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Abstract

Developing new drugs continues to be a highly inefficient and costly business. By
repurposing an existing compound for a different indication, drug repositioning
offers an attractive alternative to traditional drug discovery. Most of these approaches
work by matching transcriptional disease signatures to anti-correlated gene expression
profiles of drug perturbations. Genome-wide association studies (GWASs) are of great
interest to researchers in the pharmaceutical industry because drug programmes with
supporting genetic evidence are more likely to successfully progress through the drug
discovery pipeline.
Here, we present a systematic approach to generate drug repositioning hypothesis
based on disease genetics by mining public repositories of GWAS data and drug
transcriptomic profiles. We find that genes genetically associated with a certain disease
are more likely to be differentially expressed in the same disease (p-value = 1.54e-17 and
AUC = 0.75) and that, in existing drug – disease combinations, genes significantly up- or
down-regulated after drug treatment are enriched for genes genetically associated with
that disease (p-value = 1.1e-79 and AUC = 0.64). Finally, we use this framework to
generate and rank novel GWAS-driven drug repositioning predictions.
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Introduction
The discovery, development and commercialisation of a new drug is a long, expensive

and often failure-prone process [1–3]. Drug repositioning can be a time- and

cost-effective alternative where existing compounds are repurposed for diseases differ-

ent from the original indication [4, 5]. These approaches can be subdivided into mul-

tiple classes, though a majority of recent computational work has focussed on two:

drug-based, relying on chemical structure similarity and predictions of drug – target

interactions, and disease-based, where transcriptomic readouts of disease samples and

drug perturbations are combined [6].

The latter was popularised by the Connectivity Map [7, 8], an in silico pipeline to

reverse-match transcriptional disease signatures with gene expression profiles obtained

by perturbing cellular systems with a large panel of compounds. The Library of Inte-

grated Network-based Cellular Signatures (LINCS) [9] project greatly expanded the

pool of compound profiles, triggering further development of computational methods
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for drug repositioning [10, 11] as well as approaches for the validation of these in silico

predictions [12].

Selecting the right targets is a key decision early in the drug discovery pipeline [13]: a

large proportion of the efficacy failures in clinical programmes are due to lack of a clear

link between the therapeutic target and the disease under investigation [14]. There is

growing recognition that supporting genetic evidence from genome-wide association

studies (GWASs) or phenome-wide association studies (PheWASs) linking target and

disease can significantly increase the chances of success of drug discovery programmes

[15, 16]. The large number of GWASs conducted over the past decade have delivered

insights into the causal links of several diseases [17] and more and more genes are ex-

pected to be implicated in disease as the size of these studies grow, even though not all

associations might be as meaningful as previously thought [18].

GWASs [19], PheWASs [20], Connectivity Map approaches [21–23] and Open Tar-

gets [24] have all been used to repurpose drugs. Here, we combine disease data from

GWASs with drug perturbation transcriptional profiles and a Connectivity

Map-inspired method to generate repositioning hypotheses that, unlike those in stand-

ard expression-based repurposing workflows, are supported by genetics evidence.

Methods
Software and code

R 3.4.0 [25] was used for all data processing and analysis. All code was versioned using

Git and is hosted at https://github.com/enricoferrero/GCMap.

Data sources

STOPGAP [26] is a database containing associations between DNA mutations occurring

in diseases and likely target genes. This includes rare disease associations as well as data

from GWASs. For single nucleotide polymorphisms (SNPs) in regulatory regions, associa-

tions to target gene are performed on the basis of supporting evidence including eQTL

and regulatory genomics data. The complete dataset (294,505 associations between

20,015 genes and 1746 medical terms) was downloaded from https://github.com/Stat

GenPRD/STOPGAP/blob/master/STOPGAP_data/stopgap.gene.mesh.RData. Open Tar-

gets [27] maps diseases to relevant genes using a number of evidence types, including

genes differentially expressed in the disease, germline and somatic mutations, curated

pathway, animal model and literature data as well as known drugs approved for the treat-

ment of the disease. The Open Targets API at http://api.opentargets.io/v3/platform/docs

was accessed on 20th June 2017 and used to download lists of genes differentially

expressed in disease (216,942 associations between 22,190 genes and 148 diseases) and

links between 595 diseases and 1555 approved drugs (7351 associations). The LINCS [9]

L1000 data consists of gene expression profiles obtained by perturbing different cell lines

with a large collection of compounds. To obtain the complete genome-wide dataset in a

convenient format, we used the Harmonizome [28], a large collection of uniformly processed

biological datasets. The file downloaded from http://amp.pharm.mssm.edu/static/hdfs/harmo-

nizome/data/lincscmapchemical/gene_attribute_edges.txt.gz contained 4,189,677 associations

between 3924 compounds and 8347 genes differentially expressed after treatment, with a

median of 257 genes changing for each compound.
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Data processing

STOPGAP data: gene – disease associations from rare disease sources (OMIM and

Orphanet) were excluded. To ensure compatibility with other resources, gene symbols

were mapped to Ensembl gene IDs with the EnsDb.Hsapiens.v75 package [29]. MeSH

terms were mapped to terms in the Experimental Factor Ontology (EFO) [30] using

Zooma [31]. LINCS L1000 data from Harmonizome: Entrez gene IDs were mapped to

Ensembl gene IDs. Compound IDs were mapped to ChEMBL IDs with UniChem [32],

using PubChem IDs as an intermediate.

Data analysis

EFO IDs and ChEMBL IDs were used to match diseases and drugs across different re-

sources, respectively. A Fisher’s exact test [33] was used to perform enrichment tests

between gene sets and to generate repositioning hypotheses. Results were corrected for

multiple hypothesis testing using the Benjamini – Hochberg correction [34] and only

results below a 5% (or lower) false discovery rate (FDR) threshold were considered sig-

nificant. The Mann – Whitney U test [35] was used to assess whether distributions

were significantly different. Receiver operating characteristic (ROC) curves and confi-

dence intervals are calculated using a bootstrap procedure with 1000 iterations per-

formed using the pROC package [36]. The riverplot package [37] was used to draw the

Sankey diagram, while all other plots were generated with ggplot2 [38].

Results
We set out to assess whether gene associations from GWASs could be leveraged to for-

mulate drug repositioning hypotheses. First, we asked whether genes that are genetic-

ally associated with a disease are more likely to also be differentially expressed in that

same disease, when compared to any other disease. As conventional drug repositioning

approaches typically rely on transcriptomic readouts as disease representations, if there

is a significant overlap between genetic associations and differentially expressed genes

(DEGs) in any given disease, then we argue that GWAS data could replace or supple-

ment transcriptional signatures in such workflows. We refer to this as Hypothesis 1:

genes differentially expressed in disease X are enriched for genes genetically associated

with disease X, compared to other diseases. For each disease, we obtained GWAS hits

from STOPGAP [26] and lists of genes differentially expressed in both directions from

Open Targets [27]. We then calculated the odds ratio and the significance of the over-

lap between gene sets for each pairwise disease combination using Fisher’s exact test.

We compared the p-values distributions of gene sets from the same disease and from

different diseases and observed a statistically significant difference (p-value = 1.54e-17),

with gene sets from the same disease more likely to show a significant overlap between

genetic and transcriptomic hits (Fig. 1a). To quantify the predictive power of our obser-

vation, we carried out a receiver operating characteristic (ROC) analysis by considering

the negative base 10 logarithm of the adjusted p-values as the ranking metric and

whether the two gene sets came from the same disease or not as labels (Fig. 1b). We

observed a total area under the curve (AUC) of 0.75 (95% confidence interval [0.70,

0.80]) suggesting it is possible to predict whether a genetic and a transcriptomic gene

set originate from the same disease based on the significance of their overlap. The list
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of diseases with significant overlap between DEGs and GWAS associations (adjusted

p-value < 0.05) includes several immune diseases as well as a proportion of oncology,

neurological and respiratory indications (Fig. 1c and Additional file 1: Table S1). These

results highlight the confluence of genetic association and gene expression changes in

disease and suggest that GWAS genes with dysregulated expression might be better ini-

tial candidates for drug target discovery.

We then asked whether, for indications with commercially available drugs, genes

transcriptionally modulated by the drug are enriched for genes genetically associated

with the disease. For indications showing enrichment, we propose that the drug causing

significant expression changes in this set of GWAS genes could constitute a potential

repositioning option. We refer to this as Hypothesis 2: genes differentially expressed

after treatment with drug Z for disease X are enriched for genes genetically associated

with disease X. We retrieved all 595 indications of 1555 current drugs from Open Tar-

gets [27] and calculated the significance of the overlap between genes differentially

Fig. 1 Genes differentially expressed in disease are enriched for genes genetically associated with the same
disease. a Boxplots showing distributions of Fisher’s exact test p-values for genetic and transcriptomic gene
sets overlaps from the same or different diseases. b ROC curve with 95% confidence intervals obtained using
same or different disease as labels and significance of enrichment between genetic and transcriptomic gene
sets as the ranking metric. c Barplot showing breakdown of diseases by therapeutic area for which there is a
significant overlap between GWAS associations and genes differentially expressed
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expressed after drug treatment and genes genetically associated with disease for all drug

– disease combinations using Fisher’s exact test. We then split the dataset into two

groups according to whether the drug was already approved for that indication and

assessed whether the corresponding distributions of adjusted p-values were different.

We found that the p-values of the 7351 approved drug – indication pairs were consid-

erably lower than the rest (p-value = 1.10e-79, Fig. 2a). This shows that, in several cases,

approves drugs do indeed regulate the expression of genes genetically associated with

the disease, and suggests that drugs can be repositioned based on the overlap between

the genes they modulate and the genetic hits in target diseases. We generated ROC

curves by using the significance of the overlap between the two gene sets as predictions

and whether the drug – disease association was an approved one or not as labels and

observed an AUC of 0.64 (95% confidence interval [0.63, 0.65], Fig. 2b), highlighting

that this approach can classify existing and non-existing drug – indication pairs based

on the overlap between genetic hits from the disease and genes modulated by the drug.

Fig. 2 Genes differentially expressed after treatment with drug approved for a disease are enriched for genes
genetically associated with the same disease. a Boxplots showing distributions of Fisher’s exact test p-values
between GWAS disease associations and DEGs after drug treatment for current and other indications. b ROC
curve with 95% confidence interval obtained using current indications as positive labels and significance of
enrichment between genetic hits in disease and drug transcriptomic profiles as the ranking metric. c Barplot
showing breakdown of current drug indications by therapeutic area where there is a significant overlap
between GWAS associations and DEGs after drug treatment
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We recover 911 significant existing drug – disease associations (adjusted p-value <

0.05), particularly for diseases in oncology, immunology and neurological and cardio-

vascular therapeutic areas (Fig. 2c and Additional file 2: Table S2).

Overall, these results show that successful drug – disease combinations tend to dis-

play a significant overlap between the genetic background of the disease and the tran-

scriptional response to the drug used to treat the disease. Hence, we propose to utilise

the most significant, though not yet approved and perhaps not even tested, drug – indi-

cation pairs resulting from this analysis as drug repositioning hypotheses. To limit false

positives, we filtered our results using a stringent adjusted p-value threshold (1e-10)

and identified nearly 9000 such opportunities which could be prioritized and tested

(Additional file 3: Table S3). Visualisation of the entire repurposing space (Fig. 3) re-

veals oncology and neurology as the two therapeutic areas with the largest pool of

Fig. 3 GWAS-driven drug repositioning hypotheses by therapeutic area. Sankey diagram showing all
significant drug repurposing trajectories across different therapeutic areas
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approved drugs that could be repositioned elsewhere (1093 and 926 compounds, re-

spectively), followed by respiratory (654). However, many oncology drugs are not suit-

able for other indications because of their toxicity profiles. Nervous system indications

could also be among the largest recipient of repurposed drugs (709), together with

metabolic (719) and immune diseases (703). More specifically, the most promising tra-

jectories appear to be nervous system to metabolic system (113 drugs), nervous system

to nervous system (108), neoplasm to metabolic system (106), neoplasm to immune

system (105) and nervous system to immune system (104).

Conclusions
We showed that genes genetically associated with a disease often significantly overlap

with genes differentially expressed in the same disease, as well as with genes induced or

repressed by drugs used to treat that disease. To our knowledge, this is the first report

to test and validate these hypotheses. We presented a simple approach to generate tar-

get prioritisation and drug repositioning hypotheses that are driven by the genetic back-

ground of the disease. Unlike more conventional repurposing approaches that rely on

reverse matching of drug and disease transcriptomic signatures, we have taken advan-

tage of the notion that genetic evidence is crucial to maximise the chances of success

of drug discovery programmes [15, 16].

Our in silico framework returns a large number of statistically significant results and

validation of these hypotheses would require extensive experimental work. We believe

this is a major limitation of our work: we are acutely aware of the many challenges and

low success rates of drug discovery programmes and recognise that a considerable pro-

portion of our hits could be false positives. Diseases with several associated genes and

drugs eliciting large transcriptional responses are more likely to result in significant re-

sults simply because of the size of these gene sets and the methodology used to com-

pute significance.

Another issue is the lack of directionality in the genetics data we use to represent the

disease space. While other Connectivity Map-inspired methods exploit up- or

down-regulated genes in the transcriptomic data to identify compound profiles revers-

ing a disease signature [7, 10, 11], our method does not take directionality into account.

This could result in false positives, including predictions which could actually worsen

the disease state.

In conclusion, our work represents a proof of concept that combining disease genetic

and drug transcriptomic data is a valuable approach for GWAS-based drug reposi-

tioning. However, we recognise that much work remains to be done to improve its

real-world applicability and would like to encourage further research in this area.

Additional files

Additional file 1: Table S1. List of diseases with a significant overlap between genes differentially expressed and
genes genetically associated with disease. Results are filtered for adjusted p-value < 0.05. (CSV 9 kb)

Additional file 2: Table S2. List of current drug indications with a significant overlap between genes significantly
up- or down-regulated after drug treatment and GWAS hits. Results are filtered for adjusted p-value < 0.05. (CSV 119 kb)

Additional file 3: Table S3. Drug repositioning hypotheses based on the significance of the overlap between
genes genetically associated with the disease and genes differentially expressed after drug treatment. Results are
filtered for adjusted p-value <1e-10. (CSV 1089 kb)
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