog LB-MST 0 0 – –

Dog DM-MST 0 0 – –

Horse WB-MST 0 0 – –

Horse LB-MST 0.124 0.015 37 2

Horse DM-MST 0.267 0.007 46 8

Sewage WB-MST 10.4 0.069 309 39

Sewage LB-MST 1.21 0.023 289 130

Sewage DM-MST 2.14 0.021 309 140

Unknown WB-MST 25.7 0.221 420 210

Unknown LB-MST <0.10 0.006 201 8

Unknown DM-MST <0.10 0.008 199 13

sources obtained in the WB-MST analysis: 71% to dog, mainly
Actinobacteria and Proteobacteria; 19% to unknown via all major
phyla with the exception of Firmicutes; and 10% to sewage via
Bacteroidetes and Proteobacteria.

DISCUSSION

Accurately tracking the source of water contamination is
key to fully understanding potential risks and enabling
remediation. Advances in high-throughput sequencing have
provided researchers the opportunity to utilize signature-based
MST methods when deciphering traces of contamination from
point sources (Newton et al., 2013; Ahmed et al., 2015; Henry
et al., 2016). The success of sequence-based MST analysis
depends on the degree of OTU overlap between sources, as
specified in a source tracking library. However, only a few studies
provide guidelines for how to model OTU overlap and how a
source tracking library should be defined to incorporate natural
variation in the raw water bacterial community. To address
this knowledge gap, three alternatives for library setup were
evaluated. The obtained results revealed two major benefits for
incorporating background information into the MST library: (i)
correlations between predicted contamination and FIB scores
improved; and (ii) the probability of assigning an OTU to the
correct contamination source increased, on average, fourfold.

The LB-MST results for raw water samples collected from
six Swedish sites were positively correlated with the traditional
culture-based FIB measures. DM-MST and LB-MST analyses
yielded highly similar estimated proportions of contamination,
and both were negatively correlated to contaminations estimated
by the WB-MST analysis, especially in regards to Enterococci
abundance. Ahmed et al. (2015) analyzed fecal pollution
events in Australian waters without including any background
communities in the MST library. They did not find any
positive associations between FIB (E. coli and Enterococcus),

host-associated molecular markers, and 16S rRNA amplicon
data, but found a statistically significant negative association
between estimated sewage proportion and E. coli levels. On the
other hand, Newton et al. (2013) did find significant positive
correlations between Enterococci and E. coli levels and the
obtained magnitudes of sewer and fecal signatures in samples
from urban rivers, storm water, and a harbor in Milwaukee,
as well as Lake Michigan. These signatures were based on a
selection of pre-defined genera and families, associated to human
feces. However, as no background information was included in
the MST library, non-significant, slightly negative associations
between FIB levels and the human fecal signals obtained through
SourceTracker software were reported. On the other hand, an
analysis of recreational coastal sites in Victoria, Australia, (Henry
et al., 2016) that included local background communities in
the MST library found the detected proportions of sewage
and graywater to be positively associated with Enterococci
levels. These results agree with the findings presented for MST
approaches that include source datasets. This highlights the
importance of including bacterial overlap between communities
in the library, which is particularly crucial for sources that share
a large set of OTUs, such as chronically polluted environmental
waters and raw sewage. Interestingly, Dubinsky et al. (2016)
included blank samples in the MST library to control for OTUs
that stem from the laboratory environment. Such a setup is likely
to further improve the signal-to-noise ratio and correlation to
traditional fecal indicator levels.

In this study, we suggest characterizing signals obtained from
MST, which may represent contaminating sources or background
variation in the taxonomic composition of a watershed, based
on the proportion of source accurate OTUs. On average,
the proportion of source accurate OTUs were significantly
higher in models that included background communities,
i.e., LB-MST and DM-MST as compared to WB-MST. In
other words, source predictions based on OTUs included a
higher degree of confidence when the MST library included
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FIGURE 3 | Visualization of the dog signal from the MST analysis without background representation in the library (A), and of the sewage signal from the MST
analysis with background representation selected through clustering analysis (B). The plot visualizes the taxonomy of each detected OTU at the phylum level, and
classes are visualized within the Proteobacteria phylum. The bars along the edge of the circle represent the posterior probability that the OTU belongs to the source,
with probabilities ≥0.70 indicated by red bars. OTUs with source probabilities <0.10 were removed to facilitate visualization. (C) An alluvial diagram reveals the
taxonomic structure of the sewage signal in the WB-MST analysis, as well as how this signal is divided in the DM-MST analysis. The height of the bars reflects the
number of reads in each group.

background communities. Few signature-based MST analyses
have used OTUs underpinning the predictions to draw further
conclusions about the contaminating source. Newton et al.
(2013) used the source probabilities of OTUs to derive a human
fecal signature and screened sink samples of urban rivers in
Milwaukee, a harbor, and Lake Michigan for this signature.
The abundance of this signature in the sink samples correlated
well with events of combined sewage overflows, suggesting that

using signatures based on the source probabilities might be
an interesting alternative to evaluating contamination source
predictions inferred by the MST algorithm.

The information provided by the set of OTUs in a
contaminating signal opens up corridors for future research. The
presented results suggest that proportions of source accurate
OTUs can be used to dismiss false positives when few source
accurate OTUs are correctly identified; for example, the horse
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contamination source identified in the case study was based
on few source accurate OTUs, and the proportion of source
accurate OTUs was much lower than what was observed for
raw sewage by DM-MST and LB-MST. Future research could
compare this approach for reducing false-positives with a method
based on relative standard deviation put forward by Henry
et al. (2016). Another interesting possibility is to utilize the
OTUs and their phylogenetic relationships to develop markers
for specific contaminating sources. Such an approach could
specifically target fecal-associated anaerobes, which are typically
more abundant than the classic cultivable indicators (McLellan
and Eren, 2014). An ideal target for marker development
would be phylogenetically distinct from other fecal-derived
targets, thus avoiding cross-reactions with other groups, and
should be accurately assigned to the correct group by MST
analysis. An example of one such target could be the OTUs
assigned to Epsilonproteobacteria, which was associated with the
sewage signal in the case study. The Epsilonproteobacteria class
contains some well-known fecal associated pathogens, of which
Campylobacter and Helicobacter may be the most relevant in
terms of human health risks (Kärenlampi et al., 2007; Khalifa
et al., 2010; Man, 2011).

All three MST setups detected sewage contamination in
the case application. The WB-MST analysis estimated a large
proportion of dog fecal contamination, which was absent from
the results of MST setups that included background communities
in the library. Most of the reads supporting the dog signal in
the WB-MST analysis supported the background source in the
DM-MST analysis, although some reads did support a sewage
signal. Thus, the absence of a defined OTU overlap between dog
feces and raw water most likely caused the overestimation of dog
contamination in the WB-MST analysis. The dog communities
(i.e., the average distance to its centroid) showed the highest
dispersion of all environments in the library, which may explain
the large number of OTUs shared between the raw water and
dog sources. Although we cannot rule out the possibility of
chronic pollution events caused by dog feces at this watershed,
it nevertheless seems an unlikely scenario. This is because other
MST studies of contaminated environmental water have been
identified wild bird (Dubinsky et al., 2012), cattle (Hagedorn
et al., 1999), and human feces (Newton et al., 2013) as the most
common contaminating sources, with dog fecal pollution less
frequent (Whitlock et al., 2002). Taken together, these results
suggest that the dog fecal source detected in the WB-MST
analysis is a false-positive and, by accounting for background
OTU composition, erroneous detections can be circumvented.
To further strengthen this claim, MST setups that included
background assemblages yielded very few reads with an unknown
source origin, indicating a complete, representative library for
assessing water contamination.

Another cause of concern is the degree of OTUs shared
between fecal sources in the library. A high degree of shared
OTUs will make it difficult to distinguish two environments
through MST analysis, particularly if the contaminating signal
is weak with respect to low source probability of OTUs and/or
a predicted proportion of contaminating source that is close to
the noise level. For example, in the presented analyses, dog and

sewage environments shared a relatively large number of OTUs.
Such overlap could potentially cause biases in the contamination
source estimation. However, as almost all of the reads in the dog
signal from the WB-MST setup were assigned to the background
signal during DM-MST analysis, we believe that overlap between
the studied water environments and potential contaminants is
the biggest concern, and should be addressed via the inclusion
of representative water communities in the MST library.

Our results suggest that incorporating representative water
communities into MST analysis improves both accuracy, in terms
of assignment to the correct source, and estimated proportions
of contamination. The presented results suggest that using either
communities sampled at the same location (LB-MST) or selected
from a set of representative communities (DM-MST) serve as
equally good alternatives, as shown in the real case study. It seems
reasonable to suggest that using local communities, if possible,
would be preferable as bacterial community composition is
influenced by geographic distance and time (Yannarell and
Triplett, 2005; Fierer et al., 2007; Hanson et al., 2012). However,
in typical MST cases, no sampling of the local environment has
been performed and, as such, no local reference assemblages are
available. A convenient alternative, which is based on selecting
representative communities via cluster analysis, relies on the ever
increasing amount of sequence bacterial communities in public
databases, such as the MG-RAST server (Glass et al., 2010): this
increase will enhance the performance of the MST without any
local sampled assemblages available. The cluster based DM-MST
would be able to select assemblages of similar character as the
sink sample, and if strong spatiotemporal variation exists, nearby
sampled communities, both in time and in geographic location,
would be selected as a background. Therefore, this MST setup
(or a combination of LB-MST and DM-MST) is perhaps best
suited if strong spatiotemporal effects are shaping the community
composition. To further evaluate whether using a local or selected
representative communities is better, the impact of spatial and
temporal effects on MST performance need to be studied in more
detail, by performing large scale longitudinal sampling effort.

CONCLUSION

The inclusion of background assemblages in the library
greatly benefits MST analyses. The results from models that
include background water data were significantly and positively
correlated to measured FIB levels, which suggest that these
analyses can be used to identify human health risks from a
water sample. Moreover, these models were characterized by
improved accuracy in identifying the source of a contaminant
when compared to models that did not include any background
information. We believe that investigating the proportion of
OTUs in a signal with high source accuracy provides a solid
foundation to further decipher and compare contaminating
signals.

Multiple-signature MST approaches offer various advantages
over traditional culture or molecular methods, which can only
detect a small portion of contaminating microbes and offer
limited information about contamination diversity and raw water
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composition. High-throughput sequencing techniques bypass the
need for isolation or cultivation of microorganisms, and provide
insight into the environmental metagenome, which can be used
to improve MST accuracy. As shown in this study, accounting
for the bacterial community overlap between background raw
water and contaminating sources greatly improves the accuracy
at which an analyzed contaminant is assigned to the correct
source. This tool can be used to pinpoint effective measures
for minimizing the spread of pathogenic and antibiotic resistant
bacteria into essential freshwater resources.
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