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Abstract

Highly exposed seronegative (HESN) individuals present a unique setting to study mecha-

nisms of protection against HIV acquisition. As natural killer (NK) cell activation and function

have been implicated as a correlate of protection in HESN individuals, we sought to better

understand the features of NK cells that may confer protection. We used mass cytometry to

phenotypically profile NK cells from a cohort of Beninese sex workers and healthy controls.

We found that NK cells from HESN women had increased expression of NKG2A, NKp30

and LILRB1, as well as the Fc receptor CD16, and decreased expression of DNAM-1,

CD94, Siglec-7, and NKp44. Using functional assessments of NK cells from healthy donors

against autologous HIV-infected CD4+ T cells, we observed that NKp30+ and Siglec-7+ cells

had improved functional activity. Further, we found that NK cells from HESN women trended

towards increased antibody-dependent cellular cytotoxicity (ADCC) activity; this activity cor-

related with increased CD16 expression. Overall, we identify features of NK cells in HESN

women that may contribute to protection from HIV infection. Follow up studies with larger

cohorts are warranted to confirm these findings.

Introduction

Human immunodeficiency virus (HIV) remains a significant health problem, with 37.9 mil-

lion people still living with HIV at the end of 2018 and an estimated 1.7 million new infections

every year (www.who.int). Many advances have been made in the treatment and prevention of

HIV. The advent of antiretroviral therapy (ART) has transformed HIV from a universally fatal
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disease into a manageable disease with near-normal life expectancy, and pre-exposure prophy-

laxis (PrEP) with antiretrovirals is highly effective in preventing HIV acquisition. However,

ART use for treatment and prevention has serious limitations, including cost, side-effects and

accessibility, making novel HIV prevention and treatment strategies desperately needed to halt

the epidemic.

Highly HIV-exposed seronegative (HESN) individuals are a unique population who show a

natural resistance to HIV acquisition despite repeated exposures. The study of these individu-

als has identified multiple correlates of protection from HIV acquisition, and a better under-

standing of these correlates could facilitate the design of innovative preventive measures and

vaccine approaches.

Natural killer (NK) cells are able to quickly and rapidly respond to viral infections and their

function is determined by the combinatorial signaling of inhibitory and activating receptors

expressed on the cell surface [1]. NK cells have been implicated in early immune responses to

HIV infection (reviewed in [2]). Although traditionally this was thought to be a non-antigen-

specific response, recent data have shown that NK cells may also be capable of generating

memory-like responses to viral antigens, including HIV [3–7]. NK cells expand during the

early stages of HIV infection [8,9], and respond to HIV in vivo and in vitro [10–13]. NK cell-

mediated antibody-dependent cytotoxicity (ADCC) has also been linked to slower disease pro-

gression [14,15] and, when combined with specific human leukocyte antigen (HLA) alleles,

certain killer immunoglobulin-like receptors (KIR) were associated with slower disease pro-

gression [16–18], and elite control of HIV [19].

Increasing evidence suggests that specific NK cell features can also confer protection from

HIV acquisition. Genetic studies revealed that the presence of specific KIR/HLA combinations

may contribute to protection of HESN from HIV infection via intravenous or sexual routes

[20–26]. Additionally, a less diverse and more flexible NK cell receptor repertoire has been

associated with lower risk of acquiring HIV in sexually exposed Kenyan women [27]. NK cell

function has also been linked with HIV protection. Increased NK cell activation has been seen

in HIV-exposed intravenous drug users [28–30] and in sexually exposed HESN [31,32]. Addi-

tionally, NK cell-mediated ADCC has been linked to vaccine-induced protection from HIV

infection [33].

Prior studies of immune correlates of HIV protection in Beninese HESN women revealed a

low inflammatory immune profile in the blood and genital tract. In fact, low levels of soluble B

lymphocyte stimulator (BLyS)/BAFF were detected in the blood and cervicovaginal lavages

(CVL) [34,35] and low levels of pro-inflammatory cytokines in the CVL of these HESN

women [36,37]. This raised the possibility that HIV resistance in these women may be the

result of a balance between strong innate immune responses and low inflammatory conditions

and fewer HIV target cells at the exposure site [38]. To study how innate NK cell responses

may contribute to protection in these women, we used cytometry by time of flight (CyTOF) to

profile the NK cell receptor repertoire of 20 HESN women and 10 healthy controls from this

cohort, and performed NK cell functional assessments.

Materials and methods

Study participants

Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained from Beninese

women, as previously described [35,39]. HESN were enrolled from a female sex-worker clinic;

HESNs were women who remained HIV-uninfected after at least 3.5 years of sex work.

Healthy unexposed HIV-1-seronegative women were enrolled from a general health clinic and

were either married or living with a male partner. PBMCs were obtained from 20 HESN and
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10 healthy women. Written informed consent was obtained from all women. The study was

approved by the Comité National Provisoire d’Éthique de la Recherche en Santé in Cotonou

and the Centre Hospitalier de l’Université de Montréal (CHUM) Research Ethics Committees.

Demographics from the study participants are summarized in Table 1.

For functional validation of NK markers (Fig 3), leukoreduction system chambers from 20

anonymous, healthy donors were obtained from the Stanford Blood Bank. PBMCs were iso-

lated by density gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare, Chicago, IL,

USA), and cryopreserved in 10% DMSO (Sigma Aldrich, St Louis, MO, USA) and 90% heat-

inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA).

Mass cytometry for NK cell profiling of HESN and healthy Beninese

women

NK cells were purified from PBMCs by magnetic-activated isolation via negative selection

(Miltenyi, Bergisch Gladbach, Germany) and stained for mass cytometry as described previ-

ously [40], using CyTOF Panel 1 (S1 Table). All antibodies were conjugated using MaxPar1

×8 labeling kits (Fluidigm, South San Francisco, CA, USA). To ensure antibody stability over

time, antibody panels were lyophilized into single-use pellets prior to use (Biolyph, Chaska,

MN, USA). Briefly, NK cells were plated in 96-deep-well plates, resuspended in 25 mM cis-

platin (Enzo Life Sciences, Farmingdale, NY, USA) for 1 minute and then quenched with

100% FBS. Cells were washed twice and stained for 30 minutes at 4˚C, fixed (BD FACS Lyse,

BD Biosciences, Franklin Lakes, NJ, USA), permeabilized (BD FACS Perm II), and stained

with intracellular antibodies for 45 minutes at 4˚C. Cells were resuspended overnight in irid-

ium intercalator (Fluidigm) in 2% paraformaldehyde in PBS. Cells were washed 1 time in PBS

and 2 times in water and resuspended in 1× EQ Beads (Fluidigm) before acquisition on a

Helios mass cytometer (Fluidigm).

Mass cytometry data pre-processing

The open source statistical package R (https://www.r-project.org/) was used for all statistical

analyses [41]. Mass cytometry data were bead-normalized with EQ Beads (Fluidigm) prior to

Table 1. Study group demographics.

Healthy Women n = 10 HESN n = 20

Age, Mean (SD), Years 34 (7) 35 (9)

Years of sex work at study visit, Mean (SD) n/a 5.1 (0.9)

Use of oral contraceptives, Number of subjects 0 1

Vaginal douching, Number of Subjects n/a 20

Number of clients in last 7 days, Mean (SD) n/a 15 (18)

Condom always used with client in the last 7 days, Number of subjects n/a 16

Sexually Transmitted Infections�, Number of Subjects (%) 1 (10)) 1 (5)

Vaginal Candidiasis, Number of Subjects (%) 1 (10) 3 (15)

Bacterial Vaginosis, Number of Subjects (%) 9 (90) 17 (85)

n = number of subjects, SD = standard deviation. There were no significant differences in mean age between groups,

at a p-value threshold of 0.05 using the Mann-Whitney-Wilcoxon test.

�There were no significant differences in frequency of sexually transmitted infections, vaginal candidiasis or bacterial

vaginosis between groups, at a p-value threshold of 0.05 using the Fisher Exact Test. Sexually transmitted infections

included: one woman with Chlamydia in the HESN group and one woman with both Chlamydia and Gonorrhea in

the healthy women group. There were no cases of Syphilis or Trichomoniasis.

https://doi.org/10.1371/journal.pone.0238347.t001
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subsequent analyses, using the Premessa package (https://github.com/ParkerICI/premessa)

[42]. Data were first visualized with FlowJo v10.5.3 (Tree Star, Woodburn, OR, USA). Markers

noted to have poor staining were excluded from subsequent analyses (FAS-L, Ki-67, KIR2DS2

and CXCR6 for Panel 1; CD11a and KIR2DS2 for Panel 2). Serial negative gating was used to

identify NK cells, as described [40] (S1 Fig). Normalized signal intensities were transformed

using the inverse hyperbolic sine (asinh) function with a cofactor equal to 5 to account for het-

eroskedasticity, prior to subsequent analyses. The data supporting this publication is available

at ImmPort (https://www.immport.org) under study accession SDY1647.

Multidimensional scaling and generalized linear model

The custom-made package CytoGLMM was used to create an exploratory multidimensional

scaling (MDS) projection (Fig 1A) and to build a confirmatory generalized linear model

(GLM). A GLM with bootstrap resampling (n = 100 bootstraps) was used to identify markers

predictive of HESN or healthy (Fig 1B) [43]. Samples with cell numbers smaller than 1000

were excluded from analyses; the number of subjects used for each analysis is specified in the

figure legend. Mean signal intensities of the markers identified by the GLM were then com-

pared between HESN and healthy women using the Wilcoxon rank-sum test.

Clustering

Unsupervised clustering was performed using the R package CATALYST [44,45]. The cluster-

ing method in this package uses the FlowSOM algorithm [46] to first generate 100 high-resolu-

tion clusters, followed by a metaclustering step with the ConsensusClusterPlus algorithm [47]

to regroup these high-resolution clusters into metaclusters. Default parameters were used for

clustering, and the number of metaclusters (8) was selected based on the delta area plot pro-

vided. To test for differential abundance of clusters between healthy and HESN, the diffcyt-
DA-GLMM method from the diffcyt package was used which computes tests using a General-

ized Linear Mixed Model (GLMM).

NK cell functional experiments

NK cells and CD4+ T cells from healthy blood bank donors were separately purified from

PBMCs by negative selection (Miltenyi). NK cells were cultured with 300 IU/ml recombinant

human IL-2 (R&D Systems, Minneapolis, MN, USA) for 72h, and CD4+ T cells were activated

and infected with Q23-FL, a HIV-1 clone from early, subtype A infection [48], as previously

described [49]. 5x105 NK cells were co-cultured with 2x106 HIV-infected CD4+ T cells (1:4

effector:target ratio) for 4h in the presence of brefeldin A (eBioscience, San Diego, CA, USA),

monensin (eBioscience), and anti-CD107a-APC (Biolegend, San Diego, CA, USA). At the end

of co-culture, cells were stained for mass cytometry as described above, using the CyTOF

Panel 2 (S2 Table). To maintain antibody stability and consistency in staining, antibodies in

CyTOF panel 2 were pre-mixed into separate surface and ICS cocktails, as indicated in S2

Table, aliquoted and frozen at -80˚C until use.

ADCC assay

NK cells were purified from PBMCs from healthy and HESN samples by negative selection

using the NK Cell Isolation Kit (Miltenyi, Bergisch Gladbach, Germany). 1x105 NK cells were

mixed with 4x105 CD20+ Raji cells (ATCC CCL-86, used at passage 9–11), in the presence or

absence of 1μg/ml Rituximab (non-fucosylated human CD20 IgG1 antibody, Invivogen, San

Diego, CA, USA). Co-cultures were incubated for 4 hours at 37˚C, in RP10 with brefeldin A
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(eBioscience), monensin (eBioscience), and anti-CD107a-APC-H7 (BD Biosciences, clone

H4A3). At the end of co-culture, cells were stained with Zombie Aqua Fixable Viability dye

(Biolegend), and surface stained with anti-CD3-PE (Biolegend, clone UCHT1), anti-

CD16-FITC (Biolegend, clone 3G8), anti-CD56-PE-Cy7 (Biolegend, clone HCD56) and anti-

CD19-APC (Biolegend, clone HIB19). Cells were subsequently fixed with FACS Lyse (BD Bio-

sciences), permeabilized with FACS Permeabilization Buffer 2 (BD Biosciences), and stained

for intracellular cytokines with anti-IFN-γ-V450 (BD Biosciences, clone B27) and TNF-α-

BV650 (Biolegend, clone MAb11). Cells were analyzed by flow cytometry using an Aurora

spectral cytometer (Cytek Biosciences, Fremont, CA, USA), and data analysis was performed

using FlowJo version 10.1 (Tree Star). Background subtracted % positive for each functional

marker = % positive for functional marker in NK + Raji + Rituximab well—% positive for

functional marker in NK + Raji—Rituximab well.

CD16 genotyping of HESN and healthy Beninese women

DNA from 105 PBMCs from healthy and HESN samples was extracted using the DNeasy

Blood and Tissue Kit (Qiagen, Hilden, Germany). The region of the FCGR3A gene containing

the 158V/F polymorphism was amplified using nested PCR, with primers and cycling condi-

tions as previously described [50], using Q5 High Fidelity DNA Polymerase (New England

Biolabs, Ipswitch, MA, USA). PCR cleanup and Sanger sequencing were performed by Elim

Biopharm (Hayward, CA, USA). Each sample underwent PCR and sequencing in duplicate.

All samples, together with a reference FCGR3A sequence (NCBI Reference Sequence:

NG_009066.1), were aligned in Geneious Prime Version 2020.0.4 (Biomatters, Auckland, New

Zealand). The polymorphism variants were identified using analysis of the chromatograms at

nucleotide position 5093—T/T corresponded to the F/F phenotype, T/G to the V/F phenotype,

and G/G to the V/V phenotype.

Results

Peripheral blood NK cells from HESN are phenotypically distinct from

those of healthy women

To determine the effect of HIV-1 exposure on the NK cell phenotype, we used a generalized

linear model (GLM) with bootstrap resampling to compare NK cells from HESN and healthy

women and identify predictors of either group. Using this strategy, we found that increased

expression of CD16, NKG2A, NKp30 and LILRB1 were the strongest predictors of HESN, and

that DNAM-1, CD94, Siglec-7, and NKp44 were the strongest predictors of the healthy

women group (Fig 1A). To confirm these results, we compared the mean signal intensity

(MSI) for the top 4 NK cell markers predictive of each of the study groups and we observed

that HESN had an increased MSI for CD16 and a decreased MSI for DNAM-1, Siglec-7 and

NKp44 (Fig 1B). To better understand the subsets of cells on which these markers were

expressed, we visualized the expression profiles of these markers by simplifying the multidi-

mensional space using UMAP (Fig 1C). By overlaying the expression of CD56 and CD16, we

identified the canonical CD56−, CD56dim, and CD56bright NK cell subsets. For our markers of

interest identified by the GLM, we saw that the expression of these markers was globally dis-

tributed, and that markers predictive of each arm of our study were not co-expressed on a spe-

cific NK cell subset. To further explore the effect of HIV exposure on NK cell phenotype, we

compared the frequency of the canonical CD56−, CD56dim, and CD56bright NK cell subsets

between our groups and we found no significant differences (S2 Fig).
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Peripheral blood NK cells from HESNs do not form distinct subsets

To confirm that the differences in NK receptor expression observed in HESN compared to

healthy women did not occur on a unique subset of NK cells, we used the CATALYST package

to cluster all NK cells from both the healthy and HESN groups. This method identified 8 clus-

ters of NK cells (Fig 2A and 2B). We then tested for differential abundance of each of these NK

cell clusters between the two groups, using a generalized linear mixed model (GLMM). No dif-

ferentially abundant clusters were found (Fig 2C), indicating that the changes in NK cell recep-

tor expression in HESNs reflect global changes in expression patterns of certain receptors

rather than the development of a unique subset of NK cells.

Fig 1. NK cells from HESN women are phenotypically distinct from healthy women. (A) A generalized linear model with bootstrap resampling was used

to identify receptors predictive of NK cells from HESN (n = 16) or healthy (n = 9) women. For each marker, the 95% confidence interval is represented by

the line surrounding the point estimate. (B) Mean signal intensity (MSI) of CD16, NKG2A, NKp30 and LILRB1 (significant predictors of the HESN group

identified in A; top), and NKp44, Siglec-7, CD95 and DNAM-1(significant predictors of the healthy group; bottom). (C) UMAP visualization of all NK cells

from HESN and healthy donors, colored by expression of the same markers as in B as well as CD56. Scales show asinh-transformed channel values.

https://doi.org/10.1371/journal.pone.0238347.g001
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CD16-, NKp30+ and Siglec-7+ NK cells from healthy donors show increased

HIV-specific NK cell responses

The GLM identified CD16, NKG2A, NKp30 and LILRB1 as predictors of the HESN group and

DNAM-1, Siglec-7, CD94 and NKp44 as predictors of the healthy group (Fig 1B). To better

characterize the role of these markers, we used CyTOF to investigate the ability of NK cell sub-

populations expressing these markers to respond to HIV-infected CD4+ T cells in vitro (Fig

3A). We purified NK cells and autologous CD4+ T cells from PBMCs of healthy, HIV-unin-

fected blood bank donors. We then infected the CD4+ T cells with HIV and co-cultured NK

Fig 2. NK cells from HESNs do not belong to distinct clusters. (A) UMAP visualization of all NK cells from HESN (n = 20) and healthy women (n = 10),

colored by metacluster identity generated by CATALYST clustering method. (B) Heatmap of scaled mean expression of all NK markers profiled, for each

cluster 1 to 8. The overall abundance of each cluster, as a percent of total cells, is displayed to the right of the heatmap. (C) Heatmap of the relative

abundance of each cluster between the healthy (left) and HESN (right) groups. Each column represents a single donor and shows the normalized frequency

of cells belonging to each cluster. The normalized frequencies are proportions that were first scaled with arcsine-square-root transformation and then z-

score normalized in each cluster (light blue showing under-representation and light yellow showing over-representation). Adjusted p-values for differential

abundance (DA) tests by GLMM, between the two groups, are displayed on the right.

https://doi.org/10.1371/journal.pone.0238347.g002
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Fig 3. HIV-specific NK cell functional activity is increased in NKp30+ and Siglec-7+ NK cells. (A) Experiment schematic: NK cells and

CD4+ T cells were isolated from healthy blood bank donors (n = 20). CD4+ T cells were infected with Q23. NK cells and CD4+ T cells were co-
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cells with HIV-infected CD4+ T cells. After gating on positive and negative expression for

each marker of interest (Fig 3B), we assessed overall functional activity, measured as the frac-

tion of CD107a+ or IFN-γ+ or TNF-α+ NK cells, for each positive and negative population (Fig

3C). CD94 was excluded from this analysis—CD94 forms a heterodimer with both the inhibi-

tory receptor NKG2A and the activating receptor NKG2C but has no direct signaling activity

[51]; and was hence not included in CyTOF Panel 2. With this approach, we found that

CD16+ NK cells showed significantly lower function compared to CD16- NK cells. Addition-

ally, NKp30+ NK cells showed increased response compared to NKp30- NK cells. Similarly, we

found that Siglec-7+ NK cells showed increased response compared to Siglec-7- NK cells (Fig

3D). When we assessed functional activity by each single functional marker (CD107a, IFN-γ
or TNF-α), we found that expression of each individual functional marker demonstrated the

same trend as overall functional activity for CD16, NKp30 and Siglec-7 (S3 Fig). However,

DNAM-1+ NK cells also showed increased cytokine production (IFN-γ or TNF-α) but

decreased degranulation (CD107a) compared to DNAM-1- NK cells, but no difference in over-

all function (Fig 3D, S3 Fig). We did not find significant differences in HIV responses between

cells expressing NKG2A, LILRB1, or NKp44.

Peripheral blood NK cells from HESN trend towards increased ADCC

cytotoxic activity

As CD16 expression was the strongest predictor identified in our GLM analysis, with higher

expression in HESN women compared to healthy women (Fig 1A), we sought to better under-

stand the potential role of CD16 in these differences. Although CD16- NK cells from healthy

donors had increased functional activity compared to CD16+ in response to HIV-infected cells

(Fig 3D), this may be due to downregulation of CD16 that is known to occur in activated NK

cells, particularly those expressing CD107a and IFN-γ, even in the presence of stimulation that

does not directly involve CD16 [52]. As such, we wanted to more directly address its role in

NK cell responses. As CD16 is a Fcγ receptor (FcγRIIIa), we focused on the impact of differen-

tial CD16 expression on ADCC activity in NK cells.

To determine if there are differences in intrinsic ADCC ability of NK cells between healthy

and HESN women, we used an in vitro Rituximab-mediated ADCC assay with CD20+ Raji

cells as target cells for individuals in whom an additional aliquot of PBMCs was available for

functional assessment. We observed robust ADCC activity in the presence of Rituximab and

Raji target cells (S4 Fig). To account for differences in baseline NK cell activity between

women, we subtracted the percent positive for each functional marker in the co-cultures with-

out Rituximab. While we were limited in the number of subjects we were able to evaluate, we

found a trend of increased cytotoxic CD107a+ NK cells in the HESNs compared to the healthy

controls. In contrast, the expression of cytokines IFN-γ and TNF-α trended towards a decrease

in the HESN group (Fig 4A).

To further understand the impact of CD16 expression on ADCC responses, we correlated

the percentage of CD16hi cells from each woman, as identified by our initial CyTOF screen,

with the percentage of expression of each functional marker in the in vitro ADCC assay. There

cultured for 4 hours at a 1:4 effector:target ratio, and phenotype and NK cell function measured by CyTOF. (B) Example of CyTOF stain and

gating for NKG2A, NKp30, NKp44, DNAM-1, Siglec-7 and NKp44. (C) Example of functional activity of NK cells, measured by CD107a, IFN-

γ and TNF-α production. (D) Summary data comparing functional activity (measured as frequency of CD107a+ or IFN-γ+ or TNF-α+ NK

cells) of NKG2A+ and NKG2A-, NKp30+ and NKp30-, LILRB-1+ and LILRB1-, DNAM-1+ and DNAM-1-, SIglec-7+ and Siglec7-, and NKp44+

and NKp44- NK cells (n = 20). For markers whose positive and negative populations have a statistically significant difference in functional

activity, the mean difference is shown above the plot. �� = p� 0.01, ��� = p� 0.001, ���� = p� 0.0001, ns = not significant, by paired Wilcoxon

signed-rank test, adjusted using the Benjamini-Hochberg method.

https://doi.org/10.1371/journal.pone.0238347.g003
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was a trend towards a correlation between the percentage of CD16hi cells with CD107a in the

ADCC assay, but not with IFN-γ and TNF-α (Fig 4B). Together, these data suggest that

HESNs had higher expression of CD16 that may be associated with increased ADCC activity

by cytotoxicity.

Discussion

HESN individuals provide insight to protective mechanisms against HIV acquisition, and

increased NK cell activity has been observed in multiple studies of HESN subjects [28–30,53].

To characterize the phenotypic features of these NK cells in HESN subjects and gain insight

into potential mechanisms of protection, we used mass cytometry to profile NK cell phenotype

in a cohort of Beninese HESN women and healthy HIV-uninfected controls. We observed dif-

ferences in expression of activating and inhibitory NK cell receptors between HESN and

healthy women, including receptors such as Siglec-7 and NKp30, and NK cells expressing

these receptors may have differential HIV-targeting activity. In addition, we found that

Fig 4. Differential CD16 expression on NK cells between healthy and HESNs impacts ADCC activity. (A) Background-subtracted frequency of

cells positive for CD107a, IFN-γ, and TNF-α in NK cells from healthy (n = 7) and HESN (n = 10) donors in an in vitro Rituximab-mediated ADCC

assay with CD20+ Raji target cells. Exact p-values by unpaired Wilcoxon signed-rank test are shown for each plot. (B) Pearson correlation between

percentage of CD16hi cells (in the CyTOF profiling of NK cells) and each of the functional markers CD107a, IFN-γ, and TNF-α (in the in vitro
ADCC assay) for each donor in both healthy (n = 7) and HESN (n = 10) groups combined. Pearson correlation coefficient (R) and exact p-value is

shown for each plot.

https://doi.org/10.1371/journal.pone.0238347.g004
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increased CD16 expression on NK cells was associated with a trend of increased ADCC activity

by cytotoxicity in the HESN group compared to healthy.

Previous studies have yielded consistent evidence of heightened NK cell activity in HESN

individuals, including increased activation and functional activity of NK cells at baseline [28–

32,53]. Studies of intravenous drug users reported an increase in expression of the activation

marker CD69 in ex vivo NK cells in HESN individuals [28,30]. Conversely, one study reported

a decrease of CD69 expression in NK cells from HESN women after IL-2 stimulation [54]. We

did not observe an increase or decrease in CD69 expression in ex vivo NK cells from HESN

women (Fig 1B). This may be a result of the lack of use of IL-2 stimulation in our ex vivo
study, or of differential immune protection pathways at mucosal surfaces in our cohort of

commercial sex workers, compared to in blood for intravenous drug users. Instead, the stron-

gest phenotypic shift we observed in HESN individuals was enhanced expression of CD16 on

NK cells, which has not been previously reported, but could have important functional impli-

cations. While our sample size was a limiting factor, we observed a trend of heightened ability

of NK cells from HESN individuals to mediate ADCC.

ADCC is a potent effector mechanism of NK cells, mediated by virus-specific antibodies

binding to CD16 (FcγRIIIa). The engagement of CD16 is a trigger of NK cell activation and

cytolysis, leading to killing of antibody-bound infected cells [55]. ADCC activity is known to

provide a protective benefit in disease progression in HIV-infected individuals—ADCC anti-

body titers correlates positively with CD4 count and negatively with viral load [56,57], and

elite controllers have higher ADCC activity compared to viremic individuals [58]. In the

female genital tract, the presence of antibodies that are capable of mediating ADCC against

HIV gp120 is associated with reduced cervical viral load [59], suggesting that ADCC may act

as a mechanism of defense against HIV in this setting. Our finding that NK cells from HESN

women have a trend of increased ADCC activity may be particularly relevant as HIV

gp41-reactive IgG1 antibodies have been found in CVL samples from women in this cohort

[34]. Although no difference in ADCC-mediating antibodies have been observed in this cohort

between HESN and healthy women [60], differences in ADCC activity at the level of effector

cells could contribute to protection. However, as our observed increases in ADCC activity

were small and not statistically significant, further work with larger HESN cohorts would pro-

vide more insight on this potential mechanism of protection.

One of the known mechanisms by which CD16 expression, as well as ADCC activity, can

differ is due to a polymorphism at residue 158 of the CD16 protein; possessing at least one

valine (V) at this residue, instead of phenylalanine (F), leads to increased cell surface CD16

expression as well as augmented Rituximab-mediated ADCC activity [61]. We genotyped sam-

ples of HESN and healthy Beninese women for this polymorphism, and, while we were under-

powered to detect population-level genetic differences using this set of samples, we did not

observe a skewing in distribution of CD16 variants (V/V, V/F and F/F) in the healthy com-

pared to HESN group (S5 Fig. In addition, we did not observe differences in expression of

other NK cell receptors such as NKG2D (Fig 1A) that are known to contribute to ADCC activ-

ity [62].

Aside from CD16, we found that NK cells from HESN subjects also had increased expres-

sion of NKG2A, NKp30 and LILRB1. Many of these receptors have been implicated in NK cell

targeting of HIV. NKG2A-expressing NK cells have increased functional activity against HIV-

infected cells [63,64], although we did not consistently observe this effect in our in vitro co-cul-

tures (Fig 3D). In addition, we found that NKp30+ NK cells also had increased expression of

functional markers against autologous HIV-infected CD4 T cells, compared to NKp30- (Fig

3D). Similarly, LILRB1+ (CD85j+) NK cells have been found to exert potent suppression of

HIV-infected dendritic cells [65], although we did not observe an increased functional
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response of LILRB1+ NK cells to HIV-infected CD4 T cells (Fig 3D). Collectively, it is possible

that the increased expression of these markers on NK cells from HESN women represent NK

cells that have increased functional capacity to target HIV in different settings.

In studies of HESN subjects in comparison with healthy, unexposed controls, it remains dif-

ficult to distinguish whether observed changes in immune cell phenotype and function repre-

sent potential mechanisms of protection against HIV acquisition, or markers of exposure to

HIV. Indeed, some of the phenotypic changes we observed on NK cells from HESN women

may represent the latter—for example, Siglec-7 expression on NK cells is also strongly reduced

in viremic HIV-1-infected individuals, but not long term non progressors, and this downregu-

lation is associated with NK cell dysfunction [66]. In addition, Siglec-7- cells have been

reported to have reduced functional capacity compared to Siglec-7+ NK cells [67], consistent

with our findings (Fig 3D). Our observation of decreased Siglec-7 expression on NK cells from

HESN women thus is unlikely to represent a protective mechanism against HIV acquisition.

Another consideration is that epidemiological differences between HESN and healthy

women, in addition to HIV exposure, may drive NK cell changes observed in this study. Over-

all, the measured epidemiological parameters were well balanced (Table 1), with no differences

in the rate of sexually transmitted infection, vaginal candidiasis or bacterial vaginosis between

groups. Nevertheless, as commercial sex workers, HESN women are more exposed to semen

from multiple partners. Semen can induce a local mucosal inflammatory response [68], thus

could also potentially mediate NK cell activation.

There are several limitations to our study. Due to the difficulty in obtaining well-curated

HESN cohorts, we had limited sample availability for follow-u\p studies on ADCC activity (10

and 7 HESN and healthy women respectively), and were thus underpowered to detect poten-

tial differences. Further studies, with larger HESN cohorts, are warranted, as mentioned

above. We were only able to profile women exposed to HIV via sexual exposure; HIV exposure

via intravenous drug use and in men may lead to differing outcomes.

In conclusion, we have shown that HESN women have increased expression of CD16, and

trend towards increased ADCC activity, compared to healthy controls. In addition, they pos-

sess NK cells with increased expression of NKp30, NKG2A and LILRB1, all NK cell receptors

whose expression is associated with improved anti-HIV activity. These may present potential

mechanisms of NK-mediated protection against HIV acquisition in HESN women, and war-

rant follow-up in additional, larger studies.

Supporting information

S1 Fig. Gating schemes. Intact, bead and event-length gates ensure successful gating to single

cells. Cisplatin stain was performed as Live/Dead stain. (A) Serial negative gating to NK cells

for CyTOF Panel 1. T cells and B cells were excluded using CD3, and CD19. Monocytes were

excluded by negative gating on CD4 and CD14/CD33 and by further negative gating of

CD56-/HLA-DRbright cells. CD56 and CD16 were used to identify NK cells. (B) Serial negative

gating to NK cells for CyTOF Panel 2. T cells in the co-culture were excluded using CD3.

CD56 and CD16 were used to identify NK cells.

(TIF)

S2 Fig. Frequency of CD56 subsets does not differ between HESN and healthy women. (A)

An example of gating strategy for classical NK cell subpopulations (CD56-, CD56dim and

CD56bright) in one healthy and one HESN woman. (B) Frequency of CD56-, CD56dim and

CD56bright NK cells in healthy and HESN women. ns = non-significant.

(TIF)
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S3 Fig. HIV-specific NK cell functional activity of different NK cell subpopulations. Sum-

mary data comparing the frequency of CD107a+, IFN-γ+ and TNF-α+ NK cells of NKG2A+

and NKG2A-, NKp30+ and NKp30-, LILRB-1+ and LILRB1-, DNAM-1+ and DNAM-1-,

SIglec-7+ and Siglec7-, and NKp44+ and NKp44- NK cells (n = 20). � = p� 0.05 �� = p� 0.01,
��� = p� 0.001, ���� = p� 0.0001, ns = not significant, by paired Wilcoxon signed-rank test,

adjusted using the Benjamini-Hochberg method.

(TIF)

S4 Fig. Rituximab-mediated ADCC assay allows identification of robust ADCC responses.

Frequency of cells positive for CD107a, IFN-γ, and TNF-α in NK cells from healthy (n = 7)

and HESN (n = 10) donors in an in vitro Rituximab-mediated ADCC assay with CD20+ Raji

target cells, in the absence (left) or presence (right) of Rituximab (anti-CD20). Exact p-values

by unpaired Wilcoxon signed-rank test are shown for each plot.

(TIF)

S5 Fig. CD16 genotyping of healthy and HESN women. Frequency of each CD16 variant (F/

F, V/F and V/V) in the healthy (n = 7) and HESN (n = 10) groups. Genotyping was performed

by Sanger sequencing of the CD16 gene in the region containing the polymorphism. No signif-

icant difference in the frequencies between the two groups was found by Fisher’s exact test.

(TIF)

S1 Table. CyTOF Panel 1.

(DOCX)

S2 Table. CyTOF Panel 2.

(DOCX)
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set potently controls HIV-1 replication in autologous dendritic cells. PLoS One. 2008; 3: e1975. https://

doi.org/10.1371/journal.pone.0001975 PMID: 18398485

66. Brunetta E, Fogli M, Varchetta S, Bozzo L, Hudspeth KL, Marcenaro E, et al. The decreased expression

of Siglec-7 represents an early marker of dysfunctional natural killer-cell subsets associated with high

levels of HIV-1 viremia. Blood. 2009; 114: 3822–3830. https://doi.org/10.1182/blood-2009-06-226332

PMID: 19710502

67. Shao J-Y, Yin W-W, Zhang Q-F, Liu Q, Peng M-L, Hu H-D, et al. Siglec-7 defines a highly functional nat-

ural killer cell subset and inhibits cell-mediated activities. Scand J Immunol. 2016; 84: 182–190. https://

doi.org/10.1111/sji.12455 PMID: 27312286

68. Schuberth HJ, Taylor U, Zerbe H, Waberski D, Hunter R, Rath D. Immunological responses to semen in

the female genital tract. Theriogenology. 2008; 70: 1174–1181. https://doi.org/10.1016/j.

theriogenology.2008.07.020 PMID: 18757083

PLOS ONE Natural killer cells in highly exposed seronegative women

PLOS ONE | https://doi.org/10.1371/journal.pone.0238347 September 1, 2020 17 / 17

https://doi.org/10.1023/a%3A1011087132180
http://www.ncbi.nlm.nih.gov/pubmed/11403230
https://doi.org/10.1097/QAD.0b013e328329f97d
http://www.ncbi.nlm.nih.gov/pubmed/19414990
https://doi.org/10.1086/425582
http://www.ncbi.nlm.nih.gov/pubmed/15529262
https://doi.org/10.1089/aid.2014.0163
https://doi.org/10.1089/aid.2014.0163
http://www.ncbi.nlm.nih.gov/pubmed/25354025
https://doi.org/10.1182/blood-2007-01-070656
https://doi.org/10.1182/blood-2007-01-070656
http://www.ncbi.nlm.nih.gov/pubmed/17475906
https://doi.org/10.1089/AID.2016.0099
http://www.ncbi.nlm.nih.gov/pubmed/27487965
https://jvi.asm.org/content/89/19/9909.short
https://doi.org/10.1371/journal.ppat.1005421
https://doi.org/10.1371/journal.ppat.1005421
http://www.ncbi.nlm.nih.gov/pubmed/26828202
https://doi.org/10.1371/journal.pone.0001975
https://doi.org/10.1371/journal.pone.0001975
http://www.ncbi.nlm.nih.gov/pubmed/18398485
https://doi.org/10.1182/blood-2009-06-226332
http://www.ncbi.nlm.nih.gov/pubmed/19710502
https://doi.org/10.1111/sji.12455
https://doi.org/10.1111/sji.12455
http://www.ncbi.nlm.nih.gov/pubmed/27312286
https://doi.org/10.1016/j.theriogenology.2008.07.020
https://doi.org/10.1016/j.theriogenology.2008.07.020
http://www.ncbi.nlm.nih.gov/pubmed/18757083
https://doi.org/10.1371/journal.pone.0238347

