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INTRODUCTION 
 

Aging is the most significant and consistently 

demonstrated risk factor for Alzheimer’s disease (AD) 

[1–3]. As a result, the aging of the U.S. population is 

expected to coincide with a rise in AD cases, increasing 

from 5.8 million in 2020, to 13.8 million projected by 

2050 [4]. Chronological age, defined as time since birth, 

is a non-modifiable risk factor. Biological aging 

however, or the molecular and cellular changes that 
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ABSTRACT 
 

Alzheimer’s disease (AD) risk increases exponentially with age and is associated with multiple molecular 
hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5’ cytosine 
methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may 
occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet 
we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific 
epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained 
solely in cortical samples. This predictor utilizes a combination of principal components analysis and 
regularized regression, which reduces technical noise and greatly improves test-retest reliability. To 
characterize the scope of PCBrainAge’s utility, we generated DNAm data from multiple brain regions in a 
sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures 
meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD 
dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It 
further does so across multiple cortical and subcortical regions. Overall, PCBrainAge’s increased reliability 
and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well 
as epigenetic alterations underlying AD risk and resilience. 
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underlie the process of aging, may be malleable [5–7]. 

Approaching the challenge of AD prevention and 

treatment through the lens of biological aging thus 

provides a major opportunity for improving cognitive 

health and reducing disease burden. 

 

Because the brain is the central site for AD pathology, 

understanding the specific aging of this tissue is a 

priority. As brain tissue ages, misfolded tau and 

amyloid proteins accumulate due to a loss of 

proteostasis, one molecular hallmark of aging [8]. 

While this occurs in older adults with normal cognition 

or mild cognitive impairment, it is generally more 

pronounced in subjects with AD dementia [9–11]. 

Neuritic plaque and neurofibrillary tangles form the 

basis for the neuropathological diagnosis of AD [12]. 

Further, more rapid accumulation of tau [13] and β-

amyloid [14] aggregates is also linked to inheritance of 

the APOE ε4 allele, which is itself linked to a number 

of age-related outcomes, including increased AD 

dementia risk [15], CVD risk [16, 17], and reduced 

lifespan [18, 19]. This suggests that while AD may not 

be a normal part of aging, it is partially driven by 

changes that are known to relate to basic aging 

processes. 

 

Additional hallmarks of biological aging, which include 

epigenetic alterations [20, 21], have also been 

implicated in the pathology of AD. For instance, 5’ 

cytosine methylation (DNAm) differences have been 

shown to track aging and can be quantitatively 

combined to produce composite aging biomarkers, 

termed “epigenetic clocks” [22]. We and others have 

shown that the divergence between observed and 

predicted ages produced by epigenetic clocks relate to 

AD pathology. For instance, Horvath pan-tissue [23] 

and Levine PhenoAge [24] epigenetic age acceleration 

positively correlate with neuritic plaque, NFT, and β-

amyloid loads. While this provides further molecular 

evidence of a link between AD risk and measurably 

accelerated biological aging, such clocks are typically 

developed in peripheral tissues and may not capture the 

unique aging changes in the brain. A notable exception 

is the recent DNAmClockCortical [25]. A recent study 

using Cortical tissue found that the DNAmClockCortical 

had much stronger associations with AD clinical and 

neuropathologic traits relative to Horvath, Hannum and 

PhenoAge clocks based on non-neuronal tissues [26]. 

Building on previous work, our study incorporates two 

additional novel features. First, we sought to investigate 

the extent to which the uneven pathological burden 

evident by amyloid [27] and tau [28] staging is captured 

when considering DNAm across multiple paired brain 
regions, rather than in singular areas like the cortex or 

hippocampus. Second, we have previously shown that 

CpG clocks often suffer from significant technical 

noise, hindering their applications. Therefore, we 

sought to use our recently developed approach to 

improve signal-to-noise ratios in methylation data, 

leading to improved reliability and construct validity in 

our novel epigenetic clock [29]. 
 

Overall, we hypothesized that a brain age methylation-

based predictor could be developed with meaningful 

disease associations and broad multi-brain-region 

utility. To test this, we used DNAm capture to generate 

a PC-based epigenetic predictor of brain aging which 

we show to: (1) strongly reflect AD neuropathology and 

cognitive decline, and (2) track age across multiple 

brain regions. This resulting measure, PCBrainAge, is 

applicable for use in existing brain and tissue banks, and 

many publicly available postmortem datasets for the 

study of AD. It is available as an R package at 

https://github.com/MorganLevineLab/calcPCBrainAge. 

 

RESULTS 
 

Model design and testing 
 

To generate a predictor of aging in the brain, we 

selected a publicly accessible dataset deposited into the 

Gene Expression Omnibus [30] (GSE74193) [31]. In 

brief, this dataset contains methylation data from 

dorsolateral prefrontal cortex (DLPFC) of 399 

individuals aged 20+ (see Methods for further details). 

This dataset includes patients diagnosed with 

schizophrenia (n = 187; 47%). However, this 

neuropsychiatric disease has not been shown to be 

robustly associated with epigenetic signatures of 

chronological age in either blood or brain, despite 

acceleration in clocks predicting mortality in blood [32, 

33]. Our model’s outcome variable is chronological age, 

so inclusion of schizophrenia samples is reasonable and 

potentially advantageous: Inclusion of schizophrenia 

samples reduces the likelihood that general brain 

pathology will exert a large impact on the model’s 

predictions, as the model is forced to predict 

chronological age despite schizophrenia status. 

Nevertheless, as a sensitivity analysis, we also trained a 

model using only control individuals, which did not 

improve results (Supplementary Figure 1). Thus, we 

included all high-quality samples for training, 

regardless of schizophrenia status. 
 

The training method to generate our predictor is built 

upon our recently published PC Clock method [29]. In 

brief, singular vector decomposition (SVD), an 

extension of principal components analysis suitable for 

wide format data (i.e., where features outnumber 
samples), was performed on this training methylation 

dataset. This analysis was limited to CpG sites that are 

overlapped between the training, test, and validation 

https://github.com/MorganLevineLab/calcPCBrainAge
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datasets collected on 450K or EPIC arrays (see Methods 

for more detail). This produced 399 left singular 

vectors, which for general purposes, are referred to here 

as principal components (PCs) of 5′-cystosine 

methylation in postmortem dorsolateral prefrontal 

cortex (DLPFC). The PC scores, representing an 

individual’s projection values onto the principal 

component vectors, were used as the set of variables 

from which age was predicted via elastic net penalized 

regression. 

To predict training sample age, three models were 

generated, differing in the sex representation of 

subjects. This choice was based upon known sex-

specific differences in aging [34], and evidence of sex-

specific differences in AD risk and AD neurobiology 

[35]. All models used elastic net penalized regression in 

the appropriate individuals to find the optimal weighted 

linear average of PCs to predict chronological age; the 

first utilized both sexes (n = 399, Figure 1A, 1D); the 

second was fit to only males (n = 262, Figure 1B, 1E); 

 

 
 

Figure 1. Training and testing of multiple iterations of PCBrainAge. Using the dataset from GSE74193, elastic net was used to 

predict age using principal component loadings in both sexes (A), only males (B), or only females (C). Here, we show the resultant 
predictions for each model in both females (purple) and males (green) regardless of training sex. Each model so trained is then predicted in 
all individuals from syn5850422 (D–F), regardless of sex or AD status. Each model selected a number of principal components to use for 
prediction, and we compared the selection of each model using a Venn diagram (G). Subsequent training of an elastic net model using only 
the 15 core principal components in both sexes is visualized (H) and compared to performance in the test dataset (I). 
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Table 1. Pearson’s correlation of age by sex with model age predictions. 

Model  Training data Core Test data Core 

Both Sexes 
M 0.99 0.94 0.61 0.65 

F 0.99 0.95 0.56 0.58 

Male 
M 0.98  0.55  

F 0.95  0.49  

Female 
M 0.90  0.61  

F 0.97  0.54  

 

the third was fit to only females (n = 137, Figure 1C, 

1F). Regardless of the sample used for training, we 

found that each model attained similar correlation 

between predicted and chronological age in both males 

and females. Male- and female-specific age correlations 

for each model can be found in Table 1. 

 

A total of 195 of 399 PCs were selected for use in one 

or more models, with the female model (PCBrainAge.F) 

selecting the fewest variables. However, a completely 

overlapped set of 15 PCs (referred to as the core PCs) 

were selected for all three models, representing an 

important centralized signal of aging (Figure 1G). The 

creation of three degenerate models in this manner 

allowed us to isolate a robust brain aging signal. We 

investigated whether these core PCs were significantly 

more important than their non-core counterparts in each 

model. To do so, we sequestered the 15 core PCs in the 

training data, as well as 3 different sets of non-core PCs 

corresponding to each original model. Using the same 

elastic net regression procedure as the original models, 

we regressed the core and noncore PC scores to age in 

the appropriate training subcohorts. The 15 core 

principal components were sufficient to predict age in 

the training data. However, the non-core models were 

unable to successfully do so (Supplementary Figure 2). 

Therefore, we generated a final model PCBrainAge.C. 

This was trained in both males and females and includes 

only the 15 core PCs (Figure 1H). As the core PC 

version of PCBrainAge is the overall superior model—

both requiring limited information and performing 

best—only this model is used hereafter and will be 

simply referred to as PCBrainAge for clarity. 

 

To validate models of aging generated from training 

data, an independent methylation dataset of 718 DLPFC 

samples was obtained through Synapse (syn5850422) 

[36]. All datasets used in the current work are 

characterized in Supplementary Table 1. Estimation of 

the individuals’ PC loadings was performed by 

projection onto the right singular vectors of the training 

dataset, thereby generating the 399 training PC vectors 
based upon the original eigenvalue estimations from the 

training data [29]. In terms of age predictions, 

PCBrainAge.C performs at least as well as all original 

sex-stratified and full models in the test dataset (Figure 

1I), despite using fewer principal components. 

 

Principal components are complex, composite variables, 

making them challenging to interpret. To investigate the 

information captured in the 15 core PCs, we correlated 

each PC to annotated features of the training dataset. 

This demonstrated that the largest source of variation in 

the data, as captured by PC1, is cell composition 

(Figure 2A). PC5 is most strongly correlated with age 

(|r| = 0.68), with all PCs having a range of absolute 

biweight midcorrelation of 0.04–0.68. As the overall 

model has correlation with age of 0.95, the signal for 

chronological age is clearly distributed across PCs. PC8 

and PC15 are related to biological sex. These 

observations were confirmed when the PCs were 

projected onto the test data (Figure 2B, Supplementary 

Figure 3). While neuron proportion demonstrates 

correlations with more PCs in the test data compared to 

training data, there are several explanations for this 

observation. First, it is consistent with an expected, 

subtle loss of the imposed orthogonality when principal 

components are projected into new datasets. Second, 

our test dataset is comprised of only older adults, many 

with AD, who are expected to have age-associated 

neuron loss. This may enhance correlations between cell 

composition and methylation PCs that were not 

otherwise apparent in training data capturing the entire 

lifespan. Third, the proportion of neurons in test data, 

unlike training data, is estimated using the methylation 

itself. Therefore, this estimated cell proportion may be 

doubly affected by disease states or other signals being 

captured in the data. Finally, in the test dataset, where 

some individuals have AD and dementia, we find that 

no single PC is highly and/or consistently correlated to 

AD status (Supplementary Table 2). 

 

We checked for relative agreement between training and 

testing data composition prior to applying PCBrainAge 

to test data. We previously showed that it is possible to 

use PCs from one dataset to generate reliable and useful 

PCs when projecting to another [29]. However, there 
can be differences in the distributions of PC scores: 

Therefore, we analyzed the distribution of PC scores 

from the core and found that while there are shifts in the 
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mean, the general shape remains intact (Figure 2C, 2D). 

This can contribute to differences in the intercept in 

new datasets, a known behavior in common CpG 

clocks. However, this is easily corrected by using age 

acceleration, which does not consider intercept, for 

further analyses. 

 

PCBrainAge correlates with Alzheimer’s pathology 

in DLPFC 

 

We calculated brain age acceleration in the ROSMAP 

DLPFC test dataset (n = 700) by generating linear 

models to regress PCBrainAge on samples’ true ages at 

death and proportion of neurons (Supplementary Table 

3). Proportion of neurons was explicitly included to 

obtain residuals, as we hypothesized that cell proportion 

changes appear to be the dominant signal in data 

(Figure 2A, 2B). Ultimately, we are interested in 

whether PCBrainAge is predictive of AD beyond the 

well-characterized impacts of changes to neuron 

abundance. This is also consistent with previous reports 

that accounting for cell type heterogeneity improves 

mortality and biological age prediction [37, 38]. Age 

acceleration was correlated with pathological and 

phenotypic traits known to indicate or affect the course 

of AD. To ensure that such correlations were not 

impacted by a nonlinear relationship of age and 

PCBrainAge, we verified a uniform distribution of 

residuals in both sexes (Figure 3A). Slight nonlinearity 

at the extremes of the distribution appeared to be the 

result of reduced sample density rather than true 

nonlinearity. 

 

PCBrainAge accelerations were tested for association 

with AD clinical and pathologic diagnosis, and APOE 

ε4 status. Postmortem binarized AD diagnosis 

according to neuritic plaque derived CERAD scores is 

significantly associated with accelerated brain aging 

(Figure 3B), as well as neurofibrillary tangle (NFT) 

derived Braak Staging (Figure 3C). Notably, 

PCBrainAge is significantly accelerated when AD is in 

the neocortical, final stages versus all prior stages, but

 

 
 

Figure 2. Understanding core principal component composition. Principal component loadings for individuals in the training 

dataset were correlated using biweight midcorrelation (bicor) to selected author-provided phenotypic annotations (A). The same 
procedure was applied to the projected principal component loadings for all individuals in the test dataset, including those with and 
without Alzheimer’s disease (B). To ensure that future correlations between age prediction and disease are not the result of unrealistic 
distortions in PC loadings following the prediction process, we used ridgeplots to visualize the distribution of loadings in each PC in age 65+ 
training individuals (C) and the test data (D). [Abbreviations: NPCs: neural progenitor cells; Cort: cortical; ESCs: embryonic stem cells; DA: 
dopaminergic]. 
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has no discriminatory power between the entorhinal and 

limbic phases. This likely reflects that PCBrainAge’s 

training and testing are occurring in DLPFC, a 

neocortical region. PCBrainAge acceleration is also 

positively associated with post-mortem neuropathologic 

AD diagnosis by combined neuritic plaque (np) and 

NFT to derive NIA Reagan score (Figure 3D), as well 

as ante-mortem clinical diagnosis of AD dementia 

(Figure 3E). Those with the clinical diagnosis of mild 

cognitive impairment (MCI) are indistinguishable from 

non-cognitively impaired individuals. Thus, individuals 

with AD show greater PCBrainAge acceleration than 

their counterparts. The APOE ε4 allele has been 

reproducibly associated with AD risk, and earlier onset 

of the disease [39]. Positive APOE ε4 status (i.e., 

carrying 1 or 2 APOE ε4 alleles) was significantly 

associated with PCBrainAge acceleration (Figure 3F). 

In fact, PCBrainAge is accelerated across APOE ε4 

carriers such that cognitively normal and AD confirmed 

individuals are indistinguishable. In contrast, among 

non-carriers those with AD show significant 

acceleration over premortem cognitively normal 

individuals (Figure 3G). 

 

During the course of the current research, another 

methylation-based epigenetic clock was reported, 

termed DNAmClockCortical [25]. As expected, 

DNAmClockCortical is correlated with PCBrainAge for 

both predicted age and age acceleration (r = 0.79 and r = 

0.56, respectively) (Figure 4A, 4B). The training 

 

 
 

Figure 3. PCBrainAge acceleration is associated with indications of AD. (A) PCBrainAge residuals following multiple correction 

were verified to remain orthogonal to age using a scatterplot with LOESS curves for males (green) and females (purple). PCBrainAge 
Acceleration was subsequently analyzed in the context of CERAD scores (B), Braak stages (C), NIA Reagan scores (D), the ante-mortem 
clinical diagnosis (E), and the APOE ε4 carrier status (F) of each individual. P-values are the result of performing Kruskal-Wallis tests of 
nonparametric means amongst the categorical groups. Error bars for 3B-3F depict 1 standard error. (G) Acceleration was further broken 
down into cognitive groups by APOE ε4 carrier status for improved clarity. Error bars depict the 95% confidence interval. Significance levels 
based on BH adjusted p values are: *P < 0.05, **P < 0.01; ***P < 0.001. 
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samples of DNAmClockCortical (n = 1,047) included the 

samples used to train PCBrainAge (n = 399) and was 

intended to accurately estimate chronological age of 

samples at all ages (training and test samples aged 1–

108). Indeed, DNAmClockCortical does show better 

correlations with chronological age compared to 

 

 
 

Figure 4. DNAmClockCortical prediction in test data comparable to PCBrainAge predictions. DNAmClockCortical was estimated in our 

test dataset, which is independent from its original training. We find that DNAmClockCortical has moderate correlation with age at death (A), 
and agreement with PCBrainAge accelerations for the same individuals (B). While DNAmClockCortical does exhibit clear acceleration in 
(advanced) AD patients (C–E), demented patients (F), and APOEε4 carriers (G), the p-values of the separation between groups are slightly 
attenuated versus those of PCBrainAge (see Figure 3). The standard deviation of various AD pathological characteristics per clock standard 
deviation are compared for DNAmCortical (pink) and PCBrainAge (blue) (H). Given individuals less than or equal to a standard deviation of 
age acceleration for each clock, the probability of patients being diagnosed with dementia normalized to the total cohort probability is 
shown for each clock (I). 
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PCBrainAge. However, our work with PCBrainAge 

intends to not only predict age, but to capture relevant 

biological heterogeneity of aging in the brain—

especially that associated with AD. DNAmClockCortical 

acceleration shows less significant associations with AD 

clinical and pathologic phenotypes, and APOE ε4 

carrier status in comparison with PCBrainAge (Figure 

4C–4G compared to Figure 3). This then suggests that 

DNAmClockCortical, in optimizing prediction of 

chronological age, may miss relevant heterogeneity and 

aging signals associated with AD. A 1-SD change in 

DNAmClockCortical acceleration does correspond to odds 

of pathologic AD, but this is mostly limited to amyloid 

and neuritic plaques. However, a 1-SD difference in 

PCBrainAge reflects greater differences with AD 

pathology, and is more balanced across various 

postmortem metrics of AD pathology (Figure 4H). 

Further, it was found that increasing standard deviations 

of PCBrainAge acceleration show monotonic increases 

in the normalized probability of dementia, unlike the 

stochasticity observed in DNAmClockcortical (Figure 4I). 

This is likely reflective of the hypothesized reduction in 

noisy CpGs and improved resolution expected to arise 

from using our PC Clocks method. 

The association of PCBrainAge acceleration and AD 

pathology suggests a discriminatory role for 

PCBrainAge beyond age prediction itself. Increased 

prediction accuracy of chronological age may reduce 

the association with AD. PCBrainAge provides 

meaningful, nonrandom information about both age and 

the disease status of the brain. 

 

PCBrainAge demonstrates improved test-retest 

reliability in brain data 

 

Multiple epigenetic clocks have previously been 

implicated as meaningful correlates to AD [24, 26, 40]. 

We hypothesized that the improved correlations 

between AD neuropathology and PCBrainAge 

acceleration are a result of the improved reliability 

arising from the PC clocks methodology [29]. 

Therefore, we measured the reliability of 5 previously 

reported epigenetic clocks in a dataset of 34 cerebellum 

technical replicates [41]. Reliability, according to the 

ICC values, is highest in PCHorvath1 and PCBrainAge, 

the two clocks trained according to the PC Clocks 

framework (Figure 5A). Age acceleration, defined as 

the residual of regression of clock values onto age and

 

 
 

Figure 5. Reliability of Alzheimer’s associated DNAm clocks and correlated pathology. Test-retest reliability of DNAm clocks 

previously reported to associate with clinical or pathological criteria of AD was measured using two-way consistency ICC values, in a dataset 
of 34 pairs of cerebellum replicates (A). The procedure was repeated using simple age acceleration values defined as residuals from linear 
regression of clock scores on age and estimated proportion of neurons. (B). Multiple-regression residuals for these clocks computed in the 
test dataset from ROSMAP data were correlated to each other (C) and various clinical and pathological scores of AD across samples (D). 
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Table 2. Multi-region PCBrainAge acceleration’s correlates to AD. 

 All PFC ST CBM 

CERAD 1.1E-04* 6.3E-03* 6.3E-03* 0.13 

Braak 0.087 0.25 0.067 0.15 

NIA-Reagan 4.5E-04* 6.3E-03* 6.3E-03* 0.36 

Clinical Diagnosis 6.3E-03* 6.3E-03* 4.7E-03* 0.13 

APOE 0.24 0.52 0.076 0.68 

*Indicates a p-value < 0.05 of Kruskal Wallis nonparametric tests of means across criterion groups, followed by adjustment 
according to the Benjamini Hochberg procedure when pooling all p-values in the table. 
 

an estimate of the proportion of neurons, is also most 

reliable for PCHorvath1 and PCBrainAge (Figure 5B). 

 

To illustrate the proposed effects of increased 

reliability, these same clocks were then calculated in the 

ROSMAP test dataset of 700 individuals. Age 

acceleration values were defined as the residuals of 

regressing clock scores onto age and proportion of 

neurons (as well as sex in the case of PhenoAge, for 

which it is also a significant covariate). These clock 

residuals were compared to each other (Figure 5C), as 

well as with previously discussed measures of AD 

neuropathology, clinical AD diagnosis, and APOE ε4 

carrier status (Figure 5D), using Pearson’s correlation 

values. While PCBrainAge and PCHorvath share a 

similar degree of reliability, PCBrainAge shows much 

higher correlation to indicators of AD and AD risk. 

Further, while PCBrainAge and DNAmCortical 

together show similar correlations, the increased 

correlation of PCBrainAge acceleration with AD 

indicators may arise from its reduced noise and higher 

reliability as seen in technical replicates. 

 

Alzheimer’s pathology correlates with PCBrainAge 

across multiple brain regions 

 

Aging may have distinct effects on different brain 

regions with respect to atrophy, dendritic morphology, 

synaptic plasticity, and vasculature [42]. This may be 

reflected in epigenetic clocks, which indicate 

measurable differences in brain aging rates between 

regions [43]. The typical progression of AD involves 

the reproducible, staged invasion of neurofibrillary 

tangles [28] and amyloid-β aggregations [27] through 

the brain. Though AD progression can be variable, 

some regions show amyloid or tau pathology earlier 

than others [44]. It is unknown whether regional 

differences in epigenetic age might help explain the 

differential impact of AD pathology amongst brain 

regions. 

 
We used PCBrainAge to measure the aging trends 

across multiple brain regions and evaluate region-

specific associations with AD. Using 333 individuals’ 

samples from an APOE ε4 carrier enriched subcohort of 

ROSMAP (Supplementary Table 1), we generated 

novel DNAm data from 3 distinct brain regions for each 

individual: Prefrontal cortex (PFC), Striatum (ST), and 

Cerebellum (CBM) (Figure 6A). This incorporated 212 

overlapped individuals for which DNAm data for 

DLPFC (a distinct region and tissue slice) was available 

in the original test dataset used here. As done for the 

original test dataset, principal components were 

projected into this data, followed by PCBrainAge 

prediction for each independent region and sample. To 

account for repeated measurements and to improve 

modeling of epigenetic age acceleration, we employed a 

linear mixed effects (LME) model to utilize data across 

regions in tandem. The model is described in equation 

1. The three brain regions tested here are expected to 

diverge in their epigenetic age prediction based upon 

data in prior clocks [45–47]. Therefore, we allowed a 

random effect to the model intercept with age according 

to brain region. Comparison of this model and simple 

regression is shown in Supplementary Table 4. 

 

(1| ) (Eq. 1)PCBrainAge Age PropNeurons Region= + +  

 

We then related age acceleration in each region to AD 

neuropathology, clinical and pathologic diagnoses, and 

APOE ε4 carrier status. To account for multiple 

comparisons, we used a p-value adjustment according to 

a Benjamini Hochberg procedure from a Kruskal Wallis 

test of nonparametric mean differences (Table 2). Age 

acceleration in prefrontal cortex and striatum were both 

associated with premortem clinical diagnosis (Figure 

6B), CERAD score (Figure 6C) and NIA-Reagan 

neuropathological criterion (Figure 6D), though not 

with Braak scores (Figure 6E). While age acceleration 

in the striatum trends higher in accordance with APOE 

ε4 carrier status, there was no significant difference in 

PCBrainAge acceleration as seen in the larger test 

dataset (Figure 6F). It is important to note that the 

dataset used here is a subset of the test dataset used in 
Figure 3 (See Supplementary Figure 4). The 

associations here are weaker compared to Figure 3 

likely due to the reduced power, as this dataset contains 

fewer samples. This effect is magnified when 
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comparing multiple brain region samples for each 

individual which increases complexity of comparisons 

without an increase in the number of individuals. 

The cerebellum has long been characterized as 

relatively spared in AD, though this has been 

challenged recently [46]. Interestingly, the cerebellum 

 

 
 

Figure 6. Multi-region methylation data recapitulates strong PCBrainAge acceleration associations in test data. Conclusions 

drawn from significant differences in PCBrainAge are graphically outlined by brain region, created with BioRender.com (A). Barplots show 
the mean PCBrainAge Acceleration as defined by the residual of our mixed linear effects model (eq. 1), with error bars corresponding to a 
95% confidence interval. (*) denotes Benjamini Hochberg corrected p-values < 0.05, where within-region significant comparisons are 
predominantly highlighted. Acceleration was compared among brain regions between groupings according to clinical diagnosis (B), CERAD 
scores (C), NIA-Reagan scores (D), Braak Scores (E), and APOE ε4 carrier status (F). 
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ages slowly according to the multiple epigenetic clocks, 

and existing epigenetic clocks do not show correlations 

between cerebellum age acceleration and AD 

neuropathology [45] (Supplementary Figure 5). These 

other clocks were not trained in brain tissue, so it 

remains plausible that brain—or even cerebellum 

specific—epigenetic aging signatures are correlated 

with AD. However, we found that PCBrainAge 

acceleration in cerebellum is not significantly correlated 

with AD diagnosis, neuropathology, or APOE ε4 carrier 

status (Figure 6). Thus, PCBrainAge validates prior 

reports that the cerebellum’s methylation age diverges 

from that of other brain regions reflecting its distinctive 

biology in AD. 

 

Taken together, PCBrainAge demonstrates associations 

with AD neuropathology, diagnosis, and APOE ε4 

carrier status in three regions affected by AD (DLPFC, 

PFC, and striatum) but not in a region that may be 

relatively spared in AD (cerebellum). Furthermore, 

PCBrainAge is applicable in multiple brain regions 

despite being trained specifically in DLPFC. 

 

Finally, to gain further insight into potentially important 

biological mechanisms impacting PCBrainAge scores, 

we performed a modified gene set enrichment analysis. 

While most previously reported DNA methylation 

clocks produce a weighted average of a sparse set of 

CpGs, here we report a metric relying upon a sparse set 

of principal components which each represents a 

patterning of weights across all CpGs in the training set. 

Therefore, we used a ranked gene set enrichment 

analysis (see methods for further details) using each 

PC’s CpG absolute loading scores, multiplied by the 

standard deviation of those PCs in the ROSMAP 

DLPFC test dataset. This methodology allowed us to 

approximate the contribution of each CpG to each PC, 

providing a ranked order list. Once mapped to genes, we 

generated 15 independent gene set enrichment lists (one 

for each PC) according to curated GO terms and REAC 

terms, following a standard protocol [48]. These were 

used to create a consensus enrichment map with imposed 

sparsity to encourage formation of a network with 

similarity across PCs for ease of interpretability in the 

context of the overall PCBrainAge predictor (Figure 7). 

 

We found 5 major clusters of enriched terms of note, 

which support PCBrainAge as a brain age predictor 

and provide further insight into potential underlying 

mechanisms: The canonical Wnt pathway; protein 

mediated events; and protein tyrosine kinase. A 

further two categories are supportive of 

PCBrainAge’s brain tissue specificity: differentiation; 
and gated channel complex. These categories were 

outlined according to network connectivity and 

structure, and their labels were further verified 

according to enrichment of top 10 genes within group 

nodes against all network nodes. 

 

DISCUSSION 
 

While epigenetic clocks trained in blood, or multiple 

tissues, can reflect age in brain tissue [49], biomarkers 

trained specifically for the brain may more accurately 

capture its aging trends. Clocks trained in peripheral 

tissue can reflect postmortem AD pathology when 

applied to brain DNAm data [40]. However, with the 

exception of the PhenoAge clock [24], the acceleration 

captured does not typically demonstrate significant 

association with AD dementia status, despite clear 

correlations with neuropathologically mediated cognitive 

decline [40]. This may reflect the intermediate 

complexity between molecular pathological change and 

higher order cognitive changes [50]. However, blood or 

pan-tissue trained clocks may not adequately capture 

brain aging, due to the brain’s unique methylation profile 

[51–53], extreme diversity of specialized neuronal [54] 

and glial [55] cell types, and distinct developmental 

patterns [56]. In fact, over-reliance upon blood and multi-

tissue clocks is likely to ignore unconserved and tissue-

specific DNA methylation aging signature [38, 57–60]. 

Thus, a methylation-based predictor of age in the brain is 

useful for studying age-related patterns of change in 

neurodegenerative disease at its source. 

 

Prior work has been done to develop methylation-based 

predictors of age in the brain in humans [25] and mice 

[61]. A biomarker of human brain aging, 

DNAmClockCortical, addresses the systematic 

underestimation of age in older adults when predicting 

brain age by existing clocks. While DNAmClockcortical 

can achieve near-perfect age correlation in brain tissue, 

this was not the goal of the present model. The lower 

correlation of PCBrainAge in the test datasets, as 

depicted in Figure 3, carries important biological signal. 

While the present clock does not achieve the degree of 

correlation of clock age and sample age at death found 

by DNAmClockcortical, PCBrainAge’s utility lies in 

the robust link between an individual’s PCBrainAge 

residual (age acceleration), and pathological 

characteristics of AD. Beyond this, generation of 

PCBrainAge employed a novel methodology that 

allowed few samples for adequate training and was 

shown to reduce technical noise, thereby improving 

confidence in biological interpretation of the reported 

age residuals. Reduction of technical noise in this 

manner has also been hypothesized to reduce the sample 

size needed to train a robust epigenetic clock model 

[29], addressing the marked scarcity of brain tissue in 

comparison to blood DNAm. In an independent dataset, 

we find that PCBrainAge logically follows these 

hypotheses, showing improved reliability over multiple 
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clock counterparts. Furthermore, PCBrainAge 

demonstrates applicability across brain regions. 

 

Pathway and gene set enrichment analysis indicate that 

PCBrainAge reflects tissue maintenance, metabolic 

regulation, neurogenesis, and ion channel activity. 

These identified pathway groups are supported by prior 

literature on age associated brain changes. The Wnt 

pathway has been repeatedly associated with aging. In 

the aging brain, downregulation of Wnt signaling may 

relate to the deterioration of healthy stem cell niche 

[62], and dysregulation of adult neurogenesis [63, 64]. 

Furthermore, key players in the Wnt pathway, such as 

DKK1 are implicated in the amyloid and tau 

pathologies of Alzheimer’s Disease [65]. The Wnt 

pathway enrichment is not unique to PCBrainAge and 

has been implicated in other epigenetic clock and 

DNAm studies [66, 67], perhaps representing the core 

tissue-independent signal captured by PCBrainAge. Due 

to the number of Wnt pathway interacting proteins, it is 

likely that our other identified categories are in part 

identified along with Wnt pathway enrichment. 

However, they also have been directly implicated in 

brain aging phenotypes and neurodegeneration. A 

recent proteomic analysis also showed differential 

abundance of protein tyrosine kinases in the ROSMAP 

brain study between APOE ε4 carriers and non-carriers, 

and implicated these as key candidates for molecular 

 

 
 

Figure 7. Gene set enrichment analysis for highly contributing CpGs. Each PC’s ranked CpG weights were translated to genes 
according to annotations, and pathway enrichment analysis was run for each PC. Here, the sparse consensus network of enriched curated 
GO and REAC terms across the 15 PCs is visualized. Annotated clusters of significant pathway similarities and high weights are labeled (5), 
along with the genes enriched within that group beyond the rest of the network. Each node is colored according to the enrichment score of 
that term, from PC1 (yellow) to PC15 (dark purple) according to the viridis color palette, with more color slices demonstrating enrichment 
across more PCs. 
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intervention in incipient AD [68]. Gated ion channels 

are of clear physiological relevance to the brain—

however, recent evidence further suggests that reduced 

neural activation may protect the aging brain [69]. The 

five major categories of pathway enrichment we have 

identified suggests that PCBrainAge’s score is heavily 

derived from methylation changes in genes involved in 

metabolic activities, particularly those of neurons. With 

many enrichment terms being related to ion channels 

directly, metabolic changes, and tissue maintenance, it 

is clear that PCBrainAge is well-positioned for the 

study of brain aging and neurodegenerative disease. 

 

While a connection between DNA methylation and AD 

neuropathology has been a previously discussed 

possibility [50, 70], the current work also demonstrates a 

connection between patterns of DNA methylation change 

and higher order changes like those to cognition, and 

significant genetic differences like APOE ε4 status. The 

acceleration predicted by PCBrainAge is correlated with 

clinical AD dementia, and pathologic AD, outperforms 

sex-specific and pooled sex models in both males and 

females, and can be used across multiple cortical and 

noncortical brain regions. PCBrainAge is also 

significantly associated with APOE ε4 status (see Figure 

3F), which has not been previously shown with existing 

blood-based clocks. With APOE ε4 carriers exhibiting 

PCBrainAge acceleration over their non-carrier 

counterparts, PCBrainAge is consistent with observations 

that this genotype significantly increases risk in an age-

related manner [71]. PCBrainAge can also detect the 

interaction between APOE status and cognitive 

diagnoses, given that APOE carriers show acceleration 

regardless of diagnosis, while noncarriers with AD show 

distinct acceleration versus those who appear cognitively 

normal. One limitation, however, is that our dataset 

shows an enrichment of APOE ε4 carriers with MCI and 

dementia over cognitively normal counterparts. 

Regardless, this may reflect APOE ε4 carriers’ increased 

neuropathological burden [72, 73], while suggesting that 

APOE carriers may not be aggressively predisposed to 

higher order cognitive changes. 

 

PCBrainAge can predict age across multiple brain 

regions while also capturing heterogeneity relevant to 

AD in that region. The degree of correlation recapitulates 

previously described differences in the rate of aging of 

brain samples [43, 45]. DLPFC, PFC, and ST are 

routinely impacted by AD pathology, unlike cerebellum 

[74–76]. We found that PCBrainAge acceleration is 

associated with AD pathology and dementia status in 

these regions. This signal is slightly more robust in ST, 

where age correlation is stronger and separation between 
pathological groups is more distinct. It has been well 

characterized that tau and amyloid impact brain regions 

at varying times and to varying degrees. Further 

investigation is necessary as to whether a model of 

epigenetic brain aging reflects a relationship between 

pathological temporality and epigenetic alterations. 

 

In the cerebellum, PCBrainAge recapitulates aging 

deceleration reported in previous studies [45]. Here we 

also show that age acceleration of cerebellum lacks 

correlation with Alzheimer’s pathology and disease 

status. The slower predicted rate of aging in CBM 

conforms to expectations that CBM aging and its 

relationship to AD are drastically different from other 

brain regions. Without knowing the causal direction for 

the link between age related 5mC changes and AD 

pathology, the mechanisms for this relationship remain 

unclear. There is some evidence that amyloid beta can 

reduce methyltransferase activity resulting in global 

hypomethylation, and cerebellum is relatively spared of 

amyloid pathology until very late in the disease [77]. 

Future studies should investigate these mechanisms. 

 

PCBrainAge is a promising predictor of regional brain 

aging, with demonstrated recapitulation of known aging 

trends in multiple brain regions. However, beyond 

tracking the relative aging of various brain regions, it 

can assess meaningful age-acceleration, or pathological 

aging. This pathological age acceleration is further 

correlated to AD neuropathology, clinical AD 

diagnosis, and APOE ε4 carrier status. PCBrainAge 

may aid in future investigations linking heterogeneity in 

the aging process to AD risk and individual resilience. 
 

While PCBrainAge is a useful tool alone, we anticipate 

that deeper characterization of the biological signal it 

captures will be made possible when used in tandem 

with multi-omics data. Specifically, use of RNA 

sequencing data as another means to track changes in 

cell composition may elucidate the degree to which 

PCBrainAge’s cell proportion influenced signal 

capturing disease-associated shifts in cell proportion, 

beyond simple age-related changes. Proteomic data in 

these samples can further highlight the functional 

changes in cellular activity seen across brain regions. 

Further, while PCBrainAge uses linear methods (PCA 

and elastic net linear regression) for training, future 

work should incorporate nonlinear deep learning 

methods. This will allow clearer contributions by 

nonlinear aging signals that may provide significant, but 

currently less apparent, information about AD-

associated aging changes. 

 

METHODS 
 

Selection of available DNA methylation data 
 

DNA methylation data was acquired from multiple 

sources (Supplementary Table 1). The training data 
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was accessed from the Gene Expression Omnibus 

(GSE74193) [31] as the age range was much wider 

than in the Alzheimer’s Cohort studied: This has the 

important effect of increasing the ratio of the range of 

the variable of interest (age) versus the signal 

(DNAm) noise due to technical error, biological 

heterogeneity, and the effect of diseases. All sample 

methylation β values were generated from the 

dorsolateral prefrontal cortex (DLPFC) using the 

Infinium HumanMethylation450K Beadchip 

(Illumina, San Diego CA, USA) and were used as 

collected, normalized, and reported by the original 

authors [31]. Samples under the age of 20 from the 

original GEO dataset were excluded as it has been 

shown that development typically has a different 

aging regime when considering epigenetic clocks 

[23, 78]. 

 

For assessment of PCBrainAge in the context of 

neurodegeneration and AD, we used the previously 

collected synapse dataset (syn5850422) [36] which 

generated Illumina 450K methylation data in 

postmortem DLPFC of participants in the Religious 

Orders Study and the Rush Memory and Aging Project 

(ROSMAP) [79]. Methylation β values were used as 

originally collected, normalized, and reported by the 

original authors [80]. Samples were excluded if their 

clinical diagnosis value was a non-AD primary cause of 

dementia [81]. Use of these samples would introduce 

significant uncertainty beyond the scope of the current 

work. Clinical diagnoses were dementia, mild cognitive 

impairment, and no cognitive impairment, and 

Alzheimer’s dementia proximate to death (n = 700) 

[82]. Neuropathologic data included CERAD, Braak, 

and pathologic AD by NIA-Reagan [83]. AD 

neuropathology was previously generated for this 

dataset: Neuritic and diffuse plaques, and 

neurofibrillary tangles were estimated using count data 

from silver stain; PHFtau tangle density and β-Amyloid 

load were each estimated using molecularly specific 

immunohistochemistry [84]. 

 

To estimate reliability of PCBrainAge and other DNAm 

clocks in the brain, we identified a publicly available 

dataset containing a cohort cerebellum technical 

replicates (GSE43414) [41]. In brief, two cohorts—1Ai 

and 1Aii—contained cerebellum 450k methylation data 

in 91 samples, and 36 samples of rescanned cerebellum 

450k methylation respectively. Samples from the 1Ai 

and 1Aii cohorts following the authors’ own dasen 

normalization were extracted, with a total of 34 paired 

test-retest replicates remaining (2 rescan samples were 

removed due to ambiguous labelling leading to no 
match between 1Ai and 1Aii). Mean imputation across 

samples was used to remove missing methylation β 

values. 

Generation of multi-region brain methylation data 

 

Novel collection of multi-region brain 5′-cytosine DNA 

methylation data was performed for the current work. 

This data was collected from frozen brain tissue 

samples obtained from Rush University’s Religious 

Orders Study and Rush Memory and Aging Project 

(ROSMAP) [79]. Frozen tissue was isolated in 349 

individuals across three brain regions: Brodmann Areas 

10 (prefrontal cortex), 22 (striatum), and cerebellum. 

 

Bulk genomic DNA was extracted from each tissue 

sample using the Chemagic DNA Tissue100 H24 

prefilling VD1208504.che protocol (Perkin Elmer Ref# 

CMG-1207). In brief, tissue was lysed overnight at 56 

degrees in 1 mL Chemagic Lysis buffer and 50 uL 

Proteinase K. Samples were treated with 80 uL of 

RNASE A @ 4 mg/uL (AmericanBio Ref# AB12023-

00100) for 10 minutes at 56C. Lysis was then 

transferred to a deep well plate and the extraction 

performed via the Perkin Elmer Chemagic 360 

extraction instrument. Samples were centrifuged at 

13000RPM for 1 minute, placed on a magnet and 

transferred to final 1.5 mL Eppendorf tubes. 25–50 mg 

of extracted DNA per sample was then used according 

to the manufacturer’s protocol on the Illumina 

Methylation EPIC array at the Yale Center for Genome 

Analysis (YCGA) with sample randomization on each 

array to mitigate batch effects. 
 

The raw.idat files of bisulfite-converted single-CpG 

resolution of methylation were processed to obtain β 

values through ratios of probe intensities, according to 

standard methods. Using the R ‘minfi’ package [85], 

Noob normalization was performed on β values. For 

more information, the method used herein was derived 

from a prior publication [86]. The raw (syn23633756) 

and normalized beta value (syn23633757) data have 

been deposited to Synapse (Sage Bionetworks, Seattle, 

WA, USA). 
 

The sample phenotype data was provided as previously 

generated by the Rush University Alzheimer’s Disease 

Center, and in accordance with prior publications: 

Individuals’ clinical diagnoses [82] and neuropathologic 

data [83] were annotated as in the test dataset. 

 

CpG selection 
 

5′-cytosine DNA methylation was collected on two 

different arrays across datasets: The 450K and EPIC 

arrays. Therefore, DNAm was limited to only the 

intersection of sites between the two arrays. Further, 

CpGs located on sex chromosomes, as indicated in the 

Illumina 450K array manifest were excluded. This 

resulted in retention of 357,852 CpGs. 
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Model training 

 

Singular vector decomposition was implemented using 

the prcomp function in the R stats package (v3.6.1). 

Detailed methods for training and principal component 

projection can be found in the methods of Higgins-Chen 

et al. [29]. In brief, centered principal component scores 

for individuals, understood as an individual’s score 

based upon their CpG β values undergoing a rotation 

according to the rotation matrix, are used as inputs for 

an elastic net regression to predict age at death. That is, 

rather than using the original beta values for a given 

individual’s CpGs, the left singular vectors (PCs) are 

used instead (excluding only the last PC). Elastic net 

regression was performed using the glmnet package in 

R, according to a mixing parameter (α) of 0.5, utilizing 

equal parts LASSO and ridge regression with 10-fold 

cross validation. All fit models were estimated using 

penalization (λ) corresponding to predicted minimal 

error. Training of the age predictor was performed thus 

in an unsupervised manner, and in a dataset without 

clinical AD individuals. The final PCBrainAge model, 

which constitutes the “core” model entailed retraining 

an elastic net model such that PCs were zeroed out if 

not one of the 15 core principal components which had 

some nonzero weight in the original three models. 

 

Estimation of neuron proportion 

 

Along with methylation data, publicly available dataset 

annotations provided sorted cell proportion estimates, or 

estimates of neuron and glia proportion calculated using 

the methylation-based Cell Epigenotype Specific Model 

(CETS) for R package [87]. In the novel, multi-region 

dataset, the CETS package was used to estimate the 

proportion of neurons in each brain region sample. 

 

Statistical measures 

 

All reported scatterplot and predictor of age at death 

correlations (and corresponding p-values) are the result 

of correlation tests between means according to the 

Pearson’s product moment coefficient, presuming 

standard normal distributions. This is implemented 

using the R function cor.test from the stats package. 

Correlations with annotations of phenotype, as in Figure 

2A, 2B are the result of implementing a biweight 

midcorrelation, a median-based comparison test that 

improves sensitivity to outliers. This was implemented 

using the bicor function of the WGCNA package in R. 

 

The p-value reported for all barplots are the result of a 

Kruskal-Wallis Rank Sum Test, which is a 
nonparametric test of means. This did not require 

assumptions of normality, and was applied using the 

kruskal.test function in the R stats package. Error bars 

on all barplots represent a standard error of the mean, 

unless explicitly noted otherwise. 

 

In all tables offering many independent p-value comparisons 

(Table 2, Supplementary Table 2), adjustment of p-values 

were necessary. All adjusted p-values were reported 

following implementation of the Benjamini Hochberg 

procedure, and values p < 0.05 were considered significant. 

 

Reliability of cerebellum replicate data was quantified 

using a two-way, single-rater, consistency model of 

intraclass correlation coefficient (ICC) using the icc 

function of the R irr package. This function was used to 

obtain mean values and asymmetric 95% confidence 

intervals of ICC for both paired replicate clock values, 

and clock accelerations as defined by taking a residual 

upon regressing clock predictions onto age and the 

CETS-predicted proportion of neurons. 

 

Linear mixed effects (LME) models were used in the 

context of the multiregion data. This required 

implementation of the lmer function of the lme4 

package in R [88]. LMEs were optimized according to a 

Nelder Mead optimizer, and were visualized using the 

sjPlot package. Generation of LMEs were done in a 

hypothesis driven manner as described in the results, 

and were compared to the marginal R2 of less complex 

models. Visualization of the model table was performed 

using sjPlot [89]. The residuals from the LME model 

were used to define the age acceleration of each 

specimen, as used in Figure 6. 

 

Gene set enrichment analysis (GSEA) 

 

To rank CpGs in order of importance for each PC, CpG 

loadings were multiplied by standard deviation of the 

CpG in the ROSMAP DLPFC test cohort [36]. Due to 

computational limitations of downstream tools, only the 

top 10% of CpGs thus ranked were used. The ranked 

list for each PC was then mapped using the Illumina 

450k array annotation file to its associated gene, where 

applicable. Unannotated CpGs were ignored, and 

duplicate gene entries were consolidated to the first 

unique instance. A custom background list of CpGs was 

generated by identifying all unique genes annotated by 

Illumina for the 450k array. 

 

GSEA proceeded according to a slightly modified 

version of a standard protocol [48]. Each PC was 

entered into g:Profiler as a ranked order list of genes, 

with custom background and Bonferroni p-value 

adjustment. Only non-electronically annotated GO and 

REAC terms were used for enrichment analysis. 
 

All 15 sets of enrichment terms were used in 

EnrichmentMap in Cytoscape to generate a consensus 
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network with q-value cutoff of 1 × 10−3 and a sparse 

network to increase agreement across PC enrichment 

sets. yFiles radial layout was used to visualize the 

network, AutoAnnotate was used to identify clusters of 

highly interconnected nodes, and WordCloud was used 

to generate the top 10 genes overrepresented in each 

node cluster and verify the labels assigned to each of the 

5 groups. Each node is visualized as a pie chart 

depicting the relative normalized enrichment score of 

contributing PCs, with PC1 as yellow and PC15 as dark 

purple following the viridis color palette. More colors 

within a node demonstrates more conservation of 

enrichment across PCBrainAge PCs, and an 

overrepresentation of a slice within a node coloring 

suggests more contribution to that PC’s own network. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Removing schizophrenia patients from training sample doesn’t improve model performance. 
When schizophrenia patients are not included in the training data for each model, performance is significantly reduced in all iterations (A–
C) when compared to the original training models (Figure 1D–1F). Core PCs consist of just 4 elements (D) which do not predict age as well in 
the retrained core model (E) as in the original (Figure 1G). The PCs selected are quite similar to those of the original model (F), and 
demonstrate a reasonable distribution of residuals across ages (G), but do not capture components of AD in the test dataset with age 
acceleration as strongly as in the original PCBrainAge Core model (H–L). 
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Supplementary Figure 2. Confirmation that core PCs contain the aging signal. All panels from this figure are comparable to those 
of Figure 1. The major difference in the present figure is that the principal components in the core of Figure 1G have been removed from 
consideration for the elastic net model training. Clearly, the models are unsuccessful at predicting age. Models were trained using all PCs 
except the 15 in the core and projected onto the entire training dataset and test dataset when trained on both sexes (A, D), the male sex 
samples (B, E) and the female sex samples (C, F). 
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Supplementary Figure 3. All dataset sample loading distributions. The distribution of loadings for each core PC is evaluated in the 
training dataset, across all ages (A) as compared to Figure 2C, in the testing dataset (B) exactly as Figure 2D, and in the multi-region dataset 
in PFC (C), ST (D), and CBM (E). 
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Supplementary Figure 4. Differences in overlapped versus non-overlapped individuals from two datasets. The composition of 
the 2 datasets and the subset of overlapped individuals is described (A). The CpGs which are used to generate the principal components’ 
weights were generated by multiplying PC model weight by the CpG loadings across the PCs, and summing the total weight for each CpG. 
The weights were converted to z-scores, and those with a value of 3 or higher (4582 CpGs) are plotted to compare the agreement of mean 
beta values in both datasets (B). When weights of z-score <3 are plotted, points occupy a similar space but depart further from the 
diagonal. Overlapped individuals (C) show similar correlations of PCBrainAge prediction to age as the non-overlapped group (D). The 
overlap of the two groups’ PCBrainAge acceleration was further correlated to CERAD scores (E), Braak scores (F), NIA Reagan scores (G), 
and cognitive diagnoses (H). While separation is clearer for these scores when using non-overlapped individuals (I–L), this may be due to 
the larger set of individuals. 
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Supplementary Figure 5. Existing epigenetic clocks do not robustly capture hallmarks of AD in cerebellum. The 3 most used 

epigenetic clocks were calculated in our cerebellum dataset. The predicted ages have low correlation with age at death in the Horvath 
Multi-Tissue (A), the Horvath Skin and Blood (B), and Hannum (C) clocks. Age acceleration, calculated as the residuals of a linear model of 
the clocks’ predictions onto age and proportion of neurons were not significantly correlated with CERAD scoring criterion for the Horvath 
Multi-Tissue (D), Horvath Skin and Blood (E), and Hannum (F) clocks. Age acceleration for all three clocks were also not correlated with 
combined criterion NIA Reagan scores (G–I). 
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Supplementary Tables 
 

Supplementary Table 1. Dataset access, annotation and composition. 

 Training Testing Validation 

Accession GSE74193 syn5850422 syn23633757 

n 399 700 333 

Array 450k 450k EPIC 

Brain Region DLPFC DLPFC Matched PFC, ST, CBM 

Ages 20−97 66−108 66−108 

Has AD? No Yes Yes 

White 0.48 1 0.97 

Female 0.34 0.64 0.65 

APOE ε4 N/A 0.26 0.71 

 

 

Supplementary Table 2. Biweight midcorrelation of core PCs and AD characteristics. 

 Age p Cerad p Braak p NIA-Reagan p Cogdx P APOE ε4 p 

PC1 −0.10 * −0.07  −0.05  −0.04  −0.07  −0.01  

PC5 −0.14 *** −0.13 ** −0.13 ** −0.16 *** −0.15 ** −0.07  

PC6 −0.01  −0.05  −0.04  −0.09  −0.07  −0.08  

PC8 0.04  −0.14 ** −0.07  −0.06  −0.08  −0.03  

PC9 −0.03  −0.05  −0.04  −0.02  −0.01  −0.07  

PC10 −0.11 * 0.05  −0.03  0.00  −0.06  0.06  

PC12 0.11 * −0.07  −0.01  0.01  −0.02  −0.09  

PC15 0.05  0.00  −0.01  0.00  0.11 * −0.03  

PC19 0.28 *** 0.06  0.10 * 0.10 * 0.09  −0.06  

PC26 0.01  0.08  0.01  0.00  0.02  0.00  

PC29 0.00  0.07  0.04  0.02  0.02  0.09  

PC32 −0.18 *** −0.02  −0.12 * −0.08  −0.14 ** 0.03  

PC33 −0.23 *** −0.20 *** −0.17 *** −0.17 *** −0.15 ** 0.00  

PC41 0.09 * −0.08  0.01  −0.03  0.02  −0.07  

PC391 0.03  −0.03  0.05  0.02  0.04  0.03  

Overall 0.59 *** 0.15 *** 0.28 *** 0.27 *** 0.32 *** 0.03  

Acceleration −0.03  0.15 *** 0.13 ** 0.17 *** 0.16 *** 0.12 * 

BH Corrected P-values > 0.05 (n.s.) *p < 0.05, **p < 0.005, ***p < 0.0005. 
 

 

Supplementary Table 3. Linear models for PCBrainAge.C acceleration. 

Predictor 
Testing PFC ST CBM 

Estimates p Estimates p Estimates p Estimates p 

(Intercept) 33.33 <0.001 54.76 <0.001 48.05 <0.001 47.20 <0.001 

Age 0.46 <0.001 0.39 <0.001 0.46 <0.001 0.17 <0.001 

Prop N 3.88 0.138 −18.58 <0.001 −16.80 <0.001 −18.94 0.031 
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Observations 700 333 333 333 

R2/R2 adjusted 0.389/0.388 0.254/0.250 0.310/0.306 0.085/0.080 

 

 

Supplementary Table 4. Linear mixed effect models in multi-region brain data improves upon OLS regression. 

Predictors 
OLS Regression LME Model 

Estimates p Estimates p 

(Intercept) 63.79 <0.001 49.03 <0.001 

Age 0.35 <0.001 0.34 <0.001 

Prop N −35.68 0.138 −15.96 <0.001 

Random Effects   

σ2  18.48 

τ00  169.63region 

ICC  0.90 

N  3region 

Observations 997 997 

R2/R2 adjusted 0.325/0.324 0.030/0.905 

 

 


