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In mammals, reproduction is regulated by a wide range of metabolic hormones that
maintain the proper energy balance. In addition to regulating feeding and energy
expenditure, these metabolic messengers also modulate the functional performance
of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-
glucagon-vasoactive intestinal peptide hormone family, has been shown to alter
reproduction centrally, although the underlying mechanisms have not been explored
yet. In order to elucidate its central action in the neuroendocrine regulation of
reproduction, in vitro electrophysiological slice experiments were carried out on GnRH-
GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased
the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64%
compared to the control, and that of the GABAergic miniature postsynaptic currents
(mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by
12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs)
also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency
of mPSCs was prevented by using either a secretin receptor antagonist (3 µM) or
intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting
the involvement of secretin receptor in the process. Regarding the actions downstream
to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720
(2 µM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA
(1 µM) abolished the stimulatory effect of secretin on mPSCs. These data suggest
that secretin acts on GnRH neurons via secretin receptors whose activation triggers
the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the
presynaptic terminals this retrograde NO machinery regulates the GABAergic input to
GnRH neurons.
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INTRODUCTION

Metabolic hormones report information about the actual energy
state of the body to the central nervous system (CNS). Many
of these hormones produced by the adipose tissue, different
enteroendocrine cell populations of the gastrointestinal (GI)
tract, and diverse endocrine glands, reach the hypothalamus
(Berthoud, 2008), where they powerfully regulate food intake,
energy expenditure, stress, water balance, and reproduction
(Yamashita et al., 1989; Barash et al., 1996; Ulrich-Lai et al., 2015;
Matafome et al., 2017; Hill and Elias, 2018).

In the process of reproduction, hypophysiotropic GnRH
neurons located in the medial preoptic area (mPOA) of the
rodent brain, are the key central regulators (Cattanach et al.,
1977; Herbison, 2016). Certain metabolic hormones have already
been shown to exert direct modulatory effects on GnRH neurons
(Roa, 2013). Adiponectin inhibits the GnRH secretion of GT1-
7 cells (Wen et al., 2008) and that of GnRH neurons of female
mice (Klenke et al., 2014). Cholecystokinin (CCK) inhibits GnRH
neurons directly in adult mice (Giacobini and Wray, 2007) and
ghrelin, the orexigenic hormone of the stomach also decreases
the firing of GnRH neurons (Farkas et al., 2013). In contrast,
the anorexigenic glucagon-like peptide 1 (GLP-1) increases the
activity of GnRH neurons (Farkas et al., 2016).

Secretin is an anorexigenic hormone (Thiriet, 2019), similarly
to the GLP-1, and it can serve as a signal molecule reporting level
of the energy homeostasis. It was the first hormone discovered in
1902 and released from the S-cells in the intestines (Bayliss and
Starling, 1902). Secretin is secreted in the intestine when pylorus
of the stomach opens to transfer food into the intestine. It is
produced in response to the acid milieu to stimulate bicarbonate
secretion from the pancreas to neutralize gastric chyme acidity.
In the periphery, secretin serves, therefore, as a local signal to
pancreas for neutralizing the acidity of the stomach by secretion
of bicarbonates (Bayliss and Starling, 1902). In addition, those
features mean that secretin can indeed be considered as a signal
molecule of the high energy status of the body. Furthermore,
it can cross the intact blood-brain barrier (BBB) (Banks et al.,
2002; Dogrukol-Ak et al., 2004) and serve as a peripheral signal
to neurons in numerous brain regions.

Secretin is also synthesized in several brain areas. The most
intensive secretin immunoreactivity was detected in the Purkinje
cells of the cerebellum and in some of the neurons of the deep
cerebellar nuclei. Secretin immunoreactivity was also observed in
a subpopulation of neurons in the primary sensory ganglia (Koves
et al., 2002). Within the hypothalamus, secretin synthesis was
described in the magnocellular cells of supraoptic nucleus (SON)
and in the magnocellular cells of the paraventricular nucleus
(PVN) (Chu et al., 2006).

The G-protein-coupled secretin receptor has a similar
structure and belongs to the same receptor subfamily as the
vasoactive intestinal peptide (VIP) (Ulrich et al., 1998). Specific
binding of secretin to its receptor was found in various brain
areas such as the cerebellum, cortex, thalamus, hippocampus,
and hypothalamus (Fremeau et al., 1983). Secretin receptor
mRNA showed wide distribution in the CNS. It was detected
in numerous brain regions for example in the area postrema,

cerebellum, central amygdala, hippocampus, thalamus, in the
cortex, and in the nucleus tractus solitarii (NTS) (Nozaki et al.,
2002). Dense labeling of secretin receptor was observed in the
NTS and in the laterodorsal nucleus of the thalamus. Expression
of secretin receptor was also found in the hypothalamus
(Toth et al., 2013).

Intracerebroventricular injection of secretin increased the
expression of c-Fos in several brain regions including the area
postrema, medial region of the NTS, paraventricular nucleus,
and various cortical areas indicating a central action of the
hormone in rats. In other areas secretin attenuated c-Fos
immunoreactivity (Welch et al., 2003). In the hypothalamus,
intracerebroventricular administration of secretin stimulated
vasopressin expression and release, indicating that it had a
role in regulating the water homeostasis by modulating the
hypothalamo-neurohypophysial axis (Chu et al., 2009).

Electrophysiological effect of secretin was examined first in
the rat cerebellar cortex, where secretin facilitated the evoked,
spontaneous, and miniature GABAergic inhibitory postsynaptic
currents (IPSCs) recorded in Purkinje cells. Secretin mRNA
was found in the Purkinje cells, and secretin receptor was
present in both Purkinje cells and GABAergic interneurons,
suggesting an autocrine regulation (Yung et al., 2001). In other
electrophysiological experiments secretin depolarized neurons of
the NTS via non-selective cation channels (Yang et al., 2004),
while in the PVN it modulated the firing rate of the neurons
in vivo (Chen et al., 2013).

Secretin can be regarded as another putative regulator of
the reproductive axis, although limited information has been
available about the exact role of secretin in the regulation of
reproduction so far (Wang et al., 2018). In an early study,
intracerebral (IC) injection of secretin into the preoptic region
of rats resulted in 10-fold elevation of luteinizing hormone
(LH) concentration in the plasma (Kimura et al., 1987). In
addition, our earlier works revealed that GnRH neurons residing
in the preoptic area senses the energy status of the body
via various homeostatic signaling molecules such as ghrelin
and GLP-1 (Farkas et al., 2013, 2016). Therefore, it is highly
conceivable that secretin, as one of the signal molecules of
the homeostasis, also modulates function of GnRH neurons. In
addition, the anorexigenic hormone GLP-1 increased activity
of GnRH neurons (Farkas et al., 2016), thus we hypothesized
that secretin also stimulates GnRH neurons, promoting the
reproductive process. However, the exact cellular mechanism of
the effect of secretin in the modulation of HPG axis has not been
revealed yet. In the present study, therefore, we carried out whole
cell patch clamp recordings on GnRH-GFP neurons of male mice
to elucidate the effect of secretin on PSCs, and to uncover the
second messenger cascade events occurring downstream to the
secretin receptor in these neurons.

MATERIALS AND METHODS

Animals
Adult male mice were used from local colonies bred at
the Medical Gene Technology Unit of the Institute of
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Experimental Medicine Hungarian Academy of Sciences (IEM).
They were housed in light (12:12 light-dark cycle, lights
on at 06:00 h)— and a temperature-controlled environment
(22 ± 2◦C), with free access to standard food and water.
GnRH-green fluorescent protein (GnRH-GFP) transgenic mice
(n = 57) bred on a C57Bl/6J genetic background were used for
electrophysiological experiments. In this animal model, a GnRH
promoter segment drives selective GFP expression in the GnRH
neurons (Suter et al., 2000).

Ethics Statement
All animal studies were carried out with permissions from the
Animal Welfare Committee of the IEM Hungarian Academy
of Sciences (Permission Number: A5769-01) and in accordance
with legal requirements of the European Community (Directive
2010/63/EU). All animal experiments described below are
designed in accord with accepted standards of animal care and
all efforts were made to minimize animal suffering. We carried
out sacrifice of animals by decapitation in deep anesthesia by
Isoflurane inhalation.

Brain Slice Preparation
Brain slice preparation was carried out as described earlier
(Farkas et al., 2010). Briefly, after decapitation the heads were
immersed in ice-cold Na-free cutting solution, continuously
bubbled with carbogen, a mixture of 95% O2 and 5% CO2, and
the brains were removed rapidly from the skull. The cutting
solution contained the following (in mM): saccharose 205, KCl
2.5, NaHCO3 26, MgCl2 5, NaH2PO4 1.25, CaCl2 1, glucose 10.
Hypothalamic blocks were dissected, and 250 µm-thick coronal
slices were prepared from the medial POA with a VT-1000S
vibratome (Leica Microsystems, Wetzlar, Germany) in the ice-
cold Na-free oxygenated cutting solution. The slices containing
POA were transferred into artificial cerebrospinal fluid (aCSF)
(in mM): NaCl 130, KCl 3.5, NaHCO3 26, MgSO4 1.2, NaH2PO4
1.25, CaCl2 2.5, glucose 10 bubbled with carbogen and left in it
for 1 h to equilibrate. Equilibration started at 33◦C and it was let
to cool down to room temperature.

Recordings were carried out in carbogenated aCSF at 33◦C.
Axopatch-200B patch-clamp amplifier, Digidata-1322A data
acquisition system, and pCLAMP 10.4 software (Molecular
Devices Co., Silicon Valley, CA, United States) were used for
recording. Neurons were visualized with a BX51WI IR-DIC
microscope (Olympus Co., Tokyo, Japan). The patch electrodes
(OD = 1.5 mm, thin wall; WPI, Worcester, MA, United States)
were pulled with a Flaming-Brown P-97 puller (Sutter Instrument
Co., Novato, CA, United States).

GnRH-GFP neurons in the close proximity of the vascular
organ of lamina terminalis (OVLT; Bregma 0.49–0.85 mm) were
identified by brief illumination at 470 nm using an epifluorescent
filter set, based on their green fluorescence, typical fusiform shape
and characteristic topography (Suter et al., 2000).

Whole-cell patch-clamp measurements started with a control
recording (5 min), then secretin was pipetted into the aCSF-
filled measurement chamber containing the brain slice in a
single bolus and the recording continued for a further 10 min.
Pretreatment with secretin antagonist (1 µM) started 10 min

before adding the secretin and the antagonist was continuously
present in the aCSF during the electrophysiological recording.
Intracellularly applied drugs, such as the membrane impermeable
G-protein inhibitor GDP-β-S (2 mM, Sigma; St. Louis, MO,
United States), NO synthase inhibitor NPLA (1 µM; Tocris;
Bristol, United Kingdom), and PKA blocker KT-5720 (2 µM;
Tocris) were added to the intracellular pipette solution and
after achieving whole-cell patch clamp configuration, we waited
15 min to reach equilibrium in the intracellular milieu before
starting recording. Each neuron served as its own control when
drug effects were evaluated.

Reagents and Chemicals
Extracellularly Used Drugs
Secretin (30 nM–1 µM; rat, Tocris); Secretin antagonist [3 µM;
Secretin 5–27; TFTSELSRLQDSARLQRLLQGLV (Williams
et al., 2012)], GABAA-R blocker picrotoxin [100 µM, Sigma;
(Seidl et al., 2014; Keshavarzi et al., 2015)].

Intracellularly Used Drugs
Neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-
L-arginine hydrochloride [NPLA; 1 µM; Tocris (Chow et al.,
2012; Filpa et al., 2015; Gong et al., 2015)]; G-protein inhibitor,
Guanosine 5′-[β;-thio] diphosphate [GDP-β-S; 2 mM; Sigma,
(Meis et al., 2002; Ponzio and Hatton, 2005; McDermott
and Schrader, 2011)]; protein kinase-A (PKA) inhibitor
(9S,10S,12R)-2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-
1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-
i][1,6]benzodiazocine-10-carboxylic acid hexyl ester [KT-5720;
2 µM; Tocris (Glovaci et al., 2014; Kaneko et al., 2016)].

Whole Cell Patch Clamp Experiments
The spontaneous postsynaptic currents (sPSCs) and miniature
postsynaptic currents (mPSCs) in GnRH neurons were measured
as described earlier (Farkas et al., 2010). Briefly, the neurons
were voltage-clamped at –70 mV holding potential. Intracellular
pipette solution contained (in mM): HEPES 10, KCl 140, EGTA
5, CaCl2 0.1, Mg-ATP 4, Na-GTP 0.4 (pH = 7.3 with NaOH). The
resistance of the patch electrodes was 2–3 M�. Spike-mediated
transmitter release was blocked in all mPSC experiments by
adding the voltage-sensitive Na-channel inhibitor tetrodotoxin
(TTX, 660 nM, Tocris) to the aCSF 10 min before mPSCs or
Vrest were recorded. The mPSCs recorded under the conditions
used in our experiments were related to GABAA-R activation
(Sullivan et al., 2003; Farkas et al., 2010). This GABAergic input
was also validated in our measurements by picrotoxin (100 µM,
Tocris). GABAergic input via GABAA-R is excitatory to GnRH
cells (Moenter and DeFazio, 2005; Yin et al., 2008; Herbison and
Moenter, 2011). Time distribution graphs of frequencies were
generated by using 1-minute time bins to show time courses of
effect of secretin.

Resting membrane potential (Vrest) was recorded in current-
clamp mode with 0 pA holding current. To show action of
secretin on the firing, Rin, and Cm in GnRH neurons of male
mice, current clamp measurements were recorded. Three 900-
ms-long current steps were applied (−25, 0, and +25 pA).
Firing was analyzed during the depolarizing step. The Rin
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was determined from the voltage response to the application
of hyperpolarizing current. The time constant was the time
required to reach 63% of the maximum voltage response to
hyperpolarizing current (Spergel et al., 1999). The Cm was then
calculated by dividing the time constant by the Rin. After control
recording, secretin was pipetted into the measurement chamber
and 1, 3, 5, and 10 min later the three current steps were repeated.

Statistical Analysis
Recordings were stored and analyzed off-line. Event detection
was performed using the Clampfit module of the PClamp
10.4 software (Molecular Devices Co., Silicon Valley,
CA, United States).

Spontaneous postsynaptic currents and mPSC frequencies
were calculated as number of PSCs divided by the length of the
corresponding time period (5 or 10 min). Mean values of the
control and treated part of the recording were calculated from
these frequency values. All the experiments were self-controlled
in each neuron: percentage changes in the parameters of the PSCs
were calculated by dividing the value of the parameter in the
treated period with that of the control period.

Evoked AP frequency was calculated by dividing the number
of events with the length of the respective time period.
Percentage changes resulted from secretin application were
calculated by dividing the value to be analyzed before and after
secretin administration.

Group data were expressed as mean± standard error of mean
(SEM). Two-tailed Student’s t test were applied for comparison
of groups and the differences were considered as significant
at p < 0.05. Cumulative probabilities of interevent-intervals
of neurons were analyzed by using Kolmogorov–Smirnov test
(p < 0.05) to show statistical differences between the interevent-
intervals of the control and secretin treated periods. The analysis
of frequency changes in case of the evoked action potentials
(APs) was carried out by One-way ANOVA with repeated
measurements followed by Dunnett’s test.

RESULTS

Secretin Increased the Frequency of
Spontaneous Postsynaptic Currents and
Depolarized the Membrane Potential in
GnRH Neurons of Male Mice
Administration of 30 nM secretin revealed no significant change
neither in frequency (Figure 1B) nor in amplitude parameters of
sPSCs. Rise and decay τ of sPSCs also presented no significant
change (Tables 1, 2, 5).

Frequency of sPSCs after 100 nM secretin administration
resulted in a significant increase up to 118.0 ± 2.64% of the
control values (3.244 ± 0.8151 Hz, n = 8, Student’s t-test,
p = 0.0005) (Figures 1A,B and Table 1). The increase in
frequency of the sPSCs started approximately 2 min after the
administration of secretin, as shown by the distribution graph
under the recording (Figure 1A). Cumulative probability plots
also demonstrated significant difference between the control

and the treated interevent-intervals (Kolmogorov–Smirnov test,
p = 0.0047). In contrast, values of amplitude, rise, and decay
τ of the sPSCs presented no significant change (Figure 1A
and Tables 2, 5).

Administration of 1 µM secretin also significantly increased
the frequency of sPSCs to 124.3 ± 9.404% (control value:
1.914 ± 0.519 Hz, Student’s t-test, n = 7, p = 0.049) (Figure 1B
and Table 1). The bar graph shows the percentage changes
in the frequency of sPSCs resulted from secretin application,
demonstrating the dose dependency of the effect of secretin
(Figure 1B). Values of amplitude, rise, and decay τ of the
sPSCs after 1 µM secretin administration presented no significant
change (Tables 2, 5).

Secretin Increased the Frequency of
Evoked Action Potentials in GnRH
Neurons of Male Mice
The number of evoked APs increased significantly after secretin
administration (100 nM) when measured in current clamp mode
in 1 and 3 min time points. The frequency increased after 1 min to
144.3± 10.8% (p = 0.0005) and after 3 min up to 138.2± 11.24%
compared to the control value [11.56 ± 1.819 Hz (p = 0.0023)].
Firing rate showed no significant changes at other time points
(Figures 2A,C and Table 3) (n = 7; One-way ANOVA with
repeated measurements).

The rheobase, which shows the strength of the current
required to activate a single action potential, decreased in 6
neurons out of 7, after application of secretin. Firing in 3 neurons
of 7 started at 0 pA current injection, suggesting that secretin
could increase the spontaneous activity of these neurons. Other
passive membrane parameters, such as input resistance (Rin) and
membrane capacitance (Cm) also showed no significant change
(Figures 2D,E and Table 3). The current step measurements
showed, that resting membrane potential (Vrest) depolarized
significantly at 1 and 3 min (11.92 ± 4.487 mV, p < 0.0451;
13.82 ± 4.986 mV, p < 0.0392, Table 3) suggesting that elevation
in the firing rate resulted from this change in the Vrest.

Earlier studies showed that in GnRH neurons of adult male
mice the mPSCs are exclusively excitatory through GABAA
receptor (Sullivan et al., 2003; Sullivan and Moenter, 2004;
Moenter and DeFazio, 2005; Farkas et al., 2010; Herbison and
Moenter, 2011). We eliminated all the mPSCs by application of
selective GABAA receptor blocker picrotoxin and after secretin
administration no new PSCs could be observed (not shown)
suggesting that the recorded mPSCs in these experiments were
GABAA receptor-mediated currents.

We hypothesized that GABAA receptor plays an exclusive
role in the effect of secretin on the firing of GnRH neurons.
The GABAA-R blocker picrotoxin totally eliminated the effect
of secretin on the evoked APs of GnRH neurons, there was no
residual change (Figures 2B,C). This fact indicates that effect of
secretin on the firing rate correlates with the action of secretin
on the GABAergic PSC frequency, and the elevation in the firing
rate (i.e., the increased excitability) results from the elevated
frequency of the GABAergic PSCs. Other passive membrane
parameters, such as Rin and Cm also showed no significant change
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FIGURE 1 | Secretin increases the frequency of sPSC in GnRH neurons. (A) Secretin increased the frequency of the sPSCs with no change in the average amplitude
and shape. Average sPSCs next to the recording represent no change in the shape of events after secretin treatment. The inserts below the 15 min recordings are
1-1 min zoomed periods from the recordings before and after secretin administration. The frequency distribution graph under the inserts also reveals that secretin
application elevated the sPSC frequency. Cumulative probabilities of the interevent intervals and amplitudes are also presented. (B) The bar graph shows that effect
of secretin increasing the sPSC frequency is dose dependent (Student’s t-test ∗p < 0.05; ∗∗∗p < 0.001).

TABLE 1 | Changes in the frequency of PSCs after secretin treatment.

Frequency of control
period in Hz

After secretin in Hz Average percentage
changes after secretin

n/N

sPSC 30 nM secretin 1.348 ± 0.442 1.232 ± 0.235 102.10 ± 4.33 9/4

100 nM secretin 3.244 ± 0.8155 3.768 ± 0.958 118 ± 2.64∗∗∗ 8/3

1 µM secretin 1.914 ± 0.509 2.413 ± 0.6484 124.3 ± 9.404∗ 7/3

mPSC 100 nM secretin 1.367 ± 0.315 1.833 ± 0.7176 147.6 ± 19.19∗ 16/7

Secretin receptor
antagonist + 100 nM secretin

0.7229 ± 0.2358 0.566 ± 0.115 92.88 ± 8.949 8/4

GDP-β-S + 100 nM secretin 0.632 ± 0.124 0.6090 ± 0.1199 102.1 ± 0.957 10/4

NPLA + 100 nM secretin 1.045 ± 0.2297 1.018 ± 0.2380 90.38 ± 4.60 10/5

KT5720 + 100 nM secretin 2.016 ± 0.7367 1.755 ± 0.5721 97 ± 5.987 13/6

The first column shows the frequency of the control period in Hz. Second and third columns show frequency change after secretin and inhibitor pretreatments. The fourth
column shows the number of neurons (n) and animals (N) used for the experiments (Student’s t-test; ∗p < 0.05; ∗∗∗p < 0.001).

(Figures 2D,E and Table 4). The input resistance is the sum of
the membrane resistance and the electrode resistance (Barbour,
2014). Supposing that electrode resistance does not change
during the measurement, the input resistance is a true measure
of the membrane resistance. Therefore, if the input resistance
shows no change it indicates that membrane resistance presents
no change, too. The current step measurements also showed,
that in the presence of picrotoxin Vrest presented no significant

change at any time point (Table 4) indicating that GABAergic
neurotransmission plays role in the membrane depolarization
which eventually results in the elevation in the firing rate.

Secretin Acted Directly on GnRH
Neurons via Secretin Receptor
In order to demonstrate the direct action of secretin on GnRH
neurons, mPSCs were recorded in the presence of TTX. The
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TABLE 2 | Changes in the amplitude of PSCs upon secretin treatment.

Amplitude of control period in pA Average percentage changes after secretin n/N

sPSC 30 nM secretin 31.98 ± 3.628 96.78 ± 3.166 9/4

100 nM secretin 54.04 ± 7.366 97.38 ± 1.209 8/3

1 µM secretin 37.91 ± 2.727 99.71 ± 3.160 7/3

mPSC 100 nM secretin 41.77 ± 3.061 101.3 ± 2.406 16/7

Secretin receptor antagonist + 100 nM secretin 47.75 ± 3.034 100.3 ± 2.295 8/4

GDP-β-S + 100 nM secretin 76.56 ± 9.424 101.0 ± 1.483 10/4

NPLA + 100 nM secretin 38.95 ± 3.347 104.1 ± 4.037 10/5

KT5720 + 100 nM secretin 54.04 ± 9.231 99.0 ± 1.665 13/6

The first column shows the amplitude of the PSCs (pA) in control period. Second column shows changes in amplitudes in%, the third column shows the number of
neurons (n) and animals (N) used for the experiments.

FIGURE 2 | Secretin (100 nM) increases the frequency of the evoked APs. (A) Representative recording shows that frequency of APs evoked by depolarizing current
steps elevated 3 min after secretin administration. Also, the rheobase of APs decreased after secretin treatment. There was no change in the average amplitudes of
APs. (B) Representative recording of the effect of secretin in the presence of picrotoxin (C) Secretin results in a significant rise in the frequency of APs after 1 and
3 min of its administration (marked by red �) in the presence of picrotoxin there was no significant change (marked by N). (D) Changes in the Rin represented no
significant alteration. (E) Membrane capacitance also showed no significant change. (∗∗p < 0.01; ∗∗∗p < 0.001).
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TABLE 3 | Effect of secretin on the evoked action potentials (APs), the passive membrane properties and Vrest.

Control Average percentage or delta changes after secretin

1 min 3 min 5 min 10 min n/N

Frequency of APs 11.56 ± 1.819 Hz 144.3 ± 10.8%∗∗∗ 138.2 ± 11.24%∗∗ 114.7 ± 9, 45% 123.7 ± 9.76% 7/3

Capacitance 22.66 ± 3.93 pF 97.57 ± 6.09% 100.6 ± 7.387% 106.4 ± 6.244% 109.6 ± 7.422% 7/3

Rin 972 ± 96.13 M� 92.5 ± 5.476% 92.33 ± 7.54% 93.5 ± 6.756% 102.7 ± 9.087% 7/3

Vrest 70.61 ± 4.498 mV 11.92 ± 4.487 mV∗∗ 13.82 ± 4.986 mV∗∗ 10.37 ± 8.052 mV 8.540 ± 6.795 mV 7/3

The first column shows the control values of the frequency, capacitance, input resistance (Rin) and the Vrest. The next four columns demonstrate the changes in the
measured parameters after 1, 3, 5, and 10 min. The last column contains the number of neurons (n) and animals (N) used for the experiments (One-way ANOVA with
repeated measurements followed by Dunnett’s test ∗∗p < 0.01; ∗∗∗p < 0.001).

TABLE 4 | Effect of secretin on the evoked APs, the passive membrane properties and Vrest in the presence of picrotoxin.

Control Average percentage or delta changes after secretin

1 min 3 min 5 min 10 min n/N

Frequency of APs 15.18 ± 6.878 Hz 102 ± 9.295% 94.40 ± 10.79% 101.4 ± 10.50% 89.60 ± 9.51% 6/3

Capacitance 18.87 ± 0.8304 pF 91.80 ± 6.012% 98.80 ± 6.094% 95.0 ± 7.162% 95.60 ± 5.354% 6/3

Rin 1048 ± 116.6 M� 92.80 ± 2.296% 99.80 ± 9.604% 100.4 ± 8.875% 96.40 ± 8.976% 6/3

Vrest 65.14 ± 5.042 mV 0.5075 ± 0.4413 mV 0.3663 ± 0.3472 mV 0.8924 ± 0.2314 mV 1.5970 ± 0.7586 mV 6/3

The first column shows the control values of the frequency, capacitance, input resistance (Rin) and Vrest. The next four columns demonstrate the changes in the measured
parameters after 1, 3, 5, and 10 min. The last column contains the number of neurons (n) and animals (N) used for the experiments (One-way ANOVA with repeated
measurements followed by Dunnett’s test).

TABLE 5 | Changes in the rise τ and decay τ after 100 nM secretin.

Rise tau (ms) Average percentage
changes after secretin

Decay tau (ms) Average percentage
changes after secretin

n/N

sPSC 30 nM secretin 3.716 ± 0.440 103.9 ± 4.808 22.57 ± 1.431 102.8 ± 4.160 9/4

100 nM secretin 4.460 ± 0.6166 101.6 ± 7.926 23.05 ± 1.711 97.88 ± 3.182 8/3

1 µM secretin 4.244 ± 0.3608 98.38 ± 5.867 26.17 ± 1.833 101.9 ± 1.903 7/3

mPSC 100 nM secretin 4.866 ± 0.6075 101.7 ± 12,96 19.07 ± 2.140 104.6 ± 12.18 16/7

Secretin receptor
antagonist + 100 nM secretin

4.081 ± 0.8153 102.8 ± 7.947 32.78 ± 10.22 97.30 ± 10.82 8/4

GDP-β-S + 100 nM secretin 3.940 ± 0.4759 100.03 ± 10.29 22.96 ± 4.250 91.20 ± 7.297 10/4

NPLA + 100 nM secretin 3.281 ± 0.453 106.3 ± 8.593 21.51 ± 4.044 102.4 ± 6.608 10/5

KT5720 + 100 nM secretin 4.475 ± 0.4489 101.8 ± 10.61 20.26 ± 1.258 112.5 ± 10.02 13/6

The first column shows the rise tau in the control period. The second column shows changes in the rise time in%. Third column shows the decay tau in the control period,
the fourth column shows changes in the decay time in%. The fifth column shows the number of neurons (n) and animals (N) used for the experiments.

administration of secretin (100 nM) resulted in a significant
increase in the mean mPSC frequency reaching 147.6 ± 19.19%
of control values (1.367 ± 0.315 Hz, n = 16; Student’s t-test;
p = 0.0274) (Figure 3A and Table 1). Elevation of the mPSC
frequency started 1–3 min after administration of secretin.
Cumulative probability plots also demonstrated significant
differences between the control and the treated interevent-
intervals (Kolmogorov–Smirnov test, p = 0.0337). Values of
amplitude, rise τ, and decay τ of the mPSCs presented no
significant change (Figure 3A and Tables 2, 5).

Pretreatment of the slices with secretin receptor antagonist
(secretin 5–27; 3 µM) 15 min before the application of secretin
(100 nM), eliminated the stimulatory action of secretin on the
mean frequency of mPSCs (92.88 ± 8.949%) (Figure 3B and
Table 1). Cumulative probability plots also showed no significant

differences between the control and the treated interevent-
intervals (Kolmogorov–Smirnov test, p = 0.999). Values of mPSC
amplitude, rise and decay τ presented no significant change
(Figure 3B and Tables 2, 5).

In order to prove the direct action of secretin in GnRH
neurons, its effect on the mPSCs was further examined
in the intracellular presence of the G-protein blocker
GDP-β-S (2 mM). The blockade of G-proteins in GnRH
neurons eliminated the observed effect of secretin on mPSCs
(102.1 ± 0.957%) (Figure 3C and Table 1). Cumulative
probability plots showed no significant differences between
the control and the treated interevent-intervals (Kolmogorov–
Smirnov test, p = 0.819). Values of amplitude and shape of
the PSCs also presented no significant changes (Figure 3C
and Tables 2, 5).
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FIGURE 3 | Secretin elevates the frequency of mPSCs of GnRH neurons directly via secretin receptor. (A) Secretin (100 nM) increased the frequency of mPSCs in
GnRH neurons, as shown in a representative recording, the 1 min zoomed periods, the frequency distribution and the cumulative probability of IEIs graphs. There
was no change in the average amplitude or in the shape of the events representing the individual PSCs beside the recording. (B) Pretreatment of the brain slice with
secretin receptor antagonist (Secretin 5–27) eliminated the effect of secretin on GnRH neurons. (C) Intracellular application of G-protein blocker, GDP-β-S also
abolished the effect of secretin. (D) Bar graph shows that the effect of secretin was mediated via the G-protein coupled secretin receptor. (E) Depolarization in the
resting potential is demonstrated in a 4 min period. Arrow shows application of secretin. The bottom recording, in the presence of secretin receptor antagonist
shows no significant change after the administration of secretin (100 nM) (∗p < 0.05). The inserts below the 15 min recordings are 1-1 min zoomed periods from the
recordings before and after secretin administration. The frequency distribution is also presented under each recording. Average mPSCs next to the recording
represent no change in the shape of events after secretin treatment. Cumulative probabilities of the interevent intervals and amplitudes are graphed next to the
individual events. Arrow shows the administration of secretin (∗p < 0.05).
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Bar graph summarizes the effect of secretin on the
mean frequency of the mPSCs and full inhibition of the
secretin-triggered action by antagonizing secretin receptor and
the intracellular blockade of G-proteins in GnRH neurons
(Figure 3D and Table 1).

Current clamp measurements revealed that secretin (100 nM)
triggered membrane depolarization in GnRH neurons in the
presence of TTX. The mean of the changes was 12.74± 4.539 mV
(Student’s t-test, n = 6, p = 0.0186) (Figure 3E). Depolarization
usually occurred 1 min after secretin application and as the
figure shows it returned to the baseline after a short time. In the
presence of secretin receptor antagonist, the observed stimulating
effect did not occur, there was no significant change in the
membrane potential (n = 5) (Figure 3E).

Involvement of PKA and Retrograde NO
Signaling Mechanisms in the Effect of
Secretin
Changes in the frequency of mPSCs but not in the amplitude
suggested changes in the presynaptic site after application of
secretin. Previous studies have demonstrated that activation of
the retrograde NO signaling pathway in GnRH neurons results
in an increased mPSC frequency (Farkas et al., 2016). To test
the hypothesis that retrograde NO signaling mediates the effect
of secretin on the GABAergic synaptic input of GnRH neurons
NPLA (1 µM), an nNOS blocker, was applied intracellularly
into the recorded GnRH neurons 15 min before adding secretin
(100 nM). Intracellular application of NPLA alone did not alter
basal frequency or amplitude of mPSCs in GnRH neurons (Farkas
et al., 2016; Figure 4A and Table 1). NPLA treatment fully
eliminated the action of secretin (90.38 ± 4.60%, Student’s t-test,
p = 0.0746). Cumulative probability plots showed no significant
differences between the control and the treated interevent-
intervals (Kolmogorov–Smirnov test, p = 0.998). Values of
amplitude and rise and decay τ of the PSCs also presented no
significant changes (Figure 4A and Tables 2, 5).

Nitric oxide activation can be induced via different
intracellular signaling pathways. Earlier studies showed that
one of the main pathways activated by secretin receptor is
the cAMP/PKA pathway (Siu et al., 2006). Therefore, the
selective PKA blocker KT5720 was applied intracellularly into
GnRH neurons. The presence of KT5720 in the intracellular
solution abolished the frequency increasing effect of secretin
on mPSCs of GnRH neurons (97 ± 5.987%) (Figure 4B and
Table 1). Cumulative probability plots represented no significant
differences between the control and the treated interevent
intervals (Kolmogorov–Smirnov test, p = 0.491). Values of
amplitude, the rise and the decay τ of mPSCs also presented
no significant changes (Figure 4B and Tables 2, 5). Bar graph
depicts the full inhibition of the secretin-triggered action on
mPSCs by intracellularly applied NPLA and KT5720 (Figure 4C
and Table 1).

In summary, these results demonstrate that secretin acts
directly on GnRH neurons via secretin receptors and activates
the cAMP/PKA/nNOS pathway which enables the generation
of NO in the recorded GnRH neurons in male mice. The

retrograde messenger can reach the GABAergic synaptic boutons
and increases the release of GABA enhancing frequency of
GABAergic mPSCs of GnRH neurons as seen on the schematic
illustration (Figure 5).

DISCUSSION

Secretin has been shown to modulate the HPG axis, however,
the sites of action have not been explored so far (Kimura et al.,
1987). The present study provides electrophysiological evidence
for a direct action of secretin on GnRH neurons. Accordingly:
(1) Secretin activated the secretin receptors directly in GnRH
neurons and increased the frequency of their APs and GABAergic
mPSCs. (2) Downstream signaling of secretin receptor involved
the activation of PKA and nNOS that in turn, led to activation
of the retrograde NO signaling pathway. The release of NO
enhances the release of GABA from the presynaptic sites which
has an excitatory effect on GnRH neurons via GABAA-R.

Secretin Is Excitatory on GnRH Neurons
via Secretin Receptor
The present findings demonstrate that secretin exerts excitatory
effects on GnRH neurons. Frequency of PSCs and APs increased,
the rheobase of evoked APs decreased, and the membrane
potential depolarized upon secretin administration. These data
are parallel with other investigations showing the stimulatory
effect of secretin in different brain areas and different cell types.
In the PVN secretin elevated the firing rate in vivo, and in the
nucleus of the solitary tract (NTS) it depolarized neurons via non-
selective cationic channels (Yang et al., 2004; Chen et al., 2013).
Both central and peripheral administration of secretin induced
c-Fos expression in the PVN and the arcuate nucleus, suggesting
the activation of these hypothalamic nuclei (Cheng et al., 2011).

Both the GABAergic mPSC frequency and the firing rate
were increased in GnRH neurons after secretin administration.
Since GABA has a special excitatory effect on GnRH neurons
via GABAA-R (Sullivan et al., 2003; Farkas et al., 2010), the
elevation detected in mPSC frequency and the increased firing
rate correlate well.

Although the recorded mPSCs of GnRH neurons in male mice
are GABAergic under basal conditions, we could not exclude
the theoretical possibility of the additional effects of glutamate
on these parameters (Sullivan and Moenter, 2003; Moenter and
DeFazio, 2005; Yin et al., 2008; Farkas et al., 2010; Herbison and
Moenter, 2011). The selective inhibition of GABAA receptors
with picrotoxin, however, totally abolished the effect of secretin
on PSCs, indicating the exclusive role of GABAergic inputs in the
effects of secretin.

We proved that the effect of secretin is specific to secretin
receptor using secretin receptor antagonist. In addition, the
intracellular blockade of secretin receptor by the membrane
impermeable G-protein blocker, GDP-β-S, also abolished the
secretin-evoked changes in the mPSC frequency, proving that
secretin action occurs postsynaptically on GnRH neurons.

A previous study has reported that secretin augmented plasma
LH concentration following its stereotaxic delivery into mPOA
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FIGURE 4 | Effects of various blockers on the secretin-evoked increase in the frequency of mPSCs in GnRH neurons. (A) Intracellular application of the nNOS
blocker NPLA extinguished the effect of secretin. (B) The PKA inhibitor KT5720 applied intracellularly, also eliminated the effect of secretin. (C) Bar graph shows that
secretin utilizes PKA- and retrograde NO-coupled signaling mechanisms. The inserts below the 15 min recordings are 1-1 min zoomed periods from the recordings
before and after secretin administration. The frequency distribution is also presented under each recording Average mPSCs beside each recording showed change
in the shape or amplitudes of events after secretin treatment. Cumulative probabilities of the interevent intervals are graphed next to the individual events. Arrow
shows the administration of secretin (∗p < 0.05).

suggesting that the effect of secretin on LH cells and LH
production was indirect, and presumably the activation occurred
at the level of GnRH neurons (Kimura et al., 1987). Our findings
confirm that secretin is capable of centrally regulating the HPG
axis via a direct activation of GnRH neurons.

Changes in the frequency of GABAergic mPSCs but not
in their amplitude suggest that alterations take place at the
presynaptic site. This might indicate that secretin has a direct

effect at the presynaptic site via secretin receptors as it was
discovered in an earlier work from the Purkinje cells of
cerebellum (Yung et al., 2001). In our study, the intracellular
blockade of the G-proteins and the NO pathway in the
postsynaptic GnRH neurons eliminated the effect of secretin
excluding this opportunity.

The hyperpolarizing current step measurements showed
that input resistance (and therefore membrane resistance) has
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FIGURE 5 | Schematic illustration of secretin receptor signaling in GnRH neurons. Secretin activates cAMP/PKA/nNOS pathway and generates NO that binds to its
presynaptic receptor, sGC, located in the GABAergic terminals. This signaling process increases the release of GABA, therefore, facilitates the synaptic inputs to
GnRH neurons via GABAA-receptor. AC, adenylate cyclase; cAMP, cyclic adenosine monophosphate; Gαs, Gβ, Gγ, G-protein subunits; GABAA-R, GABAA-receptor;
PTX, picrotoxin, selective GABAA-receptor blocker; PKA, protein kinase A; KT5720, protein kinase A inhibitor; nNOS, neuronal nitric oxide synthase; NPLA, nNOS
inhibitor; GDP-β-S,G-protein inhibitor; sGC, soluble guanylyl cyclase, NO receptor. Red lines depict inhibitory actions, green arrows refer to the signal transduction
pathway resulting in excitatory action of NO.

not changed upon secretin application and the subsequent
GABA release. This seems to be in contrast with the data
revealing a secretin-dependent depolarization of Vrest when
the current step is zero. One of the putative explanations for
this observation is that response to GABA can be voltage-
dependent, provided presence of GABAB-R in the neuron
(Shefner and Osmanovic, 1991). It is well known that GnRH
neurons bear GABAB-R (Herbison and Moenter, 2011; Liu and
Herbison, 2011) suggesting a putative voltage-dependency of
GABA response in GnRH neurons. This opportunity, however,
requires further elaboration.

Secretin Activates the Retrograde NO
Signaling Pathway via cAMP/PKA
Upregulation
Our results indicate that secretin acts directly on GnRH neurons
via secretin receptors whose activation triggers a downstream
cascade event leading to activation of retrograde NO signaling

in GnRH neurons. The mechanism of secretin’s effect is often
linked to NO production at the periphery (Konturek et al., 1997;
Jyotheeswaran et al., 2000; Grossini et al., 2013). Within the
brain, increase in the frequency of the GABAergic mPSCs could
be evoked by activation of the NO machinery in hypothalamic
neurons (Di et al., 2009). Previously, the presence and the activity
of nNOS have been demonstrated by our group in GnRH neurons
of mice. In these studies, the activation of nNOS increased the
frequency of GABAergic mPSCs in GnRH neurons (Farkas et al.,
2016, 2018). Stimulatory effect of retrograde NO signaling on
GABAergic currents was described earlier in the PVN, where
NO excited the GABAergic mPSCs in the neurons of PVN
(Bains and Ferguson, 1997). NO also activated the GABAergic
inputs of oxytocin- and vasopressin-containing neurons in
the SON (Stern and Ludwig, 2001). The stimulatory effect of
retrograde NO signaling was also proved in case of glutamatergic
neural circuits, where NO released from the postsynaptic
neurons could increase the probability of glutamate release from
presynaptic glutamatergic axon terminals in different brain areas
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(O’Dell et al., 1991; Arancio et al., 1996; Micheva et al., 2003;
Neitz et al., 2011).

All members of the B1 family of G-protein coupled receptors
such as, VIP, secretin, and pituitary adenylate cyclase-activating
peptide (PACAP) stimulate the adenylate cyclase via stimulatory
G-protein (Gs) (Roth et al., 1984; Fremeau et al., 1986; Harmar,
2001) resulting in PKA activation (Siu et al., 2006) via Gs protein.
The presence of PKA in GnRH secreting neurons was found
earlier (Hoddah et al., 2009), and we also revealed that the
application of PKA blocker totally inhibited the effect of secretin,
providing further evidence that the underlying mechanism of
secretin requires PKA activation.

The present findings demonstrate that secretin acted
postsynaptically and resulted in a change of mPSC frequency,
suggesting that secretin receptor activates the cAMP/PKA/nNOS
pathway and generates NO that binds to its presynaptic receptor,
soluble guanylyl cyclase (sGC), located in the GABAergic axon
terminals. The expression of sGC has been recently detected in
GABAergic and glutamatergic presynaptic boutons of GnRH
neurons (Farkas et al., 2016, 2018). This retrograde signaling
process increases the release of GABA, therefore, facilitates
the synaptic inputs to GnRH neurons via GABAA-receptor.
PACAP and VIP can also activate nNOS and the production
of NO via the cAMP/PKA/nNOS pathway in PC12 cells
(Onoue et al., 2002).

These current results support further the concept that
GnRH neurons can sense the metabolic state of the
organism and strengthen the view that secretin may exert
a central regulatory role on the HPG axis via acting upon
hypophysiotropic GnRH neurons.
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