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Nobiletin enhances 
the development and quality 
of bovine embryos in vitro 
during two key periods 
of embryonic genome activation
Karina Cañón‑Beltrán1,2,6, Yulia N. Cajas1,6, Serafín Peréz‑Cerezales1, Claudia L. V. Leal1,3, 
Ekaitz Agirregoitia4, Alfonso Gutierrez‑Adán1, Encina M. González5 & Dimitrios Rizos1*

In vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to 
evaluate whether nobiletin supplementation during EGA improves embryonic development and 
blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in 
SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 
0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; 
MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) 
for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial 
activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective 
of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts 
was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis 
revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts 
produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on 
preimplantation bovine embryonic development in vitro and corroborates on the quality improvement 
of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.

In vitro culture (IVC) of bovine embryos is one of the most important processes in the development of assisted 
reproductive techniques due to the fact that postfertilization culture conditions can dramatically alter the quality 
of the resulting blastocysts1,2. In vitro, gametes and embryos are exposed to spatial and temporal unnatural con-
ditions, whose scope is not completely known3. Although many improvements have been made, in vitro culture 
systems are still not as efficient as in vivo embryo production4. In cattle, the proportion of embryos reaching the 
blastocyst stage is around 30–40%5 and are often compromised in quality and competence manifested by a darker 
morphology1 or altered gene expression patterns6 when compared to their in vivo counterparts. The factors that 
most influence the quality of the embryos are the conditions after fertilization; which include physicochemical 
(temperature, osmolality, and pH), oxidative (antioxidant balance), and energetic (production, utilization, and 
storage) stresses6.

Under in vitro conditions, the dynamics of embryo development and the kinetics of cleavage are related to the 
subsequent developmental stages: the faster-cleaved embryos have a higher chance to develop to the blastocysts 
stage7. Therefore, the morphological and metabolic changes that occur during the first 4 days of preimplanta-
tion development of the bovine embryo are the most important; besides, during this same period the embryonic 
genome activation (EGA) occurs2,8. At the start of early embryogenesis, all mRNAs and proteins controlling 
development are of maternal origin, and as development progresses, these reserves gradually degrade while 
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embryonic transcripts are synthesized; this process is called maternal-to-embryonic transition and involves 
EGA9. The EGA occurs in distinct waves, which are species-specific. Bovine preimplantation embryo develop-
ment is characterized by two distinct phases: (i) minor EGA (MNEGA) (2-cell to 8-cell stages) where zygotes and 
early embryos are transcriptionally and translationally active; (ii) major EGA (MJEGA) (8-cell to 16-cells stages) 
which includes a gradual degradation of mRNA molecules of maternal origin, together with a change in the 
protein synthesis, and these events are key factors for successful embryonic development and differentiation2,8. 
EGA is a prerequisite for correct compaction, that leads to an increase in intercellular adhesion mediated by 
adherent junctions and embryonic polarization10, as well as the formation of the blastocyst, with its trophecto-
derm (TE), and the inner cell mass (ICM)11.

In recent years, the role of different signaling pathways in preimplantation development has been analyzed, 
suggesting the existence of a complex network of signals that control and are responsible for cell division, dif-
ferentiation, cytoskeleton rearrangements, cell proliferation and apoptosis11,12. One of the most important signal 
transduction pathways that regulate cell survival is PI3K/AKT. PI3K/AKT pathway consists of several molecules, 
including kinases, phosphatases, and transcription factors that are fundamental in processes such as migration, 
metabolism, and cell cycle progression13,14. During embryonic development, PI3K/AKT regulates cell survival 
and its inhibition can cause a significant delay in blastocyst hatching12. In this context, the quality of the embryos 
produced in vitro depends not only on the proper functioning of the signaling pathways but also on the post-
fertilization culture environment.

To improve the blastocysts rates and quality, several studies have probed the addition of different types 
of natural antioxidants to the IVC medium, such as vitamin C15 or crocetin16. These compounds improved 
embryonic quality in terms of increase in blastocysts rates and embryo cell number, as well as reduction in 
reactive oxygen species (ROS) levels and apoptotic cells in embryos. In recent years, nobiletin a class of polym-
ethoxylated flavone identified from the citrus peel (chemically known as 5,6,7,8,3′,4′ hexamethoxyflavone), has 
drawn increasing attention since it is easily absorbed across the cytoplasmic membranes due to its structure and 
lipophilic nature17. In addition, it has been reported that nobiletin has a broad spectrum of biological activities, 
that include antioxidative functions and cell cycle regulation17. We observed that supplementation of in vitro 
maturation (IVM) medium with nobiletin counteracts the effects of the increase in ROS production during 
IVM, improves oocyte nuclear and cytoplasmic maturation, and subsequent embryo development and quality 
in bovine18. Other studies using cultured cell lines have demonstrated that nobiletin can modulate signaling 
cascades, including PI3K/AKT signaling pathway17,19. Nevertheless, the mechanism of specific action by which 
nobiletin modulates this signaling pathway is not fully understood, and, to our knowledge, there is no evidence of 
any developmental effect of nobiletin supplementation during post-fertilization embryo culture in vitro. Thus, in 
this study, we aimed to evaluate whether supplementation of nobiletin to the in vitro culture medium during the 
two EGA phases improves embryonic development and blastocyst quality and if its action is related to the PI3K/
AKT signaling pathway. The parameters evaluated in blastocysts were, (i) lipid accumulation, (ii) mitochondrial 
activity, (iii) quantitative changes of key genes related to quality and development, (iv) immunolocalization of 
phosphorylated-AKT (p-AKT) and (v) level by western blot analysis for AKT and p-AKT (Thr308/Ser473).

Results
Nobiletin during MNEGA or MJEGA enhances early embryo development in vitro.  For all experi-
mental groups, only embryos that reached the 8-cell stage at 54 h post-insemination (hpi) were selected for the 
study. As shown in Fig. 1a for MNEGA phase, no differences were observed in cleavage rate at 54 hpi, which ranged 
from 82.3 ± 1.0 to 85.5 ± 0.5%. At 54 hpi, no differences were observed either in the proportion of embryos that 
reached the 8-cell stage, which ranged from 57.1 ± 1.4 to 60.4 ± 0.7%. Consequently, a similar proportion of 
embryos with a delayed development (< 8 cells), which ranged from 22.6 ± 0.9 to 26.6 ± 1.2%, was observed 
(Fig. 1b). Blastocyst yield at Day 7 and 8 (Fig. 1c) was significantly higher (P < 0.001) for Nob5 (39.7 ± 0.8 and 
42.7 ± 1.0%, respectively) and Nob10 (41.0 ± 1.0 and 44.4 ± 1.3%), compared to Control (32.7 ± 0.7 and 34.6 ± 
0.7%); CDMSO (32.8 ± 0.5 and 34.9 ± 0.4%) and Nob25 (31.8 ± 1.7 and 34.6 ± 1.2%) (Supplementary Table S1).

During MJEGA, cleavage rate at 54 hpi was 86.6 ± 0.2% and the proportion of embryos that reached the 8-cell 
stage was 71.1 ± 0.4% while the proportion of embryos with a delayed development (< 8 cells) was 15.5 ± 0.3% 
(Fig. 1d). At 96 hpi a significantly (P < 0.001) higher proportion of embryos reached the 16-cell stage in Nob5 
and Nob10 groups (70.1 ± 0.5% and 69.9 ± 0.4%, respectively) compared to Control (60.0 ± 0.4%), CDMSO (60.7 ± 
0.4%) and Nob25 (60.8 ± 0.8%) groups (Fig. 1e). As a consequence, a significantly lower proportion of embryos 
with a delayed development (<16 cells) was observed in Nob5 and Nob10 compared to the other groups (Nob5: 
29.9 ± 0.5% and Nob10: 30.1 ± 0.4% vs Control: 40.0 ± 0.4%, CDMSO: 39.3 ± 0.4% and Nob25: 39.2 ± 0.8%, 
P < 0.001). On Day 7 and 8, blastocyst yield was significantly higher (P < 0.001) for Nob10 (54.5 ± 1.1% and 
61.0 ± 0.8%, respectively) compared to Control (38.4 ± 1.1% and 47.3 ± 1.4%), CDMSO (35.8 ± 1.0% and 44.0 ± 
1.1%), Nob5 (46.6 ± 0.8% and 52.5 ± 1.5%) and Nob25 (35.9 ± 1.5%–42.5 ± 1.3%) groups, while Nob5 was higher 
(P < 0.001) compared to Nob25 and both control groups (Fig. 1f) (Supplementary Table S2).

Nobiletin during MNEGA or MJEGA increases the quality of in vitro produced blastocysts.  Only 
the experimental groups that showed better blastocyst yield in the previous experiment (Nob5 and Nob10 dur-
ing MNEGA or MJEGA) were used for embryo quality evaluation in comparison with both control groups (Control 
and CDMSO).

The mitochondrial activity was higher (P < 0.001) in blastocysts from Nob5 and Nob10 groups, from either 
MNEGA or MJEGA phase, compared with both control groups (Fig. 2).
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Figure 1.   Nobiletin effect in embryonic development. Developmental rates of in vitro produced bovine 
embryos cultured during 21–54 h post-insemination (hpi) (MNEGA: a–c) or during 54–96 hpi (MJEGA: 
d–f) with or without nobiletin. (a,d) Total cleavage rate at 54 hpi; (b,e) embryos ≥ or ≤ 8-cell stage at 54 hpi 
and ≥ or ≤ 16-cell stage at 96 hpi; (c,f) blastocyst rate on Days 7–8 pi (in vitro fertilization = Day 0), from embryos 
cultured in SOF + 5% FCS (Control), supplemented or not with 5 (Nob5), 10 (Nob10) or 25 µM (Nob25) 
nobiletin or with 0.03% dimethyl sulfoxide (CDMSO) during MNEGA or MJEGA respectively. Results are expressed 
as mean ± s.e.m. Significant differences (P < 0.001) are indicated with different letters.
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Figure 2.   Nobiletin effect in blastocysts mitochondrial activity. (a) Quantification of mitochondrial 
fluorescence intensity in arbitrary units (a.u) in Day 7 blastocysts cultured in SOF + 5% FCS (Control), 
supplemented or not with 5 (Nob5) or 10 µM (Nob10) nobiletin or with 0.03% dimethyl sulfoxide (CDMSO) 
during 21–54 hpi (MNEGA: presumptive zygote to 8-cell stage) or during 54–96 hpi (MJEGA: 8- to 16-cell 
stage). Data are the mean ± s.e.m. Significant differences (P < 0.001) are indicated with different letters. (b) 
Representative fluorescence images of mitochondrial activity in Day 7 blastocysts from all experimental groups 
(Control, Nob5 Nob10, CDMSO) in both phases (MNEGA or MJEGA). Images were captured on 63× objective. Scale 
bar 50 µm.
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When analyzing the lipid content, we observed that the total area of lipid droplets in blastocysts resulting from 
treatments during MNEGA or MJEGA was significantly reduced (P < 0.001) in Nob5 and Nob10 groups compared 
with the control groups (Fig. 3).

The total number of cells was greater (P < 0.001) in blastocysts from MNEGA phase produces with 5 µM of 
nobiletin (137.3 ± 0.6) compared to all other groups (Control: 105.7 ± 0.7; CDMSO: 106.4 ± 0.8; Nob10: 126.7 ± 0.8), 
while blastocysts from Nob10 group had more cells (P < 0.001) compared to control groups, but less (P < 0.001) 
when compared to Nob5. However, during MJEGA phase the total number of cells was higher in blastocysts from 
Nob5 and Nob10 groups (133.2 ± 0.9 and 134.2 ± 0.7, respectively) compared to control groups (Control: 104.9 
± 0.7 and CDMSO: 104.6 ± 0.6) (P < 0.001) (Supplementary Table S3).

Gene expression in ≥ 8‑cell embryos and blastocysts produced with nobiletin during MNEGA.  The mRNA abun-
dance of CDK2, H3-3B, H3-3A, and GPX1 was significantly increased in 8-cell stage embryos from Nob5 and 
Nob10 groups compared to both controls (P < 0.05) (Fig. 4a). The expression of PPARα and GPX1 was sig-
nificantly higher in blastocysts from Nob5 and Nob10 groups when compared with both controls (P < 0.05) 
(Fig. 4b). No differences were observed for the PPARGC1A, PPARα, RPS6KB1, and NFE2L2 transcripts in 8-cell 
stage embryos and PPARGC1A, RPS6KB1, CDK2, H3-3B, H3F3A, and NFE2L2 in blastocysts.

Gene expression in ≥ 16‑cell embryos and blastocysts produced with nobiletin during MJEGA.  The expression 
level of CDK2, H3-3B and NFE2L2 transcripts was significantly increased in 16-cell stage embryos from Nob10 
group compared to Nob5 and both control groups. While the expression of GPX1 gene was higher in Nob5 and 
Nob10 compared to control groups (P < 0.05) (Fig. 5a). In blastocysts the expression of PPARα was significantly 
higher in Nob10 group compared to all other groups (P < 0.05), while CDK2 and GPX1 were upregulated in 
both nobiletin groups compared with controls (P < 0.05) (Fig. 5b). No significant differences were observed 
for PPARGC1A, PPARα, RPS6KB1 and H3-3A in 16-cell stage embryos, and for PPARGC1A, RPS6KB1, H3-3B, 
H3-3A and NFE2L2 in blastocysts.

Nobiletin during MNEGA or MJEGA increases AKT phosphorylation in blastocysts produced 
in vitro.  Immunofluorescence analysis revealed immunoreactive proteins for p-AKT in bovine blastocysts. In 
Day 7 blastocysts, AKT increased its phosphorylation levels when nobiletin was present in the culture medium 
(Nob5 and Nob10 groups) during MNEGA or MJEGA. While p-AKT levels were weaker in blastocysts produced 
from control groups during MJEGA phase (Fig. 6).

Similarly, the western blot analysis showed that both p-AKT-Thr308 and p-AKT-Ser473 phosphorylation 
levels were significantly higher in blastocysts produced with nobiletin supplementation (Nob5 and Nob10) dur-
ing MNEGA phase when compared with control groups (P < 0.05) (Fig. 7a–c). A similar pattern was observed 
in response to nobiletin treatment during MJEGA, as p-AKT-Thr308 and p-AKT-Ser473 phosphorylation levels 
were significantly higher in blastocysts produced with Nob5 and Nob10 compared with control groups (P < 0.05) 
(Fig. 7d–f).

Discussion
Under in vivo conditions, cells have antioxidants levels in equilibrium and possess physiological mechanisms 
to hinder excessive free radical formation20. During in vitro culture this mechanism suffers disturbances, in 
which the redox balance is altered with an increase in the production of free radicals and, as a consequence, a 
decrease in embryo development6. Several studies, aiming to identify the most effective antioxidants to reduce 
the alteration of the redox balance and ROS levels during the in vitro production of embryos, have shown that 
the addition of quercetin, resveratrol, vitamin C or carnitine to the culture media have beneficial effects on early 
embryonic development15,21. To our knowledge, the present study is the first that investigates the antioxidant 
effects of nobiletin supplementation in the culture medium during the two main phases of EGA (MNEGA: minor 
activation from 2- to 8-cell stage and MJEGA: major activation from 8- to 16-cell stage)2,8 in bovine embryo 
developmental competence in vitro and quality of the produced blastocysts, as well as its possible interaction 
with the AKT signaling pathway.

Irrespective of concentration, addition of nobiletin to culture media during MNEGA phase (21–54 hpi) did not 
affect cleavage rates at 54 hpi as well as the percentage of embryos reach the 8-cell stage but increased blastocyst 
production, whereas nobiletin supplementation in culture media during MJEGA phase (54–96 hpi) significantly 
increased the percentage of embryos that reach the16-cell stage and blastocyst production. Several studies have 
shown that during EGA the bovine embryo actively synthesize transcription factors and this process directly 
links to chromatin changes, protein allocation, nuclear reorganization and cell proliferation8,22. Since in our 
results developmental kinetics were stimulated with more 16-cell embryos by nobiletin during MJEGA, we could 
hypothesize that nobiletin activates early embryonic genes important for the proper genomic function of the 
embryo during major EGA. Although with our experimental design we cannot link this effect specifically with 
either of the two activation phases of the embryonic genome.

The evidence that nobiletin supplementation improves blastocyst production is in line with other studies 
showing increased embryo development in vitro when culture medium was supplemented with biological antioxi-
dants similar to nobiletin16,23,24. Another effect of nobiletin was to induce a significant increase in mitochondrial 
activity and a lower content of lipid droplets in blastocysts from both EGA phases analyzed. Mitochondria play 
a central role in the generation of adenosine triphosphate (ATP), so, they are considered as energy control units 
necessary for cell division, pluripotency and differentiation25. Cagnone and Sirard6, reported that in vivo, during 
the early cleavages, mitochondria and intracellular metabolism are quiescent. Nevertheless, in vitro, this meta-
bolic quiescence is altered due to the presence of nutrients in excessive amounts that overstimulate mitochondria 
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Figure 3.   Nobiletin effect in blastocysts lipid content. (a) Quantification of the total area of lipid droplets 
(µm2) in Day 7 blastocysts cultured in SOF + 5% FCS (Control), supplemented or not with 5 (Nob5) or 10 µM 
(Nob10) nobiletin or with 0.03% dimethyl sulfoxide (CDMSO) during 21–54 hpi (MNEGA: presumptive zygote to 
8-cell stage) or during 54–96 hpi (MJEGA: 8- to 16-cell stage). Data are the mean ± s.e.m. Significant differences 
(P < 0.001) are indicated with different letters. (b) Representative fluorescence images of lipid droplets in Day 
7 blastocysts from all experimental groups (Control, Nob5 Nob10, CDMSO) in both phases (MNEGA or MJEGA). 
Images were captured on 63× objective. Scale bar 50 µm.
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and alter their efficiency to respond to oxidative phosphorylation6. Mitochondria also sense changes in redox 
potential and force embryos to adapt versus the decreased production of ATP by oxidative phosphorylation dur-
ing the transition from morula to blastocyst6,25. Besides, some studies reported that changes in mitochondrial 
activity may affect the development of energetic metabolism in the embryo, in terms of availability of glucose, 
lipids, amino acids and DNA methylation6,26. Although the nobiletin action mechanism in mitochondria has 
not been fully elucidated, in a previous study we observed that increased oocyte mitochondrial activity was 
related to the cytoprotective effects of nobiletin and its intrinsic ROS-scavenging property18. Nevertheless, the 
effect in the blastocyst could be explained based on the fact that nobiletin is a hydrophobic compound, which 
easily penetrates through cell membranes directly affecting mitochondrial bioenergetics. Nobiletin can modify 
intramitochondrial proteins (e.g. acetylated proteins localized within the mitochondria in the brain of rats)27 or 
alter the mitochondrial membrane potential by changing the activities of mitochondrial enzymes, like succinate 
dehydrogenase and cytochrome c oxidase as it has been demonstrated in human blood lymphocytes28. However, 
to verify if this mechanism occurs in bovine blastocysts, further investigation is necessary.

Lipid content is a crucial factor for early embryo development in vitro in bovine since energy metabolism 
is abnormal under such conditions, resulting in an excessive accumulation of lipids associated with reduced 
embryonic quality29. Lipids are stored in intracellular droplets and are metabolized via β-oxidation in the mito-
chondrial matrix. A large amount of lipid droplets increases the production of ATP necessary for the formation 
of blastocysts but this can affect its quality; thus, a lower number of lipid droplets in blastocysts is considered as 
a criterion of good quality embryos16. Our results showed for both EGA phases, nobiletin supplementation in 
culture medium reduced the amount of lipids in blastocysts. Furthermore, we analyze the expression of peroxi-
some proliferator-activated receptor alpha transcript (PPARα), belonging to one of the 3 key nuclear receptors 

Figure 4.   Relative mRNA transcript abundance of embryo development-related genes in in vitro produced 
embryos cultured during 21–54 h post insemination (MNEGA: presumptive zygote to 8-cell stage) with or 
without nobiletin. (a) Relative abundance in 8-cell stage embryos cultured in SOF + 5% FCS (Control), 
supplemented or not with 5 (Nob5) or 10 µM (Nob10) nobiletin or with 0.03% dimethyl sulfoxide (CDMSO) 
during MNEGA phase. (b) Relative abundance in blastocysts from Control, Nob5, Nob10, and CDMSO 
experimental groups from MNEGA phase. The relative abundance of the transcripts was normalized to H2AFZ 
and ACTB as housekeeping genes. Data are the mean ± s.e.m. Different letters indicate significant difference 
(P < 0.05) between treatments.
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in the modulation of transcription for lipid metabolism-related genes30. PPARα was previously detected in cattle 
embryos and has been associated with embryo quality31. In our study, PPARα was significantly upregulated in 
blastocysts produced with both concentrations of nobiletin supplementation during MNEGA phase or 10 µM 
of nobiletin supplementation during MJEGA compared to controls. These results together are in line with other 
studies which demonstrated that antioxidant supplementation in IVC medium, like crocetin23 and L-carnitine21, 
improved embryo quality by decreasing their lipid content. Regarding nobiletin, studies in mice showed its abil-
ity to reduce hepatic lipid accumulation, prevent lipoprotein overproduction and normalize insulin sensitivity 
when supplied in the diet32. Moreover, it has been demonstrated that nobiletin reduces lipid accumulation and 
regulates lipidic metabolism in hepatic cell lines17,33. There is evidence that nobiletin upregulates the expression 
of PPARα in white adipose tissue of mice17. An explanation for the reduction of lipids by nobiletin has been 
proposed indicating that full methoxylation of the A-ring of nobiletin seems to be the most optimal structure to 
express potent effects on modulating hepatic lipid metabolism via primarily suppressing lipoprotein secretion in 
HepG2 cells33. Therefore, it appears that the ability of nobiletin to reduce lipid content and improve mitochondrial 
activity in blastocysts may be related to the properties of its chemical structure that allows modulation of lipid 
metabolism and mitochondrial activity. Moreover, activation of PPARα by nobiletin could result in increased 
embryo lipid turnover through the β-oxidative pathway, preventing accumulation of lipoperoxides despite per-
oxisomal induction. Recent studies have shown that response of embryos to IVC involves a variety of metabolic 
factors that act as signals of extracellular and intracellular conditions to which the early embryos can adapt cell 
programming, signaling pathways, mitochondrial metabolism (mitochondrial production of Acetyl‐Coenzyme 
A (Acetyl‐Co A) and methyl groups, which are dependent on the availability of glucose, lipids and amino acids) 
or peroxisome proliferator-activated receptors (PPARs) in response to lipid content. These factors in the embryo 
are translated into effects on developmental speed or epigenetic modifications6,34,35. Consequently, these results 

Figure 5.   Relative mRNA transcript abundance of embryo development-related genes in in vitro produced 
embryos cultured during 54–96 hpi (MJEGA: 8-to 16-cell stage) with or without nobiletin. (a) Relative abundance 
in16-cell stage embryos cultured in SOF + 5% FCS (Control), supplemented or not with 5 (Nob5) or 10 µM 
(Nob10) nobiletin or with 0.03% dimethyl sulfoxide (CDMSO) during MNEGA phase. (b) Relative abundance 
in blastocysts from Control, Nob5, Nob10, and CDMSO experimental groups from MJEGA phase. The relative 
abundance of the transcripts was normalized to H2AFZ and ACTB as housekeeping genes. Data are the 
mean ± s.e.m. Different letters indicate significant difference (P < 0.05) between treatments.
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can reinforce the antioxidant-defense role of nobiletin during early embryo development in vitro in bovine and 
could indicate an improvement of the quality of the produced blastocysts.

Embryo cell number is a parameter correlated with embryonic development and quality. Also, it has been 
reported for different cellular lines (MOLT-4, HUVEC, PC12D, K-N-SH cells) that nobiletin exert its activity by 
modulation of cell cycle progression17. We observed that regardless of EGA phase (MNEGA and MJEGA), nobiletin 
supplementation in culture media increased the total cell number of produced blastocysts. This increase rate was 
similar to that observed with other antioxidants such as vitamin C15 or crocetin16,23, suggesting that nobiletin 
could directly stimulate the cell cycle during EGA and improve embryo quality.

To verify if the effects of nobiletin during MNEGA or MJEGA were related to gene expression changes, we ana-
lyzed the expression of candidate genes for oxidative stress, embryo development and quality. Glutathione peroxi-
dase (GPX1) and Nuclear Factor Erythroid 2-Like 2 (NFE2L2), are oxidative-stress-response-related genes. GPX1, 
considered the major antioxidant enzyme within the Glutathione peroxidase family, is ubiquitously expressed 
in the cytosol and also has been found in mitochondria20. Furthermore, GPX1 acts as a scavenger of hydrophilic 
peroxide species, can be transformed into an enzymatically inactive cellular structural component, and protects 
cells against oxidative damage20. During in vitro production ROS generation increases and one of the defenses 
to counter excess ROS in the embryo is GPX1; therefore, GPX1 overexpression has been positively linked with 
embryo quality36,37. In our study, gene expression analysis revealed the upregulation of GPX1 in 8- and 16-cell 
embryos as well as in blastocysts produced with nobiletin supplementation during MNEGA or MJEGA phases. A 
similar response has been reported in sheep and bovine embryos treated with other types of antioxidants like 
L-carnitine21 or crocetin16. NFE2L2 transcript (also known as Nrf2) is important for embryo tolerance to oxidative 
stress during EGA as well as for its competence for development2. PI3K/AKT pathway plays a role in regulating 
NFE2L2 activation and is involved in the regulation of protein kinases, which may induce nuclear translocation38. 
Harris and Hansen39, and Ghanem et al.29 reported in mice that up-regulation of NFE2L2 transcript may protect 
embryos from oxidative stress through preservation of intracellular redox states to ensure normal embryonic 
development. In the same line, our results showed the relative abundance of NFE2L2 transcript increased in 
16-cell stage embryos cultured with 10 µM nobiletin during MJEGA, while remained unaltered in 8-cell stage 
embryos as well as in blastocysts from both treatments. Moreover, data obtained in cancer cells of mice showed 
that NFE2L2 mRNA levels were upregulated when nobiletin was supplemented in culture medium40. Taken 
together, these data suggest that nobiletin plays an antioxidant-defense role via distinct pathways during the 
different phases of early embryo development in vitro. However, it is necessary to confirm this antioxidant action 
by measuring ROS levels in the embryos.

Cyclin Dependent Kinase 2 (CDK2) is necessary for cell cycle progression, and is a major kinase that gov-
erns AKT phosphorylation, while it also participates on EGA41. In our study, CDK2 mRNA expression was 
upregulated in 8-cell (MNEGA), and blastocysts (MJEGA) cultured with 5 µM or 10 µM of nobiletin as well as in 
16-cell (MJEGA) cultured with 10 µM of nobiletin. This is in line with previous data obtained in bovine embryos 

Figure 6.   Nobiletin effect in the phosphorylated-AKT (p-AKT) in blastocysts. Representative images of 
immunofluorescence detection of p-AKT in in vitro produced bovine blastocysts cultured during 21–54 hpi 
(MNEGA: presumptive zygote to 8-cell stage) or during 54–96 hpi (MJEGA: 8- to 16-cell stage) in SOF + 5% FCS 
(Control), supplemented or not with 5 (Nob5) or 10 µM (Nob10) nobiletin or with 0.03% dimethyl sulfoxide 
(CDMSO). Positive staining for p-AKT proteins shown in green. Cell nuclei were counterstained with Hoechst 
stain (blue). Images were captured on 63× objective. Scale bar 20 µm.
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Figure 7.   Nobiletin during MNEGA or MJEGA increases AKT phosphorylation in blastocysts. (a,b) Quantification of 
phosphorylation levels of pAKT-Thr308/tAKT and pAKT-Ser473/tAKT in in vitro produced bovine Day 7 blastocysts 
cultured during 21–54 hpi (MNEGA: presumptive zygote to 8-cell stage) in SOF + 5% FCS (Control), supplemented or not with 
5 µM (Nob5) or 10 µM (Nob10) nobiletin or with 0.03% dimethyl sulfoxide (CDMSO). (c) Western blot images showing the 
expression of pAKT-Thr308, pAKT-Ser473, (t)AKT and β-actin in Day 7 blastocysts from MNEGA phase. (d,e) Quantification 
of phosphorylation levels of pAKT-Thr308/tAKT and pAKT-Ser473/tAKT in in vitro produced bovine Day 7 blastocysts 
cultured during 54–96 hpi (MJEGA: 8- to 16-cell stage) in Control, Nob5, Nob10, and CDMSO. (f) Western blot images showing 
the expression of pAKT-Thr308, pAKT-Ser473, (t)AKT and β-actin in Day 7 blastocysts from MJEGA phase. Data were 
normalized relative to the abundance of β-actin and p-AKT phosphorylation levels. Samples derive from the same experiment 
and gels were processed in parallel. Cropped western blot membrane images are shown here, while full-length blots are 
presented in Supplementary Figure S1. Data are the mean ± s.e.m. Different letters indicate significant difference (P < 0.05) 
between treatments.
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that showed changes in the levels of transcription in genes associated with cell cycle and observed an increase 
in CDK2 expression during early embryo development (8 and 16-cell embryos, and blastocysts)42. Conversely, 
studies using nobiletin in cancer cells (U87, Hs683) showed a decrease in CDK2 expression17,43. Hence, nobiletin 
seems to respond differently depending on the cell type.

Histone H3.3 is encoded by H3.3 histone A (H3-3A) and H3.3 histone B (H3-3B) genes and is related to DNA 
synthesis and integrated into embryonic nucleosomes to mark genes for subsequent expression in development44. 
We observed that supplementation of 5 or 10 µM nobiletin during MNEGA, increased the expression of H3-3B and 
H3-3A genes in 8- cell embryos while supplementation of 10 µM nobiletin during MJEGA increased the expression 
of H3-3B gene in 16-cell embryos. This is in corroboration with results from a recent study were characterization 
of the expression of both genes that encode H3.3 (H3-3A and H3-3B) was performed in early bovine embryos, 
demonstrating that H3-3B mRNA is very abundant throughout early embryogenesis, being two to three times 
higher than H3-3A mRNA during the major wave of EGA45. Additionally, a higher abundance of H3-3B compared 
to H3-3A was found in mouse embryos46, suggesting that the protein encoded by H3-3B gene may be critical 
for initiating the transcription of embryonic genes during EGA. As mentioned above, EGA is crucial for further 
embryo development and regulated by several important factors47. One crucial factor is histone modification, 
including methylation and acetylation48.Likewhise, Acetyl‐Co A is a central metabolite linking glucose oxidation 
and long‐chain fatty acid or cholesterol synthesis, providing energy and materials for cell growth and prolifera-
tion. Furthermore, Acetyl‐Co A, as a donor of an acetyl group, can be utilized by histone acetyltransferases for 
histone acetylation49. A recent study showed that Acetyl‐CoA synthases are essential for maintaining histone 
acetylation under metabolic stress during EGA in pigs and they corroborated that β‐oxidation is crucial for 
porcine embryo development by contributing to energy metabolism and histone acetylation50. This suggests one 
more time that nobiletin could prefer the β-oxidation pathway as an energy production mechanism.

During in vitro development, embryos have a series of metabolic factors that are required in proliferation, 
differentiation, and survival of cells13,51. In this context, the quality of the embryos produced in vitro depends 
on many factors, among them the expression of different genes, as we have shown in this study. Gene expression 
depends of different signaling pathways that play important roles in the formation of the blastocyst, for example, 
PI3K/AKT12,13,51. AKT regulates cellular processes such as glucose metabolism, transcription, cellular growth and 
proliferation51. In blastocysts, AKT inhibition alters their development and AKT activation triggers the differen-
tiation and migration of trophoblast cells14,52. Other studies showed that the AKT appear to have an important 
role in early embryonic development, in double-knockout mice deletion of any of the AKT isoforms leads to 
embryonic death or exhibiting more severe phenotype and earlier lethality53. In addition, PI3K/AKT regulates 
the development of preimplantation embryo by mediating the effects of autocrine factors54. Previous studies in 
cell lines have shown that nobiletin can act through various signaling pathways, including AKT17. However, as 
far as we know, nobiletin action on AKT pathway in bovine blastocysts produced in vitro is unknown. In this 
study, we established the presence of the AKT pathway in bovine blastocysts. Based on immunofluorescence 
images, p-AKT protein appears to be predominantly localized in the cytoplasm of embryos cultured with 5 and 
10 µM nobiletin during MNEGA and MJEGA, suggesting constant stimulation of this pathway during the preim-
plantation period. Expression of the AKT protein and its phosphorylation status were confirmed by western 
blot analysis of bovine blastocysts produced with or without nobiletin supplementation during MNEGA or MJEGA 
phases. Similar results were found by Ashry et al.14, who investigated the relationship between AKT signaling 
and the embryotrophic actions of follistatin, and indicated that it plays an important role in the regulation of 
AKT signaling in early bovine embryos. Together, these results suggest that nobiletin is associated with increased 
AKT phosphorylation and, as it has been shown in cell lines studies, nobiletin has the ability to interact with 
this pathway, and regulate specific genes. In our study increased AKT phosphorylation might be related to 
the increase in the production and the expression of genes that favor the progression of the cell cycle (CDK2) 
and to the improvement in embryo quality by increasing mitochondrial activity and genes related to oxidative 
stress (NFE2L2), and reducing lipid content (PPARα). However, further studies are needed to fully elucidate its 
mechanism of action in early embryos.

In conclusion, nobiletin supplementation during MNEGA or MJEGA has a positive effect on preimplantation 
bovine embryonic development in vitro by increasing blastocyst production and also corroborates on the increase 
in transcription level of genes related to cell division. Besides, this effect is reflected on the blastocysts quality 
improvement by (i) stimulating mitochondrial activity and expression of genes related to the protection of oxi-
dative stress, and (ii) reducing the cytoplasmatic accumulation of lipids and promoting the expression of genes 
that regulate lipid metabolism. In addition, these positive responses of nobiletin on embryonic development 
and quality of the produced blastocysts in vitro could be modulated by the activation of AKT signaling pathway 
(Fig. 8). Therefore, nobiletin could constitute a suitable supplement to overcome oxidative stress in bovine IVP 
and improve ARTs in mammals.

Methods
Unless stated otherwise, all reagents were purchased from Sigma-Aldrich Corporation (St Louis, MO, USA).

Oocyte collection and maturation.  Immature cumulus-oocyte complexes (COCs) were obtained by 
aspirating follicles (2–8 mm) from the ovaries of mature heifers and cows collected from a local abattoir. COCs 
(homogeneous cytoplasm and intact CCs) were selected and matured in four-well dishes (Nunc, Roskilde, Den-
mark) in 500 μL maturation medium (TCM-199), supplemented with 10% (v/v) fetal calf serum (FCS) and 10 
ng/mL epidermal growth factor (EGF), in groups of 50 COCs per well for 24 h at 38.5 °C and an atmosphere of 
5% CO2 in the air with maximum humidity55.
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Sperm preparation and in  vitro fertilization (IVF).  IVF was performed as described previously56. 
Briefly, frozen semen straws (0.25 mL) from an Asturian Valley bull previously tested for IVF were thawed at 37 
°C in a water bath for 1 min and centrifuged for 10 min at 280×g through a gradient of 1 mL of 40% and 1 mL of 
80% Bovipure (Nidacon Laboratories AB, Göthenborg, Sweden) according to the manufacturer´s instructions. 
The sperm pellet was isolated and washed in 3 mL of Boviwash (Nidacon Laboratories AB) by centrifugation at 
280×g for 5 min. The pellet was re-suspended in the remaining 300 µL of Boviwash. The final concentration of 
spermatozoa was adjusted to 1×106 spermatozoa/mL. Gametes were co-incubated for 18–22 h in 500 µL ferti-
lization medium (Tyrode’s medium) with 25 mM bicarbonate, 22 mM sodium lactate, 1 mM sodium pyruvate 
and 6 mg/mL fatty acid-free bovine serum albumin (BSA) supplemented with 10 mg/mL heparin sodium salt 
(Calbiochem) in four-well dishes in groups of 50 COCs per well in an atmosphere of 5% CO2 in the air with 
maximum humidity at 38.5 °C.

In vitro culture of presumptive zygotes.  At approximately 21 hpi, a total of 7237 (3398 for MNEGA 
phase and 3839 for MJEGA phase) presumptive zygotes were denuded of cumulus cells (CCs) by vortexing for 3 
min and then cultured in groups of 50 in a four-well dish containing 500 µL per well of culture medium (syn-
thetic oviductal fluid (SOF);57 supplemented with 5% (v/v) FCS, 4.2 mM sodium lactate, 0.73 mM sodium pyru-
vate, 30 µL/mL basal medium eagles (BME) amino acids, 10 µL/mL minimum essential medium (MEM) amino 
acids and 1 µg/mL phenol red, in the presence (MNEGA) or absence (MJEGA) of nobiletin (MedChemExpress, 
MCE, Sweden) or with 0.03% dimethyl sulfoxide (DMSO vehicle for nobiletin dilution). At 54 hpi those embryos 
that reached the 8-cell stage were selected and randomly cultured in groups of 50 in SOF + 5% FCS until Day 8 
(MNEGA) or in presence of nobiletin or DMSO until 96 hpi (MJEGA). At 96 hpi those embryos that reached the 
16-cell stage were selected and randomly cultured in groups of 50 in SOF + 5% FCS until Day 8 (MJEGA) (see 

Figure 8.   Schematic diagram illustrating the effect of nobiletin on bovine embryo development during the two 
EGA phases (MNEGA and MJEGA).  Nobiletin a class of polymethoxylated flavone, is easily absorbed across the 
cytoplasmic membranes due to its structure and lipophilic nature17, but the specific mechanism of action is not 
clear yet. Nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic 
development, also increase the abundance of CDK2 (cell cycle progression), H3-3A,H3-3B (development) 
and GPX1 (oxidative stress) transcripts in 8-cells and 16-cells embryos. In addition, the nobiletin effect in 
the produced blastocysts was reflected by stimulating mitochondrial activity, decreasing the cytoplasmatic 
accumulation of lipids and promoting the expression of genes that regulate lipid metabolism and protect against 
oxidative stress. Besides, these positive responses of nobiletin on embryonic development and quality of the 
produced blastocysts in vitro could be modulated by activation of the AKT signaling pathway. In our study 
increased AKT phosphorylation might be related to the increase in the production and the expression of genes 
that favor the progression of the cell cycle (CDK2) and reducing lipid content (PPARα). However, further studies 
are needed to fully elucidate its mechanism of action in early embryos. Figure created with BioRender.com.
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‘Experimental design’ described below for more details). Culture took place at 38.5 °C in an atmosphere of 5% 
CO2, 5% O2, and 90% N2.

Assessment of embryo development and quality
Embryo development.  Developmental rate was recorded at 54 hpi from MNEGA and MJEGA (≥ 8-cell) and 
96 hpi from the MJEGA phase (≥ 16-cell). For both phases, cumulative blastocyst yields were recorded at Day 7, 
and 8 pi under a stereomicroscope.

Embryo quality: mitochondrial activity measurement, lipid content quantification and total 
cell number of blastocysts.  Day 7 blastocysts (~ 30 per group) were simultaneously evaluated regarding 
mitochondrial activity, the number of lipid droplets, and total cell number. Blastocysts from each treatment 
were first suspended in 100 µL phosphate-buffered saline (PBS) without calcium or magnesium supplemented 
with 0.1% polyvinylpyrrolidone (PVP). Next, blastocysts were equilibrated for 15 minutes in culture media sup-
plemented with 5% FCS and then incubated for 30 min at 38.5 °C in 400 nM MitoTracker DeepRed (Molecular 
Probes, Eugene, USA) for mitochondrial activity; blastocysts were then fixed in 4% paraformaldehyde (PF) for 
30 min at room temperature. For lipid content analysis, fixed blastocysts were permeabilized with 0.1% saponin 
for 30 min and stained for 1 h with 20 μg/mL Bodipy 493/503. For analysis of total cell number, blastocysts were 
stained with Hoechst 33342 (10 μg/mL) for 30 min, washed in PBS + 0.1% PVP three times for 5 minutes each, 
and then mounted in 3.8 μL mounting medium between a coverslip and a glass slide which was sealed with nail 
polish. Slides were examined using a laser-scanning confocal microscope (Leica TCS SP2) equipped with an 
argon laser excited at 488 nm and with an emission spectrum of 500–537 nm for visualization of lipid droplets. 
For mitochondria, we used excitation and emission set at 644 nm and 625–665 nm, respectively. All images were 
captured using the same parameters, performing sequential acquisition.

For the assessment of mitochondrial activity, the fluorescence signal intensity (pixels) was quantified. Serial 
sections of 5 µm were made for each blastocyst and a maximum projection was accomplished for each one. 
Images obtained were evaluated using the ImageJ program (NIH; ImageJ version 1.52k software (http://​rsbweb.​
nih.​gov/​ij/)). After selection using the freehand selection tool, each blastocyst was measured to determine its 
area and its integrated density (IntDen), which corresponds to pixel intensity. Also, the background fluorescence 
of an area outside the blastocyst was measured. Fluorescence intensity in each blastocyst was determined using 
the following formula: Relative fluorescence = IntDen − (area of selected blastocyst x mean fluorescence of 
background readings). Fluorescence intensities are expressed in arbitrary units (a.u.).

The lipid quantification in blastocysts was obtained by analysis of the total area of lipids in each blastocyst. 
We captured three images of each blastocyst: one in the middle of the blastocyst (the image with the largest 
diameter) and the other two in the middle of the resulting halves. We used a 63× objective at a resolution of 1024 
× 1024 and images were analyzed using the ‘nucleus counter’ tool, set to detect, distinguish, and quantify droplet 
areas with the ImageJ program. For blastocysts, lipid quantity was corrected by total embryo area, to account 
for varying blastocyst sizes. After verification of a significant correlation (r2 = 0.84 and P < 0.0001 by Pearson’s 
correlation test) between lipid quantity of three sections in 30 blastocysts (10 per group) we chose the section 
with the largest area per blastocyst to be analyzed58. Simultaneously, the total number of cells per blastocyst was 
determined by counting the Hoechst stained cells under an epifluorescence microscope (Nikon 141731) equipped 
with a fluorescent lamp (Nikon HB-10104AF) and UV-1 filter.

Embryos at 8‑ and 16‑cell stage and blastocysts for gene expression analysis.  Gene expression 
analysis was performed using 3 pools of 10 embryos at 8-cell (MNEGA); 16-cell (MJEGA); and Day 7 blastocysts 
of both phases (MNEGA and MJEGA) per treatment group: Control, CDMSO, Nob5, and Nob10. Poly(A) RNA was 
extracted using the Dynabeads mRNA Direct Extraction Kit (Ambion; Thermo Fisher Scientific) with minor 
modifications59. Immediately after poly(A) RNA extraction, reverse transcription (RT) was performed using 
a Moloney murine leukemia virus (MMLV) Reverse Transcriptase 1st-Strand cDNA Synthesis Kit according 
to the manufacturer’s instructions (Epicentre Technologies Corp, Madison, WI, USA). Tubes were heated to 
70 °C for 5 min to denature the secondary RNA structure, allowing Poly(T) random primers and Oligo dT 
annealing, and the RT mix was then completed by adding 0.375 mM dNTPs (Biotools, Madrid, Spain), 6.25 U 
RNAsin RNAse inhibitor (Promega, Madison, WI, USA), MMLV HP RT 10x reaction buffer, 5 mM DTT and 5 
U MMLV high-performance reverse transcriptase (Epicentre Technologies Corp, Madison, WI, USA). Samples 
were incubated at 25 °C for 10 min, and then at 37 °C for 60 min, to allow the RT of RNA, and finally at 85 °C for 
5 min to denature the enzyme. All mRNA transcripts were quantified in duplicate using a Rotorgene 6000 Real-
Time Cycler (Corbett Research, Sydney, Australia). RT–quantitative polymerase chain reaction (qPCR) was per-
formed by adding a 2 µL aliquot of each cDNA sample (~ 60 ng µL−1) to the PCR mix (GoTaq qPCR Master Mix, 
Promega) containing specific primers to amplify the genes of interest. Primer sequences are provided in Supple-
mentary Table S4. The selection of genes to be evaluated was carried out considering the expression of key genes 
in preimplantation embryonic development. All primers were designed using Primer-BLAST software (http://​
www.​ncbi.​nlm.​nih.​gov/​tools/​primer-​blast/) to span exon-exon boundaries when possible. For quantification, 
RT-qPCR was performed as described previously60. The PCR conditions were tested to achieve efficiencies close 
to 1. Relative expression levels were quantified by the comparative cycle threshold (CT) method61. Values were 
normalized using two housekeeping genes (H2AFZ and ACTB) selected according to previous studies56,62, while 
their stabilities were evaluated using the geNorm software for microsoft63,64, ranking the genes based on the 
internal control gene stability parameter M. Fluorescence was acquired in each cycle to determine the threshold 
cycle or the cycle during the log-linear phase of the reaction at which fluorescence increased above background 
for each sample. Within this region of the amplification curve, a difference of one cycle is equivalent to a dou-

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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bling of the amplified PCR product. According to the comparative CT method, the ΔCT value was determined 
by subtracting the mean CT value of the two housekeeping genes from the CT value of the gene of interest in the 
same sample. The calculation of ΔΔCT involved using the highest treatment ΔCT value (i.e. the treatment with 
the lowest target expression) as an arbitrary constant to subtract from all other ΔCT sample values. Fold-changes 
in the relative gene expression of the target were determined using the formula 2−ΔΔCT.

Immunofluorescence of phospho‑AKT (p‑AKT) in blastocysts.  Immunolocalization of p-AKT was 
performed according to López-Cardona et al.65 with minor modifications. Day 7 blastocysts (n = 10 per group) 
were washed twice with PBS + 0.1% PVP and fixed in 4% PF for 10 min at room temperature. Next, they were 
permeabilized by incubation in PBS with 10% FCS and 1% Triton X-100 for 45 min at room temperature. After 
permeabilization, blastocysts were incubated overnight at 4 °C in PBS + 0.1% PVP and 5% FCS and 1:100 rab-
bit polyclonal antibody against p-AKT (Thr308/Ser473) (D9E) XP® Rabbit mAb (Cell Signaling Technology, 
#4060). Following incubation, blastocysts were washed twice in PBS + 0.1% PVP and incubated in PBS sup-
plemented with 5% FCS and 1:250 goat anti-rabbit polyclonal antibody Alexa Fluor 488-conjugate (Molecular 
Probes, Eugene, OR, USA), for 2 h at room temperature followed by washing again three times in PBS + 0.1% 
PVP. In all cases, nuclei were stained with Hoechst 33342 (10 μg/mL). Finally, blastocysts were mounted in 
microdrops with Fluoromount G (EMS, Hatfield, UK) and examined by confocal microscopy (Leica TCS-SPE). 
Negative control was prepared to omit the primary antibody before adding the secondary antibody.

Western blot of AKT in blastocysts.  The western blot analysis was performed as described previously 
by Ashry et al.66 with minor modifications. Day 7- 8 blastocysts (n = 20 blastocysts/group, n = 3 replicates/
EGA phase) were lysed in 1 × RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% 
SDS, and 50 mM Tris [pH 7.6]), supplemented with 1 × protease, phosphatase Inhibitor Cocktail (Roche, Basel, 
Switzerland), for 1 h at 4 °C. The samples were mixed with 1 × sample buffer and then denatured at 95 °C for 
10 min. Proteins were resolved by SDS-PAGE (12% acrylamide gel loading 45 µL of total protein per well) and 
transferred onto a nitrocellulose membrane. After the transfer, membranes were blocked for 30 min in 3% BSA 
in PBS + 0.1% Tween-20 (PBS-T) at room temperature, and was incubated overnight at 4 °C with a total (t)AKT 
rabbit polyclonal antibody [1:1000 (Vol:Vol), Cell Signaling Technology, #9272S]; or a p-AKT (Thr308) poly-
clonal antibody [1:1000 (Vol:Vol), Cell Signaling Technology, #9275S]; or a p-AKT (Ser473) polyclonal antibody 
[1:1000 (Vol:Vol), Cell Signaling Technology, #9271S]. Then, incubation with the secondary antibody goat anti-
rabbit IgG-HRP [1:2500 (Vol:Vol), Cell Signaling Technology, #7074S] was conducted for 2 h at room tempera-
ture revealed by Enhanced Chemiluminescence kit (RPN2109, ECLTM, Amersham GE Healthcare) and detected 
by an ImageQuant LAS 500 chemiluminescence CCD camera (GE Healthcare Life Sciences, USA, 29005063). 
The monoclonal anti-β-actin−peroxidase antibody produced in mouse was used as the loading control.

Membranes were probed sequentially with primary p-AKT (Thr308), p-AKT (Ser473) and (t)AKT antibod-
ies. For this purpose, after detection of an antibody membranes were stripped by washing extensively in TBS-T, 
three times for 10 minutes each, and repeating the blocking step, and then the membranes are re-probed with the 
next antibody. After detection of (t)AKT, membranes were stripped and re-probed with anti-β-actin−peroxidase 
antibody. In all cases, intensities of protein bands (optical density (OD)) were quantified by ImageJ software and 
the relative abundance of each protein was normalized to the total–actin expression in the corresponding lane 
and phosphorylation level was expressed as phosphorylated (p) AKT/(t) AKT. The ratio of the OD of the protein 
concerned (AKT/p-AKT) in relation to actin is presented in the form of bar charts.

Experimental design.   Experiment 1: effect of nobiletin on early embryo development in vitro.  In this ex-
periment the effect of nobiletin supplementation on embryo development during two developmental periods: 
(a) MNEGA: from 2-cell to 8-cell stage, minor EGA phase; and (b) MJEGA: from 8-cell to 16-cell stage, major EGA 
phase was determined by evaluating the cleavage rate at 54 hpi and blastocysts yield at Days 7 and 8 (Fig. 9).

For this purpose, presumptive zygotes/embryos from 2- to 8- cell stage (MNEGA: 21-54 hpi) or embryos from 
8- to 16-cell stage (MJEGA: 54–96 hpi) were cultured in SOF + 5% FCS alone (Control: n = 730 and 621 for MNEGA 
and MJEGA respectively) or supplemented with 5, 10 or 25 µM nobiletin (Nob5: n = 757 and 518; Nob10: n = 695 
and 553; and Nob25: n = 521 and 424 for MNEGA and MJEGA respectively), or 0.03% DMSO (CDMSO: n = 695 and 
622 for MNEGA and MJEGA respectively). For MJEGA phase groups, embryo culture until 8-cell stage (21-54 hpi) 
was performed in SOF + 5% FCS. At 54 hpi (MNEGA - Control: n = 388; Nob5: n = 386; Nob10: n = 352; Nob25: 
n = 254; CDMSO: n = 368) or 96 hpi (MJEGA- Control: n = 331; Nob5: n = 315; Nob10: n = 347; Nob25: n = 210; 
CDMSO: n = 331), embryos that reached the 8- or 16- cell stage, respectively, were transferred to SOF + 5% FCS and 
cultured until Day 8, maintaining the different experimental groups separately (Fig. 9). Embryos were cultured 
in groups of 50 under an atmosphere of 5% CO2, 5% O2 and 90% N2 at 38.5 °C.

Considering that during the experiment it was necessary to preselect the embryos at different stages of devel-
opment (≥ 8 cells and ≥ 16 cells), the developmental parameters were calculated as follows: (I) developmental 
rate at 54 hpi: percentage of presumptive zygotes that developed to the 8-cell stage; (II) developmental rate at 
96 hpi: percentage of selected 8-cell embryos at 54 hpi that developed to the 16-cell stage; and (III) blastocyst 
yield: percentage of selected 8-cell embryos (54 hpi) or 16-cell embryos (96 hpi) that continued in culture and 
developed to the blastocyst stage at Day 7 and 8. A representative number of 8-cell (MNEGA), 16-cell (MJEGA), 
and Day 7 blastocysts from both phases for each experimental group were frozen in liquid nitrogen (LN2) in 
three groups of 10 and stored at − 80 °C for gene expression (See Experiment 2). Additionally, Day 7 blastocysts 
from both phases were selected to (i) evaluate quality (See Experiment 2); (ii) immunolocalization of p-AKT or 
(iii) for western blot analysis (See Experiment 3).
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Figure 9.   Experimental design. (a) MNEGA: Presumptive zygotes were cultured during the minor EGA phase 
(2- to 8-cell stage: 21–54 hpi) in synthetic oviductal fluid (SOF) with 5% fetal calf serum (FCS) (Control); 
supplemented or not with 5, 10 and 25 µM nobiletin (Nob5, Nob10 and Nob25, respectively), or with 0.03% 
dimethyl sulfoxide [control for DMSO vehicle for nobiletin dilution (CDMSO)]. At 54 hpi, embryos that reached 
the 8-cell stage were transferred to SOF + 5% FCS and cultured until Day 8 maintaining each experimental 
group separately. (b) MJEGA: Presumptive zygotes were cultured in SOF + 5% FCS (Control) until 54 hpi. At 54 
hpi, embryos that reached the 8-cell stage were cultured during the major EGA phase (8-cell to 16-cell stage: 
54–96 hpi) in SOF + 5% FCS supplemented or not with Nob5, Nob10 and Nob25, or with 0.03% dimethyl 
sulfoxide (CDMSO). At 96 hpi, embryos that reached the 16-cell stage were transferred to SOF + 5% FCS and 
cultured until Day 8 maintaining each experimental group separately.
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Twelve and ten replicates for MNEGA and MJEGA phases, respectively, were performed under the same assay 
conditions.

Only the experimental groups that showed higher blastocyst yield in this experiment (Nob5 and Nob10) in 
comparison with both control groups (Control and CDMSO) were used for experiments 2 and 3.

Experiment 2: effect of nobiletin on the quality of in vitro produced blastocysts.  To evaluate blastocyst quality of 
embryos produced in vitro with or without nobiletin supplementation during MNEGA or MJEGA, a representative 
number of Day 7 blastocysts (n ≈ 30 per group/Experiment 1) were stained with MitoTracker DeepRed, Bodipy 
and Hoescht to evaluate mitochondrial activity (intensity recorded in arbitrary units (a.u)), lipid content (lipid 
droplet area in μm2) and total cell numbers, respectively. Blastocysts were examined using a laser-scanning 
confocal microscope or an epifluorescence microscope and images obtained were evaluated using the ImageJ 
program.

To evaluate if nobiletin induces changes in the expression levels of genes related to embryo development and 
quality, three independent pools of 10 embryos per stage (8-cell, 16-cell, and blastocyst) obtained from each 
experimental group cultured with or without nobiletin during MNEGA or MJEGA (Experiment 1), were used for 
gene expression analysis by qRT-PCR according to the procedures described above.

The selected genes have been linked to embryonic development and are essential in cell proliferation, differen-
tiation, and embryo quality, such as PPARG​ coactivator 1 alpha (PPARGC1A); Peroxisome Proliferator-Activated 
Receptor Alpha (PPARα); Ribosomal Protein S6 Kinase Beta-1 (RPS6KB1); Cyclin Dependent Kinase 2 (CDK2); 
H3 Histone Family Member 3B (H3-3B) and H3 Histone Family Member 3A (H3-3A), including Nuclear Factor 
Erythroid 2-Like 2 (NFE2L2) and Glutathione Peroxidase 1 (GPX1) related with oxidative stress.

Experiment 3: nobiletin effect on the AKT pathway in blastocysts produced in vitro.  To assess if nobiletin can 
interact with AKT pathway during in vitro embryo development, Day 7 blastocysts (n = 10 - Experiment 1) from 
each group were stained with p-AKT (Thr308/Ser473) for immunolocalization. To evaluate the phosphorylation 
level of AKT (Thr308 and Ser473), Day 7 blastocyst (n = 60 - Experiment 1) from each group were frozen in LN2 
for western blot analysis.

Statistical analysis.  All statistical tests were performed using the software package SigmaStat (Systat Soft-
ware Inc., San Jose, CA, USA). Cleavage rate, blastocyst yield, mitochondrial activity, lipid content, number of 
cells per blastocyst, relative mRNA abundance levels, and AKT phosphorylation level, were normally distributed 
with homogeneous variance, so one-way analysis of variance (ANOVA) with arcsine data transformation, fol-
lowed by Tukey´s test, was performed to evaluate the significance of differences between groups. The correlation 
analysis for lipid quantification in blastocysts was determined by Pearson’s correlation coefficient test. Values 
were considered significantly different at P < 0.05. Unless otherwise indicated, data are presented as the mean 
± s.e.m.
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