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Abstract

The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer’s disease (AD) dementia
and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively
intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of
neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We
evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-
matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high
amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Ab/tau
metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in
neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical
in AD dementia, such as soluble or insoluble Ab40, Ab42 and tau were quantified by ELISA. Interestingly, only Ab42
demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not
used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher
degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary
tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial
growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium
derived factor levels were lower. The lack of clear Ab-related pathological/biochemical demarcation between AD and ND-
HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity,
must play important roles in cognitive failure.
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Introduction

The incidence of Alzheimer’s disease (AD) is increasing

worldwide and imposing enormous economic burdens [1].

Alzheimer’s disease is the most common form of dementia,

presently accounting for 5.5 million cases in the USA, a number

projected to double by the end of this decade. Unprecedented

advances in the biomedical field, hygiene and nutrition have

increased the average life expectancy with an impressive

exponential growth in the numbers of those surviving beyond 90

years, defined as the ‘‘oldest-old’’ [2–5]. The general health of

aging populations is an urgent issue in terms of the overwhelming

and mounting emotional burdens and expenses that the elderly

generate. Awareness and intervention are promptly needed given

the fact that AD dementia is reaching alarming proportions.

Worldwide, there will be 1.3 billion people over the age of 65 years

and the numbers of those over age 80 is predicted to increase by

233% by 2040 [6].

Alzheimer’s disease is defined by the profuse deposition of

amyloid-beta (Ab) peptides in amyloid plaques and walls of

cerebral vessels as well as by the accumulation of intracellular

neurofibrillary tangles (NFT). These lesions are accompanied by
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synaptic depletion, neuronal demise, gliosis, demyelination and

severe brain atrophy. The ‘‘amyloid cascade hypothesis’’ suggests

that the production and profuse deposition of insoluble fibrillar

amyloid and of increased soluble oligomeric forms of Ab initiates a

series of events culminating in neuronal damage, cognitive

impairment and ultimately dementia [7,8]. This hypothesis is

supported by studies demonstrating higher probability of AD and

an increasing number of amyloid plaques and NFT with

increasing age [2,9,10]. The discovery of familial AD mutations

in the amyloid precursor protein (APP) coding region, and APP

processing genes presenilin-1 (PS-1) and presenilin-2 (PS-2) as well

as subsequent work in transgenic mouse models carrying human

APP and PS mutations also lent strong support to the amyloid

cascade hypothesis [11]. Based on these observations, a large

number of therapeutic interventions have been designed to

prevent the generation of Ab, reduce its deposition or remove

already existing amyloid plaques.

While the amyloid cascade hypothesis is the prevailing

mechanism to explain the pathogenesis of sporadic AD, amyloid

plaque density has not been shown to robustly correlate with either

AD diagnosis or as a measure of disease severity or progression

[10,12]. Levels of amyloid/Ab determined by 11C-Pittsburgh

compound B (PIB)-PET imaging, or altered plasma or CSF Ab
values have not yet been proven to adequately predict AD or

cognitive decline, without being combined with other biomarkers

of dementia such as tau [13–15]. As many as 30% of elderly

individuals with no cognitive impairment have positive PIB/

amyloid imaging signals [16,17]. Furthermore, a significant

proportion of elderly individuals exhibit sufficient plaque densities

warranting a neuropathology-based classification as probable AD,

yet were normal by cognitive assessments [10]. Some oldest-old

individuals are able to remain cognitively intact and endure high

amyloid plaque loads for years or even decades [17]. These

observations cast doubts on the amyloid cascade hypothesis as the

sole determinant of dementia and demand an explanation as to

why some elderly individuals harbor such high levels of amyloid

without cognitive impairment. If amyloid accumulation produces

neurotoxicity and dementia, protective mechanisms must be in

place to enable these individuals to evade cognitive decline. If, on

the other hand, the amyloid cascade mechanism of dementia

production is incorrect, why are amyloid plaques produced and

what purpose do they serve?

In an attempt to resolve these conundrums, we are initiating a

series of systematic studies to determine at the molecular level the

differences and similarities between AD and non-demented oldest-

old meeting the neuropathological criteria for AD. In the first of

these studies, we assessed the neuropathological differences

between these two groups. In addition, we quantified by ELISA

and Western blots a group of proteins related to APP/Ab/tau

metabolism and other neurotrophic and inflammatory-related

molecules that have been found to be altered in neurodegenerative

disorders and that are pivotal to brain homeostasis and mental

health.

Materials and Methods

Human subjects
Brain specimens were obtained from the Banner Sun Health

Research Institute (BSHRI) Brain and Body Donation Program

[18]. All cases were selected for advanced age (90 years and older)

and were neuropathologically classified as having ‘‘moderate’’ or

‘‘frequent’’ CERAD neuritic plaque scores. In addition, they were

free of other neurodegenerative disorders such as vascular

dementia, Parkinson’s disease, dementia with Lewy bodies,

frontotemporal dementia, hippocampal sclerosis, progressive

supranuclear palsy, dementia lacking distinctive histology, multiple

system atrophy, motor neuron disease with dementia and

corticobasal degeneration. Included in the study was a cohort of

8 individuals (cases 1–8) with a mean age of 92.8 years (range: 90–

100 years) that were clinically assessed as non-demented (ND) as

shown in Table 1. On neuropathological examination these cases

contained sufficient AD amyloid plaque and neurofibrillary tangle

density to meet at least NIA-Reagan ‘‘intermediate’’ neuropath-

ological criteria for AD, and hence were classified as non-

demented high pathology controls (ND-HPC). A second cohort of

6 demented individuals (cases 10–15), with a mean age of 94.2

years (range: 90–96 years) were confirmed by neuropathological

examination as having at least NIA-Reagan ‘‘intermediate’’ AD

and were free of other neuropathological diagnoses (Table 1; see

below for additional information). The NFT score and Braak stage

as well as the scores for cerebral amyloid angiopathy (CAA), white

matter rarefaction (WMR) and apolipoprotein E (ApoE) genotype

were not considered in the selection of these cases. The age,

gender distribution, postmortem interval (PMI), brain weight, last

Mini-Mental State Examination (MMSE) score, ApoE genotype,

total plaque score, total tangle score, Braak stage, total WMR

score and total CAA score of each individual in the ND-HPC and

AD groups are presented in Table 1.

Neuropathological evaluation
Brain sections (40 mm thickness) were stained with Campbell-

Switzer, Thioflavine-S, Gallyas and hematoxylin and eosin (H&E)

to visualize amyloid deposits and NFT and the grade of WMR

(leukoaraiosis). The clinicopathological diagnosis of AD was

established by the presence of dementia and an NIA-Reagan

rating of at least ‘‘intermediate’’ in terms of neuritic plaque density

and Braak NFT stage [19]. Total plaque score for each brain was

obtained by estimating the density of all plaque types including

compact, neuritic, classical and diffuse revealed by Thioflavine-S

and Campbell Switzer silver stains. Plaque densities were

evaluated using the CERAD templates [20,21] as none, sparse,

moderate and frequent and reported numerically as 0, 1, 2 and 3,

respectively. Five regions were appraised: frontal, temporal,

parietal, hippocampal and entorhinal, to render a maximum

score of 15. The total NFT score was assessed in the same fashion

as described for the total plaque score, again using the published

CERAD templates for this purpose. The Braak stage (I-VI) was

estimated by the method described by Braak and Braak [22].

White matter rarefaction was evaluated in the frontal, temporal,

parietal and occipital lobes on one quarter of hemisphere sections

stained by H&E. The scores were none, mild (less than 25%

affected), moderate (25–50% affected) and severe (greater than

50% affected) and were converted into numeric scores of 0, 1, 2, 3,

yielding a maximum possible score of 12 [18]. The CAA score was

ranked in a similar fashion as none, mild, moderate and severe (0,

1, 2 and 3) estimated in the cortical areas of the frontal, temporal,

parietal and occipital lobes using Thioflavine-S staining. ApoE

genotypes were obtained using the technique of Hixson and

Vernier [23] on DNA isolated from cerebellar samples.

Ab, tau and a-synuclein ELISA quantification
All steps were performed at 4uC. Gray matter and white matter

were dissected from frozen frontal lobe tissue (100 mg) and

homogenized in 6 volumes (600 ml) of 20 mM Tris-HCl, 5 mM

EDTA, pH 7.8, protease inhibitor cocktail (PIC, Roche Diagnos-

tics, Mannheim, Germany) with a Teflon tissue grinder. The

homogenate was centrifuged in a TLA 120.2 rotor (Beckman) for

20 min at 435,000 6 g. The Tris-HCl-soluble supernatant was
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collected and total protein measured with the Micro BCA protein

assay kit from Pierce (Rockford, IL). The remaining pellet was

dissolved in 600 ml of 90% glass distilled formic acid (GDFA) with

an electric grinder (Omni TH, Kennesaw, GA) and incubated for

1 h. The GDFA homogenates were then centrifuged at 435,0006
g in a TLA 120.2 rotor for 20 min. The supernatant was collected

and dialyzed 3 times, 30 min each against deionized water then

twice for 1 h against 0.1 M ammonium bicarbonate and

lyophilized. The lyophilized material was reconstituted in 500 ml

5 M guanidine hydrochloride (GHCl), 50 mM Tris-HCl, pH 8.0,

PIC (Roche), shaken for 3 h, centrifuged at 435,000 6 g in a TLA

120.2 rotor for 20 min, the supernatant collected and total protein

determined with Pierce’s Micro BCA protein assay kit. Ab40,

Ab42, tau and a-synuclein were quantified with ELISA kits from

Invitrogen according the manufacturers’ instructions.

Tumor necrosis factor-a (TNF-a) ELISA quantification
All steps were performed at 4uC and have been described in

detail [24]. Briefly, frozen frontal lobe gray matter (100 mg) was

homogenized in 1 ml 20 mM HEPES, 1.5 mM EDTA, pH 7.4,

PIC (Roche), centrifuged at 3000 6 g and the supernatant

centrifuged again at 40,000 6 g (TLA 120.2 rotor). The resulting

supernatant was submitted to Pierce’s Micro BCA protein assay

for total protein determination. A kit from PromoKine (Heidel-

berg, Germany) was used to quantify human TNF-a levels

following the manufacturer’s instructions.

CD200 ELISA
Frozen frontal lobe gray matter samples were extracted in 5

volumes of RIPA buffer (25 mM Tris-HCl (pH 7.6), 150 mM

NaCl, 1% sodium deoxycholate, 0.1% SDS) containing Halt

proteinase and phosphatase inhibitor mixture (Thermo Scientific,

Pierce) for 30 min. The supernatant resulting from centrifugation

(18,000 6 g/30 min) was assayed for total protein concentration.

The CD200 ELISA used two monoclonal antibodies to CD200

(R&D Systems, Minneapolis, MN). The capture antibody was

used at 1 mg/ml and the biotinylated detection antibody was used

at 50 ng/ml. Samples were added to plates at 1.5 mg/well (100 ml)

diluted in phosphate buffered saline (PBS) containing 0.05%

Tween-20 (PBST) and 1% BSA (sample diluent). Plates were

blocked with sample diluents, the samples and standards incubated

on plates for 2 h at room temperature and the plates washed using

an automated plate washer. The detection antibody was added

and incubated for 2 h. After further washing, bound immune

complexes were detected by incubation in 1:200 dilution of

Streptavidin-HRP (R&D Systems). Plates were developed with

tetramethylbenzidine (TMB) ELISA substrate for 20 min and after

the reaction was terminated with 1 M sulfuric acid and the

absorbance of each well read by spectrophotometry at 450 nm. A

standard curve was constructed using values of diluted CD200

recombinant purified protein (R&D Systems). Amounts of CD200

protein in each sample were calculated from the standard curve.

Synaptophysin ELISA quantification
Synaptophysin protein concentrations were measured in each

sample using an ELISA. Gray matter samples (frozen frontal lobe)

were extracted in 10 volumes of RIPA buffer (Thermo Scientific),

centrifuged at 18,000 6 g for 30 min and the supernatants

adjusted to 15 mg/ml protein concentration. Plates were coated

with 1:1000 dilution of monoclonal antibody to synaptophysin

(SP-17 – Covance Research Products, Princeton, NJ) as capture

antibody. Samples were applied to ELISA plates along with

Table 1. Oldest-old BSHRI Study Subject Data.

ND-HPC
Expired
age (y) Gender

PMI
(h)

Brain
Weight
(g)

Last MMSE
score ApoE GT

Total plaque
score

Total tangle
score

Braak
stage

Total WMR
score

Total CAA
score

1 91 M 3.0 1050 - 3/4 10.75 5 III 0 0

2 100 M 2.5 1160 29 3/3 14 8 IV 1 8

3 90 F 4.3 975 28 3/3 10.5 5 III 1 0

4 94 M 3.5 1100 27 3/3 15 10.5 IV 10 9

5 90 F 2.5 966 25 3/3 13.5 8 IV 2 1

6 92 M 3.2 1300 27 2/4 14 12 V 1 8

7 91 M 4.3 1150 29 2/3 14.5 8.5 IV 1 1

8 94 M 2.5 1050 29 3/3 15 12 IV 2 1

Mean 92.8 3.2 1094 27.7 13.4 8.6 2.3 3.5

AD
Expired
age (y) Gender

PMI
(h)

Brain
Weight
(g)

Last MMSE
score ApoE GT

Total plaque
score

Total tangle
score

Braak
score

Total WMR
score

Total CAA
score

10 95 F 3.2 1040 16 3/4 12.2 10 VI 0 8

11 90 M 14.0 1300 19 3/3 11 6.25 IV 7 2

12 96 F 3.0 1000 18 3/3 13.75 8 IV 1 6

13 96 F 3.0 900 5 2/3 10 15 VI 12 12

14 96 F 3.3 960 13 3/4 11.5 15 VI 10 9

15 92 F 2.8 900 13 4/4 14.5 15 VI 3 2

Mean 94.2 4.9 1017 14.0 12.2 11.5 5.5 6.5

ND-HPC = non-demented high pathology controls; AD = Alzheimer’s disease; y = years; M = male; F = female; PMI = postmortem interval; h = hours; g = grams;
MMSE = mini-mental state examination; ApoE = apolipoprotein E; GT = genotype; WMR = white matter rarefaction; CAA = cerebral amyloid angiopathy.
doi:10.1371/journal.pone.0027291.t001
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dilutions of recombinant synaptophysin standard (AbNova,

Taipei, Taiwan). Samples and standard were incubated overnight

at 4uC. Plates were washed and bound synaptophysin quantified

by sequential incubations with detection antibody (Millipore,

Temecula, CA), horseradish peroxidase (HRP) labeled anti-rabbit

immunoglobulin and TMB ELISA substrate. Reactions were

terminated after 30 min with 1 M sulfuric acid and absorbances

measured at 450 nm. The concentration of synaptophysin in each

sample was calculated by comparison with the standard curve.

GFAP ELISA
Sample preparation was the same as for the CD200 ELISA

samples. The glial fibrillary acidic protein (GFAP) ELISA used a

pool of monoclonal antibodies to GFAP as capture antibodies

(0.25 mg/ml; BD Biosciences) and a rabbit polyclonal to GFAP as

detection antibody (1:10,000 dilution - DAKO). Samples were

added to plates at 15 ng/well (100 ml), diluted in PBST and 1%

skimmed milk (sample diluent). Plates were blocked with sample

diluent and the specimens and standards were incubated on plates

for 2 h at room temperature and washed using an automated

washer. The detection antibody was added and incubated for 2 h.

After further washing, bound immune complexes were detected by

incubation in 1:20,000 dilution of HRP labeled anti-rabbit

immunoglobulin (Pierce). Plates were developed with TMB ELISA

substrate and after the reaction was terminated with 1 M sulfuric

acid, the absorbance of each well read by spectrophotometry at

450 nm. A standard curve was constructed using values of diluted

GFAP purified protein (EMD Merck). Amounts of GFAP protein

in each sample were calculated from the standard curve.

ApoE ELISA quantification
A human ApoE ELISA was performed as previously described

[25]. ELISA plates were coated with goat anti-human ApoE

(1:2000 dilution in PBS, Millipore), washed 1X with PBST,

blocked (PBST, 1% BSA, 50 mM glycine, PIC (Roche)), then

washed 3X with PBST. Tris-soluble and GHCl-soluble gray

matter samples were prepared as described for Ab, tau and a-

synuclein ELISA quantification (see above) and were diluted

1:2500 in blocking buffer. RIPA and 5% SDS soluble samples

from BSHRI were prepared as described in the Western blot

analysis section (see below). RIPA and 5% SDS soluble samples

were diluted 1:5000 and 1:10,000 respectively in blocking buffer.

Samples (100 ml/well) were then added to the ELISA plates and

incubated overnight at 4uC. Plates were washed 4X with PBST

and incubated for 2 h at 4uC with 100 ml/well of detection

antibody (biotinylated goat anti-ApoE, 1:2000 dilution in blocking

buffer, Meridian Life Sciences). The plates were washed 4X with

PBST, incubated for 1 h at 4uC with 100 ml of Streptavidin–HRP

reporter (1:20000 dilution in PBST, Invitrogen), washed 4X with

PBST, incubated with 100 ml of TMB substrate for 8 min, stopped

with 100 ml of 1 N sulfuric acid and read at 450 nm.

Western blot analysis
All steps were performed at 4uC (except for 5% SDS

homogenates) and all materials were from Invitrogen and

chemicals from Sigma unless otherwise noted. One-hundred mg

of frozen gray matter from the frontal lobe was homogenized in

1 ml of RIPA buffer (Sigma) containing PIC and PhosSTOP

(phosphatase inhibitor cocktail, Roche) using an Omni TH electric

grinder. The samples were centrifuged at 14,0006g for 20 min in

a Beckman 22R centrifuge, the supernatant was recovered and

total protein determined with a Micro BCA protein assay (Pierce).

Alternatively, 100 mg of gray matter was homogenized in 1 ml of

5% SDS, 5 mM EDTA, 20 mM Tris-HCl, pH 7.8 with the Omni

TH electric grinder. The samples were centrifuged as described

above and Pierce’s Micro BCA protein assay kit used the measure

total protein. A total of 10 mg, 20 mg or 40 mg of total protein was

brought up to 15 ml with NuPage 2XLDS sample buffer, 50 mM

dithiothreitol (Sigma) then incubated for 10 min at 80uC. The

proteins were separated on 15 well 4–12% Bis-Tris gels with

NuPage 1XMES run buffer supplemented with NuPage antiox-

idant. The Kaleidoscope prestained marker (Bio-Rad, Hercules,

CA) was loaded onto each gel as a molecular weight standard. The

proteins were then transferred onto nitrocellulose membranes

(0.45 mm pore) with NuPage transfer buffer and 20% methanol

(Pharmco-Aaper). The membranes were blocked in 5% Quick-

Blocker (G-Biosciences) in PBS (EMD Chemicals, Gibbstown, NJ),

0.5% Tween 20. Primary and secondary antibodies were diluted

in the same blocking buffer. Table 2 lists the antibodies applied

for these experiments. SuperSignal WestPico Chemiluminescent

(Pierce) substrate, CL-Xpose film (Pierce) and Kodak GBX

developer and fixer were used to detect the proteins. To control

for any inadvertent differences in total protein loading, antibodies

were stripped from the membranes with RestoreTM Western Blot

Stripping Buffer (Pierce). After washing, the membranes were re-

blocked and re-probed with anti-mouse or anti-rabbit actin

antibody (Table 2). A GS-800 calibrated densitometer (Bio-

Rad) and Quantity One software (Bio-Rad) were used to scan and

analyze the films. The trace quantity feature in Quantity One was

used to appraise the density of each band and refers to the

measured area under each band’s intensity profile curve. The units

are in optical density (OD) x mm.

Results and Discussion

A large number of studies have compared the structural and

biochemical differences that exist between AD and ND control

individuals with minimal AD pathology. Our study represents an

initial exploration into the molecular and neuropathological

conditions that prevail in the oldest-old AD and ND-HPC, which

are of paramount importance in understanding the etiology of AD.

The study involved uncomplicated AD cases with overt dementia

and high amyloid plaque burdens. In a similar fashion we selected

as a control population, cases with high MMSE scores and a high

amyloid plaque load (ND-HPC). In both groups we allowed the

rest of the neuropathological AD lesions and genetics to behave as

unknown variables. In this investigation we are trying to address

some basic questions such as 1) Is AD dementia caused by

neurotoxic amyloid plaques and NFT? 2) Are plaques and NFT

the result of the aging process in the oldest-old? 3) Do the ND-

HPC have some specific increase or decrease molecular expression

that confers protection from dementia?

I. Human subjects and Neuropathology analyses
The average age of the oldest-old groups was 93 years for the

ND-HPC (n = 8) and 94 years for the AD individuals (n = 6). In

reference to gender distribution there was a preponderance of

males in the ND-HPC (6 males and 2 females) with the opposite in

the AD group (5 females and 1 male) (Table 1). The postmortem

interval was 3.2 h and 4.9 h for the ND-HPC and AD groups,

respectively. A total plaque numeric score was calculated which

accounted for the occurrence of all types of plaques (compact,

neuritic, classical and diffuse) and evaluated separately for each of

the four cerebral lobes. In addition, an overall neuritic plaque

density was calculated according to the CERAD guidelines as the

highest density achieved in any of the four lobes (Table 1). As the

oldest-old ND-HPC and AD subjects were selected for abundant

amyloid plaque loads, their total plaque scores were similar 13.4

Biochemical Bases of Cognitively Successful Aging
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and 12.2 for ND-HPC and AD cases, respectively. The relative

plaque densities between these two cohorts are illustrated in

Figure 1. From a neuropathological point of view, the ND-HPC

and AD cases were purposefully selected for abundant amyloid

plaques. However, the load of vascular amyloid (total CAA score),

which was not used in the selection of cases, was on the average

almost 2-fold more abundant in AD than in the ND-HPC

(Table 1), suggesting that a higher degree of microvascular

dysfunction and perfusion compromise was present in the

demented cohort. The ApoE allelic distribution in the ND-HPC

and AD groups was: ApoE2 = 0.125, ApoE3 = 0.75 and

ApoE4 = 0.125, and ApoE2 = 0.08, ApoE3 = 0.58 and

ApoE4 = 0.33, respectively (Table 1).

In reference to the NFT distribution, the AD group demon-

strated a more advanced Braak stage than the ND-HPC

(Table 1). Intriguingly, the ND-HPC showed no NFT in the

frontal lobe (data not shown), while in the AD group 4 out of 6

cases harbored NFT in this region (Figure 2, 10F, 13–15F).
Appraisal of NFT in the hippocampus revealed moderate to

abundant levels in both the ND-HPC and AD groups, with the

exception of AD case # 11 and ND-HPC cases # 2 and # 8

(Figure 2, 1-8H, 10–15H) in which the NFT were scarce.

Disparities were likewise evident for total cerebral NFT scores,

which were about 25% higher in the AD subjects than in the ND-

HPC (Table 1). It is possible that in the oldest-old ND-HPC the

absence of NFT in the frontal cortex allows for a better

performance in terms of executive function, strategic planning

and cognitive tasks. In addition, a decreased tangle density

suggests fewer injured neurons, correspondingly less brain atrophy

and better brain function in the oldest-old ND-HPC [5,26,27].

Recent observations in the transgenic mice Tg4510 strain,

carrying the frontotemporal dementia tau P301L mutation,

suggest that NFT are a marker rather than the direct cause of

neuronal dysfunction and death. In this model, tangle deposition is

apparently preceded by caspase activation which has been

associated with acute apoptotic death [28]. Our own electron

microscopic observations on AD brain biopsies suggest NFT are

derived from collapsing mitochondria and other intraneuronal

pathological organelles, supporting the contention that NFT are

the result of damaged cytomembranes [29]. Chemical analysis of

the protease resistant core of paired helical filaments revealed

associated glycolipids [30,31] that could originate from membrane

walls.

A more pronounced difference was observed in the WMR

category where the mean values for the ND-HPC and AD were

2.3 and 5.5 (out of a maximum total of 12), respectively (Table 1).
Cerebral WMR, also known in the imaging literature as

‘‘leukoaraiosis’’, ‘‘white matter lucencies’’ on CT, ‘‘white matter

Table 2. Primary and Secondary Antibodies Used in Western Blots.

Primary Antibody
(WB) Antigen specificity or immunogen

Secondary
antibody Company/Catalog #

22C11 APP aa 66–81 M Millipore/MAB348

CT9APP Last 9 aa of APP R Millipore/AB5352

4G8 Ab aa 17–24 M Covance/SIG-39220

6E10 Ab aa 1–16 M Covance/SIG-39320

A11 Sequence independent oligomers R Invitrogen/AHB0052

BACE1 BACE1 aa 485–501 R Abcam/ab2077

IDE (BC2) Rat IDE aa 97–273 R Provided by Dr. E. Castaño

Neprilysin Rat neprilysin R Millipore/AB5458

Notch-1 NICD N-terminal 14 aa R Millipore/AB5709

Tau (HT7) Tau aa 159–163 M Pierce/MN1000

PHF-tau AT8 pTau Ser202 M Pierce/MN1020

PHF-tau AT180 pTau Thr231 M Pierce/MN1040

a-synuclein Rat synuclein-1 aa 15–123 M BD Transduction Laboratories/610786

ApoE Recombinant ApoE G Millipore/AB947

ApoJ Recombinant ApoJ G Millipore/AB825

VEGF165 Recombinant human VEFG165 R Millipore/07-1419

PEDF Human PEDF R BioProducts MD/AB-PEDF1

BDNF/proBDNF Internal region of BDNF R Santa Cruz/sc-546

TDP-43 aa residues surrounding Ala260 of human TDP-43 R Cell Signaling Technology/3449

Synaptophysin Rat retina synaptophysin M Millipore/MAB368

S100B C-terminal synthetic peptide of human S100B R Abnova/PAB13687

Actin Ab-5 Clone C4 M BD Transduction Laboratories/A65020

Actin N-terminus of human a-actin R Abcam/Ab37063

APP, amyloid-b precursor protein; aa, amino acid; BACE, b-site APP cleaving enzyme; IDE, insulin degrading enzyme; NICD, Notch-1 intracellular domain; PHF, paired
helical filament; ptau, phosphorylated tau; VEGF, vascular endothelial growth factor; PEDF, pigment epithelium derived factor; BDNF, brain derived neurotrophic factor;
TDP-43, TAR DNA-binding protein 43; ApoE, apolipoprotein E; ApoJ, apolipoprotein J; M, HRP conjugated AffiniPure goat-anti mouse IgG (catalog # 111-035-144,
Jackson Laboratory); R, HRP conjugated AffiniPure goat-anti rabbit IgG, (catalog # 111-035-146 Jackson Laboratory); G, HRP conjugated AffiniPure bovine-anti goat IgG
(catalog #805-035-180).
doi:10.1371/journal.pone.0027291.t002
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hyperintensities’’ on MRI or ‘‘small vessel ischemic disease’’

probably has at least two etiologies. It may represent secondary

white matter degeneration occurring after primary cortical gray

matter disease or ‘‘incomplete infarction’’ of white matter due to

circulatory insufficiency. The ischemic mechanism has received

the most attention, particularly in the imaging literature, where it

has been hypothesized that WMR results from brain hypoperfu-

sion. This is thought to particularly affect the periventricular areas

that are supplied by the terminal branches of the deep perforating

arteries. In a recent study, cardiac output (ml of ejected blood per

min) and the severity of white matter hyperintensities were found

to be inversely correlated, after adjustment for confounding factors

[32], suggesting that cardiovascular system decline is associated

with loss of axons and myelin. Furthermore, in the elderly,

decreased cardiac index (cardiac output/body surface area) was

correlated with reductions in brain volume which may be

associated with decreased brain perfusion and could potentially

participate in the pathogenesis of AD [33]. Examination of AD

and ND age-matched control individuals demonstrated that in the

former group there was significant diastolic dysfunction revealed

by impaired transmitral flow efficiency of diastolic filling [34].

Intriguingly, carotid duplex ultrasound showed a significant

decrease in diastolic blood flow velocities (cm/sec) in the common

carotid, carotid bulb and internal carotid artery in AD patients

when compared to age-matched NDC [35]. In addition, the

cumulative effects of subclinical diastolic and systolic dysfunction

and decreased cardiac output prior to overt cardiac failure may

result in sustained brain hypoperfusion and consequent structural

and functional changes conducive to dementia [32]. Cardiovas-

cular diseases such as atherosclerosis of the cerebral arteries and

diffuse brain microvascular disease in which hypertension and

hypoperfusion play an important role, appear to be more

prevalent in younger AD cases than in ND age-matched controls

[35,36]. Furthermore, a heavy vascular amyloid burden in the

Figure 1. Amyloid plaques stained by the Campbell-Switzer technique. The histological fields are representative of the amyloid plaque
burden shown in 40 mm coronal sections of the frontal lobe. The numbers on the top right corners correspond to the case identification numbers
given in Table 1. Scale bars = 100 mm.
doi:10.1371/journal.pone.0027291.g001
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cerebral cortex of AD patients causes severe perfusion disturbanc-

es in the white matter, due to blockage of the periarterial spaces

that drain the interstitial fluid, resulting in dilation of the white

matter perivascular spaces (etat criblé), hydrodynamic stagnation

of extracellular fluid and retention of noxious substrates [37].

Support for a secondary white matter loss in AD comes from

studies that have found a negative correlation between NFT load/

Braak stage and white matter cell count and blood vessel count

[38].

II. ELISA quantifications
Immunoassays for Ab40 and Ab42, tau and a-synuclein were

performed for all ND-HPC and AD cases, as illustrated in the plots

shown in Figure 3. The enormous range of variability that exists

among human subjects is reflected in the scatter plots of Figure 3.

In conformity with the neuropathological observations, quantita-

tion of gray matter soluble and insoluble Ab peptides demon-

strated no statistical differences with the exception of Ab42. In the

Tris-soluble gray matter samples (Figure 3B), the ND-HPC

Figure 2. Neurofibrillary tangles stained by the Gallyas technique. The histological fields are representative of the neurofibrillary tangle
abundance shown in 40 mm coronal sections of the frontal lobe and hippocampus. The numbers on the top right corners correspond to the case
identification numbers given in Table 1 and the letters F and H represent frontal cortex and hippocampus, respectively. Scale bars = 100 mm.
doi:10.1371/journal.pone.0027291.g002
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demonstrated a greater mean value of Ab42 (ND-HPC = 177 pg/

mg total protein; AD = 89 pg/mg total protein; p = 0.025). The

white matter Ab42, solubilized with GDFA/GHCl, demonstrated

significant differences (p = 0.052) between the ND-HPC and the

AD groups (Figure 3F). Intriguingly, the Ab42 levels were

significantly higher in the ND-HPC gray matter and white matter

versus the AD cases (Figure 3B and 3F), even though they were

not demented. A comparison between ND-HPC and AD white

matter Ab40 was non-significant (p = 0.326; Figure 3E), in spite

of the fact that the 2 cases that had elevated Ab40 in the gray

matter (# 10 and # 14, Table 1) also contained exaggerated

quantities of this peptide in the white matter. Immunoassay

quantification of total tau and a-synuclein (Figure 3G, 3H, 3I
and 3J) did not show any significant differences between the two

groups. Setting aside the increased load of CAA, the presence of

similar or higher Ab in the ND-HPC neuropathological and

biochemical Ab brain parenchymal burdens suggest that the

abundance of amyloid plaques alone is not directly responsible for

the emergence of AD dementia.

The amounts of gray matter inflammatory TNF-a cytokine

were not significantly different between the ND-HPC and AD

cases (Figure 4A). In addition, as shown in Figure 4B, the

immunosuppressive protein CD200 was decreased in the AD

compared to the ND-HPC, although the levels did not reach

statistical significance (p = 0.362). CD200 is a highly glycosylated

cell surface protein whose only known function is as a ligand for

CD200 receptor. This difference may in part be responsible for

better neuroprotection. CD200 is expressed primarily in neurons

and oligodendrocytes [39], but has also been identified in astroglia

and endothelial cells [40]. In the human brain, CD200 as well as

its microglia receptor are decreased in those regions with

abundant AD pathology. The synaptic vesicle marker synapto-

physin was not significantly different between AD and ND-HPC

when determined by ELISA (Figure 4C, p = 0.176) or Western

blots (see below for discussion). Likewise, GFAP did not show any

significant differences between the two cohorts under investigation

(Figure 4D). This intermediate filament protein is the principal

structural molecule of astrocytes, the most abundant cell type in

the CNS and main homeostatic modulator of neuronal function,

where it regulates motility and shape and is substantially expressed

as a response to trauma, chemical injury and neuroinflammation

[41,42]. GFAP has been found to be increased as the result of

astrogliosis in dementia [43]. Astrogliosis is probably present in

both oldest-old groups examined in the current study due to the

profuse amyloid and NFT insults. GFAP has the distinction of

being one of the most abundant proteins in the brain and can

accumulate an enormous quantity of post-translational modifica-

tions such as phosphorylation and N-and O-glycosylations

resulting in a complex array of isoforms. This intricacy, in the

realm of AD and ND conditions, has been elegantly explored

through proteomic analysis by Korolainen et al. [44].

Quantitative ELISA and Western blot (see below) analyses

demonstrated reduced ApoE levels in AD compared to the ND-

HPC. We analyzed Tris, RIPA, 5% SDS and GDFA/GHCl

soluble ApoE by ELISA (Figure 4F, 4G, 4H, 4I, respectively).

In agreement with Western blot data, ApoE was significantly

reduced in Tris- and RIPA-buffer soluble fractions by ,20% in

AD compared to ND-HPC (Figure 4F and 4G). The 5% SDS-

soluble ApoE was reduced as well, but did not reach significance.

Interestingly, ApoE tended to be higher in the GDFA/GHCl-

soluble fractions in AD samples compared to ND-HPC, but also

did not reach significance (see Western blot section for additional

discussion of ApoE).

III. Western Blots appraisals
A battery of antibodies (Table 2) was utilized to assess proteins

that have been found to be altered in AD. For a final quality

control of total protein loading, actin was used as an internal

standard as shown at the bottom of each of the Western blots

(Figures 5, 6, and 7). Interestingly, the total protein values

present in ,100 mg of wet weight per ml in each of the individual

specimens utilized was 14% lower in the AD group. Although this

difference was not statistically significant (p = 0.09), it nevertheless

suggests a trend in which the ND-HPC have slightly more protein

per unit of brain weight than the AD specimens. This finding may

also be an indication of the general loss of protein and

concomitant increase in water content in the gray matter of AD

subjects resulting from a chronic and emaciating neurodegener-

ative disorder.

APP/Ab, protease-related proteins, tau and a-

synuclein. Figure 5 illustrates the results obtained by

probing with antibodies related to APP/Ab processing and

metabolism which included: 22C11, CT9APP, 4G8, 6E10, A11,

b-site APP cleaving enzyme (BACE-1), insulin degrading enzyme

(IDE), neprilysin and Notch-1. Significant differences between the

ND-HPC and AD groups were only observed with the CT9APP

antibody for the full length APP 110 kDa protein and 35 kDa

peptides (p = 0.010 and 0.053, respectively). Likewise, the 6E10

antibody detected differences between the two cohorts in the full

length APP 110 kDa protein (p = 0.001) while the 4G8 antibody

showed no significant deviations. The results suggest that relative

to the AD values, the ND-HPC APP holoprotein was elevated, as

detected by the CT9APP and 6E10 antibodies, suggesting greater

abundance of important APP-derived peptides such as sAPPa,

sAPPb, APP-carboxy-terminal fragment and the APP intracellular

domain which have multiple neurotrophic roles, intracellular

adaptor protein interactions and transcriptional functions [45–47].

However, differences in APP were not demonstrated with the 4G8

and 22C11 which may be explained by different antibody affinities

or the fact that the 22C11 also detects APLP2 [48]. Another Ab
related molecule which also showed differences with specific

antibodies between the two groups was the Ab*56 oligomer

detected by the A11 antibody that targets a variety of amyloids

rich in b-sheets (p = 0.005). To explain the pathogenesis of AD,

emphasis has been given to the presence of the Ab*56 [49], an

apparently soluble dodecameric Ab aggregate with a ,56 kDa Mr

that can be detected by the A11 antibody. Although this oligomer

may bolster the contention that aggregated Ab acts as a specific

neurotoxic molecule in AD, this putative soluble oligomeric Ab
has not been rigorously characterized in the human brain. In

addition, the A11 antibody is not specific for Ab since it also

detects other oligomeric b-sheet conformations in a diverse

number of amyloid proteins [50].

Additionally, the amounts of the b-secretase (BACE-1), a

molecule extensively post-translationally modified in its mature

form [51], are increased in the ND-HPC (70 kDa peptide;

p = 0.052). Others have reported BACE-1 to be increased in AD

brains (reviewed in [52]). Of the Ab related proteolytic enzymes

only the low molecular mass form of IDE 110 kDa was

significantly lower (p = 0.015) in ND-HPC, while neprilysin and

the c-secretase target multifunctional molecule Notch-1 demon-

strated no differences between the 2 cohorts of nonagenarians.

The significant rise in IDE in AD versus ND-HPC could result in

an elevated degradation of insulin thereby making glucose less

available for energy metabolism. Alternatively, in AD, the relative

enhancement of IDE may be a reflection of an inactivated enzyme

by monomeric/dimeric soluble Ab peptides [53]. Interestingly, in

comparison with age-matched controls, AD brain homogenates
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and microvessels have a lower IDE activity [54–56], which may

result from oxidation by reaction with 4-hydroxy-2-nonenal

[57,58]. On the other hand, these findings may simply reflect

better brain structural and metabolic conditions in the nonage-

narian ND-HPC.

In conformity with Ab immunoassay observations, Western

blots of tau and a-synuclein did not show significant deviations

between AD cases and ND-HPC (Figure 6) although the 40–

58 kDa tau isoforms had borderline significance (p = 0.058).

Phosphorylated tau was detected with PHF-tau AT8 and PHF-

tau AT180 antibodies and was only visible in AD # 13 and # 14

cases (data not shown). A previous study also found that AT8

immunoreactivity was limited to advanced AD stages [59].

Apolipoproteins. Of the two lipoproteins studied, ApoE and

ApoJ (Figure 6), only the former demonstrated a statistical

difference between the two populations studied, being significantly

Figure 4. ELISA scatter plots of frontal lobe gray matter proteins. A) TNF-a homogenized in HEPES buffer; B) CD200 homogenized in RIPA
buffer; C) Synaptophysin homogenized in RIPA buffer; D) GFAP homogenized in RIPA buffer; F) ApoE homogenized in Tris buffer; G) ApoE
homogenized in RIPA buffer; H) ApoE homogenized in 5% SDS buffer; I) ApoE homogenized in GDFA/GHCl. All values were adjusted for total protein.
The statistical analysis used was an unpaired, 2-tailed t-test. TNF-a = tumor necrosis factor-alpha; GFAP = glial fibrillary acid protein; ApoE =
apolipoprotein E; GDFA = glass distilled formic acid; GHCl = guanidine hydrochloride; HPC = non-demented high pathology controls; AD =
Alzheimer’s disease.
doi:10.1371/journal.pone.0027291.g004

Figure 3. ELISA scatter plots of Ab40, Ab42, tau and a-synuclein levels observed in the frontal lobes of oldest-old HPC and AD cases.
A-D and G-J gray matter included 8 ND-HPC and 6 AD cases. The white matter analysis in E and F also contained 8 ND-HPC and 6 AD cases. All values
are adjusted for total protein. The statistical analysis used was an unpaired, 2-tailed t-test. Ab = amyloid-beta; GM = gray matter; WM = white
matter; GDFA = 90% glass distilled formic acid; GHCl = 5M guanidine hydrochloride; HPC = non-demented high pathology controls; AD =
Alzheimer’s disease.
doi:10.1371/journal.pone.0027291.g003
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diminished in the AD group: (ApoE 34 kDa and 30 kDa peptides;

p = 0.006 and 0.051, respectively). Both Western blot and ELISA

data indicate that both the native ApoE and its ,30 kDa

degradation product are decreased in AD, potentially impacting

the multiple functions of this protein such as the distribution of

lipids, neurite outgrowth, neurodegeneration, tau phosphory-

lation, oxidative activity, lysosomal function, cholesterol efflux

and amyloid deposition and clearance [60]. There were no

correlations between the ApoE genotype and the amounts of this

molecule, although our sample size was too small to reach

meaningful conclusions. The ApoEe4 genotype has been shown

repeatedly to be the greatest known genetic risk factor for sporadic

AD, yet the exact mechanism of its contribution to AD has not

been elucidated. Cross-sectional data suggest that significantly

Figure 6. Western blots of tau, ApoE, a-synuclein and ApoJ. A total of 20 mg of total protein was loaded into each lane for the ApoE blot,
while all other blots contained 40 mg of total protein. Unpaired, 2-tailed t-tests were used for statistical analysis. The primary and secondary antibody
descriptions and sources are given in Table 2. The relative abundance of the proteins were densitometrically estimated. Each blot was reprobed with
actin as a loading control, as shown at the bottom of each primary antibody Western blot. The numbers to the left of the Western blots are the
molecular weight in kDa. HPC = non-demented high pathology controls; AD = Alzheimer’s disease; exp = exposure.
doi:10.1371/journal.pone.0027291.g006

Figure 5. Western blots of APP/Ab metabolism-related molecules. Five % SDS was used to homogenize the brain tissue for the CT9APP, 4G8
and 6E10 antibody blots, while the remaining blots used RIPA buffer as homogenizing medium. A total of 40 mg of total protein was loaded into each
lane. Unpaired, 2-tailed t-tests were used for statistical analysis. The primary and secondary antibody descriptions and sources a given in Table 2. The
relative abundance of the proteins were densitometrically estimated. Each blot was reprobed with actin as a loading control, as shown at the bottom
of each primary antibody Western blot. The numbers to the left of the Western blots are the molecular weight in kDa. HPC = non-demented high
pathology controls; AD = Alzheimer’s disease; exp = exposure.
doi:10.1371/journal.pone.0027291.g005
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decreased plasma ApoEe4 levels correlate with AD pathology

levels assessed by PiB-PET [61]. ApoE levels have been shown to

be reduced in ApoE mouse models of amyloidosis as well as in AD

human subjects [25]. It has also been suggested that ApoEe4 is

degraded at a higher rate than other variants [62]. We

demonstrate small, but significant decreases in Tris, RIPA- and

5% SDS-soluble ApoE in AD cases, in both Western blot and

immunoassay, when compared to ND-HPC. Interestingly, we

found a trend towards higher ApoE in the GDFA/GHCl-soluble

fractions by ELISA in AD samples compared to ND-HPC

(Figure 4I). Statistical significance was not reached due to the

amount of variability in these fractions. Since ApoE co-localizes

with Ab in CAA [63], it is possible that decreased soluble ApoE in

AD fractions is the result of its selective sequestration by vascular

amyloid deposits. Similarly, the increased levels of insoluble ApoE

in AD versus ND-HPC may result from the 2-fold more abundant

vascular amyloid observed in our AD oldest-old cases. Moreover,

recent investigations suggest that the ApoEe4 isoform is less able to

clear Ab from the brain, thus contributing to dementia [64].

Neurotrophic and vascular-related factors. Biochemical

alterations in the AD brain’s circulatory system promote changes

in vascular structure, blood-brain barrier disturbances and

ultimate microvessel demise [65–67]. These alterations

prompted our investigation of vascular endothelial growth factor

(VEGF) and pigment epithelium-derived factor (PEDF). As

depicted in Figure 7, the Western blots/scanning densitometry

results obtained by specific antibodies to VEGF and PEDF

demonstrated significant differences between the ND-HPC and

AD groups for the 32 kDa peptide (p = 0.017) and 50 kDa peptide

(p = 0.003), respectively. The specific immunohistochemical

reactivity of VEGF has been found to be elevated in AD where

it has been localized to astrocytes, microvessels and amyloid

Figure 7. Western blots of VEGF, PEDF, BDNF, TDP-43, synaptophysin and S100B. Forty mg of total protein was loaded onto VEFG, BDNF
and TDP-43 acrylamide gels. The PEDF and synpaptophysin blots contained 20 mg and 10 mg of total protein, respectively. Unpaired, 2-tailed t-tests
were used for statistical analysis. The primary and secondary antibody descriptions and sources are given in Table 2. The relative abundance of the
proteins were densitometrically estimated. Each blot was reprobed with actin as a loading control, as shown at the bottom of each primary antibody
Western blot. The numbers to the left of the Western blots are the molecular weight in kDa. HPC = non-demented high pathology controls; AD =
Alzheimer’s disease; exp = exposure.
doi:10.1371/journal.pone.0027291.g007
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plaques [68–70]. In the present investigation the pro-angiogenic

VEGF was significantly decreased in AD cases relative to ND-

HPC. The relative increase of this factor in the ND-HPC may

reflect its neuroprotective effects when confronted with brain

hypoperfusion, glucose deprivation [71–73] and the anti-

angiogenic activity of Ab [74]. The decreased levels of VEGF

are in contrast with the concomitant increase of the anti-

angiogenic PEDF in our AD specimens, a factor that naturally

decreases in normal aging [75,76]. In the AD brain, PEDF has a

strong immunoreactivity in cortical neurons and astrocytes. This

elevation may be explained as a defense response in AD, since

PEDF has potent anti-inflammatory, anti-oxidant, anti-

thrombotic, and neuroprotective properties [77–81]. However,

an increase in PEDF may also have a negative function by

preventing blood vessel formation and inducing apoptosis in

proliferating endothelial cells [82–85], eventually leading to

ischemia and neurodegeneration. VEGF and PEDF apparently

have paradoxical functions on the microcirculation, since capillary

permeability is increased by VEGF and inhibited by PEDF [86].

The imbalance between VEGF and PEDF has also been observed

in other human diseases [87–91]. Interestingly, in two previous

proteomic studies of CSF biomarkers, performed in our

laboratory, in which neuropathologically confirmed AD and ND

cases were examined by 2-D electrophoresis proteomic

methodologies, PEDF was significantly increased in the CSF of

an AD pool [92,93].

Brain-derived neurotrophic factor (BDNF) is a powerful growth

factor that stimulates neuronal function, prevents cell death in

adulthood and is thought to be deficient in AD. Administration of

BDNF into mouse models of AD, aged rats and lesion-induced

primate models apparently restored learning and memory and

prevented or delayed neuronal death (reviewed in [94]), suggesting

BDNF as a good candidate for neurodegenerative disease clinical

trials. However, investigations of BDNF levels in patients with AD

and deletion studies of BDNF in mice have been contradictory

(reviewed in [95]). In our Western blots, the 32 kDa N-

glycosylated and glucosulfated forms of the pro-BDNF yielded

no significant differences between AD cases and ND-HPC. This

molecule is normally cleaved to yield the mature 14 kDa protein

that was faintly visible in our oldest-old population. Of the 4 bands

detected by the BDNF antibody only the 28 kDa yielded

significant differences between AD and ND-HPC being increased

in the former group (Figure 7; p = 0.009). This molecule may

represent a truncated form of pro-BDNF that is aberrantly

processed [96].

Multifunctional molecules. TDP-43, an important molecule

with multifunctional RNA binding functions, apparently plays an

important role in several neurodegenerative disorders, including

AD, by generating intracellular inclusions [97,98]. It is normally

found in the nucleus, but under pathological conditions, moves to

the cytoplasm where it is ubiquitinated, phosphorylated and

cleaved to generate C-terminal fragments (reviewed in [99]).

Interestingly, this molecule is elevated in traumatic brain injury

[100]. No statistical differences between the two groups were

detected for the transcriptional factor TDP-43 although half of the

AD cases did not have detectable TDP-43, while this was true in

only two of the 8 ND-HPC (Figure 7). All groups had TDP-43

fragments [101,102], including the C-terminal 35 kDa which was

marginally elevated in AD (Figure 7, p = 0.073).

Similarly the presynaptic vesicular marker synaptophysin did

not show statistical differences by ELISA (Figure 4C) which was

confirmed by Western blot (Figure 7). This was an unexpected

observation since by immunocytochemistry there is a remarkable

loss of synapses (,45%) in AD cases when compared to ND

controls [103], although our ND-HPC are uniquely different from

normal ND controls in that it has an amyloid plaque burden

similar to AD. Our own Western blot experiments confirmed a

significant reduction of synaptophysin in a younger population of

AD subjects (n = 31) when compared to ND age-matched controls

(n = 22) (p = 0.018; A.E. Roher, unpublished observations). We did

not quantify the number of synapses in our specimens, but the

observation of a lack of significant difference between synapto-

physin levels of ND-HPC and AD groups presents a logical

conundrum. However, synaptophysin is a marker for synaptic

vesicles that is extrapolated as a proxy to reveal the conditions of

the synapses. This assumes physiological equivalence between the

two groups, an assumption that may be confounded given the

capacity for compensation under slowly emerging stressful

conditions. Interestingly, synaptophysin is not essential for

neurotransmitter release [104], although mice lacking synapto-

physin develop behavioral and learning dysfunctions [105].

S100B is a 92 amino acid long calcium binding protein that is

functionally expressed as a 21 kDa homodimer and is produced by

astrocytes around blood vessels. This molecule was significantly

increased in ND-HPC relative to AD (p = 0.05) (Figure 7). S100B

is an important cellular mediator of protein phosphorylation,

protein degradation, cell locomotion, regulation of transcription

factors, cell proliferation and differentiation, cytoskeleton assem-

bly, regulation of enzyme activities and receptor function [106–

108]. S100B has also been linked to survival of neurons and when

generated at micromolar concentrations, enhance the production

of inflammatory cytokines [107]. In addition, S100B is considered

a marker of brain damage and neurodegeneration since it is

elevated in global hypoxia, ischemia and hemorrhagic stroke

[106,107,109]. It has also been associated with the density of

amyloid plaques [110,111] and it is increased in AD CSF

[112,113]. Our observation of a modest elevation of S100B in

ND-HPC could be interpreted as a positive effect since this

molecule has, as mentioned above, a large number of beneficial

functions that may have a role in the prevention of dementia

[114]. Furthermore, S100B is a potent neuroprotective factor for

cholinergic neurons during oxygen/glucose deprivation [115].

Summary and conclusions
Our goal was to evaluate the biochemical differences that

distinguish the oldest-old AD population from ND-HPC. Within

the framework of the multifaceted pathogenesis of AD our data

suggest a compromised brain perfusion as one of the underlying

causes of dementia. The brain samples showed that the severity of

WMR in the AD group was over 2 times higher than the

corresponding value in the ND-HPC cases. A general decline in

cerebral blood flow observed in AD [116,117] is apparently

associated with loss of white matter axons and demyelination

[38,118]. When compared to a ND population, AD patients

revealed a significant decrease in diastolic flow velocities (cm/sec)

in the common and internal carotid arteries [35] and a decreased

total and regional cerebral blood flow volumes [119–123]. The

AD brain also exhibits increased vascular resistance [35] a

manifestation of diffuse microvascular disease. A dysfunctional

microcirculation in AD is supported by our observations related to

decreased pro-angiogenic VEGF and increased anti-angiogenic

PEDF, relative to the ND-HPC, which would restrict the ability of

de novo vessel formation that could alleviate brain hypoperfusion. In

addition, our oldest-old AD cases also had a significant decrease of

S100B, an important multifunctional regulatory molecule [106–

108]. In line with a global circulatory compromise in AD, there is

an increased dilation of the white matter perivascular spaces (etat

criblé) suggesting interstitial fluid stagnation and compromised
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cerebral venous outflow [37]. These data are supported by an

increase in the load of vascular amyloid (total CAA score) that was

on the average 2 times more abundant in AD cases than in the

ND-HPC, further endorsing the contention of a compromised

cerebral microvasculature, disturbed BBB and dysfunctional brain

perfusion. Other studies of the oldest-old populations have also

found unusual blood vessel architecture and function in AD cases

compared to ND-HPC (reviewed in [5]).

Four out of the six AD cases studied showed NFT in the frontal

cortex while none of the ND-HPC exhibited these lesions,

reminiscent of a better preservation of the associative, executive

and short-term/working memory functions in the latter group.

Overall total NFT scores were about 25% higher in the AD

subjects than in the ND-HPC indicative of a conserved neuronal

morphology and function in the latter group. The lack of

quantitative significance in the total amount of tau between the

2 groups under study emanates from the wide range of variability

that characterizes tau and NFT pathology in the elderly

population. Likewise, only Ab42 revealed significant differences,

but intriguingly was elevated in the ND-HPC. These data support

the contention that the Ab burden per se, whether soluble or

insoluble, is not the decisive factor in determining the dementia

status in the oldest-old subjects.

These observations are very revealing and instructive about

parameters, other than or in addition to Ab and amyloid plaque

deposition, that may contribute to the conserved cognitive

integrity of the ND-HPC. The lack of any clear pathological

and biochemical demarcation between demented and ND groups

suggests that the near exclusive focus on amyloid plaques and their

components, long presumed to play dominant roles in cognitive

failure, may be misguided. Along the process of aging, multi-

system decay and failure to adapt and repair play a decisive role in

the development of dementia. Complex environmental and

molecular pleiotropic interactions are likely to govern parameters

such as time of onset of disease and severity among affected

individuals. These issues are well illustrated by the disease

modifying effects of the ApoEe4 genotype on numerous essential

functions. Characterization of pathologically deviant molecules as

well as of those that promote healthy mental aging will enormously

help in the identification of new targets for therapeutic

interventions that will prevent, delay the onset or mitigate the

clinical progression of this devastating dementia.
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