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Introduction: Multiple algorithms based on 12-lead ECG measurements have been
proposed to identify the right ventricular outflow tract (RVOT) and left ventricular
outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent
premature ventricular complex (PVC) originate. However, a clinical-grade machine
learning algorithm that automatically analyzes characteristics of 12-lead ECGs and
predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective
ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide
evidence to create RVOT and LVOT labels for the machine learning model.

Methods: We randomly sampled training, validation, and testing data sets from
420 patients who underwent successful catheter ablation (CA) to treat VT or PVC,
containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively
trained a machine learning algorithm supplied with 1,600,800 features extracted via
our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The
area under the curve (AUC) of the receiver operating characteristic curve was calculated
from the internal validation data set to choose an optimal discretization cutoff threshold.

Results: The proposed approach attained the following performance: accuracy (ACC)
of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–
100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100).

Conclusions: The proposed multistage diagnostic scheme attained clinical-grade
precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability
restrictions than prior studies.

Keywords: outflow tract ventricular tachycardia, catheter ablation, electrocardiography, classification, artificial
intelligence algorithm
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INTRODUCTION

One population-based study (Dukes et al., 2015) of 1,139 older
adults without any heart-failure signs or systolic dysfunction
shows that premature ventricular complexes (PVC) and
ventricular tachycardia (VT) burden are significantly associated
with an increased risk of adjusted decreased left ventricular
ejection fraction (odds ratio, 1.13) and increased adjusted risk
of incident heart failure (hazard ratio, 1.06) and death (hazard
ratio, 1.04). Catheter ablation (CA) is a commonly considered
treatment of VT patients with and without structural heart
disease when drugs are ineffective or have unacceptable side
effects (Cronin et al., 2019). It has a class I indication for
treatment of idiopathic outflow tract ventricular tachycardia
(OTVT) (Joshi and Wilber, 2005; Latchamsetty et al., 2015). The
OTVT stems from the right ventricular outflow tract (RVOT)
in 60–80% of the cases and from the left ventricular outflow
tract (LVOT) (Bunch and Day, 2006) in the rest of the cases.
An accurate prediction of RVOT and LVOT origins of OTVT
can optimize the CA strategy, reduce ablation duration, and
avoid operative complications. Previous studies (Kamakura et al.,
1998; Hachiya et al., 2000; Ito et al., 2003; Joshi and Wilber,
2005; Tanner et al., 2005; Haqqani et al., 2009; Zhang et al., 2009;
Betensky et al., 2011; Yoshida et al., 2011, 2014; Cheng et al., 2013,
2018; Nakano et al., 2014; Efimova et al., 2015; He et al., 2018;
Xie et al., 2018; Di et al., 2019; Enriquez et al., 2019; Yamada,
2019) propose several criteria or models to estimate RVOT
and LVOT origins. However, these results have been limited
by sample size, scope of studies, ECG measurement efficiency,
and generalizability of the models. In contrast, we develop an
optimal multistage scheme that automatically extracts features
from standard 12-lead ECGs and incorporates these features
into a machine learning model to predict RVOT and LVOT
origins of VT or PVC with clinical-grade precision and provides
multiprospective analysis for the most important ECG features.

MATERIALS AND METHODS

Study Design
The institutional review board of Ningbo First Hospital of
Zhejiang University has approved this retrospective study and
granted a waiver of the requirement to obtain informed
consent. The study was conducted in accordance with the
Declaration of Helsinki.

From each patient’s entire ECG recorder, three cardiac
electrophysiologists (EPs) unanimously selected one QRS
complex during the sinus rhythm (SR) and one QRS complex
during the PVC or VT as the initial input. The features extracted
from the two QRS complexes are supplied to an optimal
machine learning classification model that provides two possible
prediction outputs: RVOT or LVOT. For the purposes of the
classification scheme, RVOT is considered a positive outcome
and LVOT a negative one. This study employed a training–
validation–testing design to correctly assess the performance
of the algorithm. This study consists of four phases (shown in
Figure 1): (Dukes et al., 2015) a feature extraction phase in which

two feature extraction methods are studied and compared—our
proprietary automated ECG feature extraction method and
a method based on conventional QRS morphological ECG
measurements (Cronin et al., 2019) a training phase in which the
extreme gradient boosting tree classification model is supplied
by the features generated in the feature extraction phase (Joshi
and Wilber, 2005) a validation phase aimed at finding important
features as optimal model input and deciding the optimal
discretization cutoff threshold that was applied in the testing
phase; and (Latchamsetty et al., 2015) a testing phase aimed at
evaluating, interpreting, and reporting the model performance.

Patient Selection
We reviewed patients who underwent mapping and ablation for
frequent PVC or VT that originated from either LVOT or RVOT
at the Ningbo First Hospital of Zhejiang University from March
2007 to September 2019. A PVC or VT burden above 10% of total
test duration was required for a study entry. A total of 420 patients
with OTVT were included in this study. Origin sites of OTVT
were confirmed by a successful CA, which means the frequent
PVC and VT did not occur above 5% of the total test duration in
the first 6-month follow-up after CA.

Classification of Anatomic Sites
The anatomical structure of RVOT and LVOT is depicted in
Figure 2, and the demographic data of the anatomic sites are
shown in Supplementary Section A and Table 1. This study
only focuses on the prediction of RVOT and LVOT rather than
the subsites (shown in Figure 2) under RVOT and LVOT. The
effective ablation sites of RVOT and LVOT confirmed by ablation
provide evidence to create RVOT and LVOT labels for the
subsequent machine learning model development.

Mapping and Ablation Procedure
Anti-arrhythmic drugs were stopped for at least five half-
lives before the inception of the ablation procedure. A 4.0-
mm 7F irrigated ablation catheter (Navistar; Biosense Webster,
Diamond Bar, CA, United States) was initially placed in the
RVOT for mapping. Both fluoroscopy and electroanatomic
mapping systems (CARTO, Biosense Webster, Diamond Bar, CA,
United States or NavX Velocity, St. Jude Medical, St. Paul, MN,
United States) were used to localize the anatomic position of
the ablation catheter within the outflow tract. The intracardiac
echo was used to identify specific anatomical structures, such as
cusps and papillary muscles. For example, Figure 3 presents the
fluoroscopy, 3-D mapping, intracardiac echocardiography, and
activation mapping for a case with the origin site in commissure
of aortic sinus of valsalva LVOT. Using point-by-point mapping,
anatomic aggregated maps were created. Activation mapping was
performed in all patients during VT and PVC. Pace mapping was
also performed with the lowest pacing output (2–20 mA) and
pulse width (0.5–10 ms) to capture the ventricular myocardium
at the site of the earliest activation. If suitable ablation sites for
the RVOT were not located or ablation failed to abolish the
arrhythmia, extended mapping to the LVOT site was deployed
via a retrograde aortic approach. After target sites were located,
radiofrequency energy was delivered up to a maximum power
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FIGURE 1 | Central illustration.

FIGURE 2 | Anatomic structure of LVOT and RVOT. LVOT includes left
coronary cusp (LCC), right coronary cusp (RCC), non-coronary cusp (NCC),
aortomitral continuity (AMC), and LVOT summit. RVOT includes anterior cusp
(AC), left cusp (LC), right cusp (RC), RVOT freewall, and RVOT septal.

of 35 W and a maximum electrode-tissue interface temperature
of 43◦C. If the VT or PVC disappeared or the frequency of
arrhythmias diminished after the first 30 s of ablation, the energy
was delivered continuously from 60 to 180 s. Ablation success was

defined as the absence of spontaneous or induced VT or PVC at
30 min after the last energy delivery and confirmed by continuous
cardiac telemetry in the subsequent 24 h of inpatient care.

The Procedure to Assess the Catheter
Ablation Outcomes
In the subsequent 24 h of inpatient care after the ablation
procedure, every patient received continuous ECG monitoring.
After discharge, the patients underwent a follow-up 2 weeks after
the ablation and then every month at the cardiology clinic. A 12-
lead surface ECG test was obtained on each clinic visit, and
24-h Holter monitoring was also prescribed at 3 and 6 months
after the ablation.

ECG Measurement Protocol
Noise Reduction and QRS Sample Selection
With chest and limb leads placed carefully in a standard
position, the 12-lead surface ECGs were collected by the EP
workmate system (EP-WorkMateTM System, Abbott, Saint Paul,
MI, United States) at a sampling rate of 2,000 Hz before
the ablation procedure. The noise sources impacting the ECG
database were power line interference, baseline wandering,
and random noise. Wavelet transform yields better time–
frequency localization results than windowed Fourier transform
and naturally has an advantage in noise reduction applications
(Abi-Abdallah et al., 2006). Thus, the wavelets technique was
used to remove the noise components mentioned above. The
coif5 Wavelets (Lahmiri, 2014) and Stein’s Unbiased Risk
Estimator (SURE)-based (Stein, 1981; David and Johnstone,
1995) threshold were implemented by MATLAB to carry out
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TABLE 1 | Summary statistics of demographic data and clinical characteristics of all patients.

Training cohort Validation cohort Testing cohort

RVOT LVOT P-value RVOT LVOT P-Value RVOT LVOT P-Value

Patients, n (%) 263 (77) 77 (23) 0.921 30 (79) 8 (21) 0.991 33 (79) 9 (21) <0.01

Age, year, mean ± sd 46.5 ± 10.6 47.5 ± 11.3 0.731 45.1 ± 13.8 46.9 ± 9.2 0.74 43.8 ± 15.0 45.3 ± 17.1 0.652

Male, n (%) 80 (66) 41 (34) <0.01 6 (46) 7 (54) <0.01 7 (58) 5 (42) <0.01

BMI (kg/m2), mean ± sd 28.33 ± 3.24 29.28 ± 2.19 <0.01 30.11 ± 3.17 28.37 ± 4.53 <0.01 27.62 ± 4.15 28.37 ± 4.72 <0.01

PVC, n/24 h mean ± sd , 28,455.5 ± 9,635.8 29,358.5 ± 12,117.4 0.651 30,356.5 ± 18,587.8 276,565 ± 10,997.8 0.531 23,218.5 ± 11,755.6 33,035.6 ± 18,256.3 0.0273

Frequent PVC, n (%) 249 (78) 70 (22) 0.683 22 (76) 7 (24) 0.818 28 (85) 4 (44.5) 0.046

Paroxysm VT, n (%) 14 (78) 4 (22) 1 1 0 1 2 (6) 4 (44.5) 0.023

Sustained VT, n (%) 6 (67) 3 (34) 0.425 1 1 0.398 3 (9) 1 (11) 1

VT cycle length (ms),
mean ± sd

410 ± 57 424 ± 102 0.431 426 ± 74 430 ± 88 0.621 438 ± 93 402 ± 147 0.886

Pre-QRS activation time
(ms), mean ± sd

29.38 ± 10.26 31.27 ± 8.25 0.334 33.40 ± 5.51 31.65 ± 8.76 0.63 28.64 ± 9.69 33.48 ± 8.46 0.5

Prior CA, n 2 1 0.533 0 0 1 2 0 1

Myocardiopathy,n 1 2 0.127 1 0 1 1 1 0.398

Alcoholic cardiomyopathy,
n

1 0 1 0 0 1 0 0 1

ICD (VT), n 1 0 1 0 0 1 1 0 1

Coronary heart disease, n 3 1 1 1 0 1 1 1 0.398

P-values present the probabilities of equal means or proportions of each tested variable. LVOT, left ventricular outflow tract; RVOT, right ventricular outflow tract; BMI, body mass index; LVEF, left ventricular ejection
fraction; PVC, premature ventricular complex; VT, ventricular tachycardia; CA, catheter ablation.
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FIGURE 3 | Activation map and fluoroscopic map for VA originating from commissure of aortic sinus of valsalva in LVOT. (A) Right and left anterior oblique
fluoroscopic views show an ablation catheter in the LVOT. Ablation in the LVOT (LCC–RCC commissure) eliminated the PVC within 3 s. (B) The 3-D anatomic
representation of the RV endocardium, LV endocardium, and venous system with the ablation catheter positioned at the anterior interventricular vein. (C) The green
circle indicates the tip of the ablation catheter in LCC–RCC commisure. (D) The earliest bipolar and unipolar activation time (–30 ms) are shown.

the noise reduction steps. To get a full understanding of the
techniques and schemes that were adopted in this work, please
refer to the code availability section. After noise components
were removed, three cardiac EPs unanimously selected one QRS
complex during the SR and one QRS complex during the PVC or
VT to classify RVOT and LVOT.

Automated ECG Feature Extraction Method
We applied the following measurements and transformation
protocol to automatically extract ECG morphological features
and supply them to the machine learning model. We used
the R-wave peak points of PVC and SR heartbeat in lead
V6 as reference lines because they are easy to identify in
most conditions. At the first step, for one SR heartbeat, 215
data points (0.11 s) before and after the reference line were
truncated, and 335 data points (0.17 s) before and after the
reference line were cut for one PVC. The above lengths of
430 and 670 were the means of QRS complex duration plus
four times the standard deviation of that for SR beat and
PVC. They should cover 99.99% of the QRS complexes in any
data due to the normality of the QRS duration distribution
and the empirical rule. The mean and standard deviation of
QRS duration were computed from the samples in this study;
the maximum length of QRS complex for SR beat is 405
data points, and the maximum for PVC is 607 data points.
Second, for every lead, we selected the first peak/valley (local
maximum or minimum) closest to the reference line (shown
in Figure 4A) defined in the first step. Third, the three peaks
or valleys before the first peak/valley identified in the second
step and the four peaks or valleys after the first peak/valley
were selected from all peaks and valleys of SR heartbeat and
PVC separately. Thus, in every lead, eight peaks and valleys

were extracted to represent the SR heartbeat and PVC basic
features. The zero-padding method was applied for the cases
that did not have eight peaks and valleys around the reference
line. The total number of peaks and valleys, eight, is equal
to the means of the number of peaks and valleys in all leads
plus four times the standard deviation of that for SR beat and
PVC, respectively. This automated feature extraction method
was verified manually to make sure it captured essential QRS
morphological characteristics.

The numerical measurements (shown in Figure 4B) of each
peak and valley include location, prominence, the distance from
peak or valley location to left prominence boundary, the distance
from peak or valley location to right prominence boundary, width
at half of the prominence, the distance from left prominence
boundary to right prominence boundary, amplitude, contour
height, and a logic variable to present peak or trough. The
prominence of a peak or a valley measures how much the peak
or valley stood out due to its intrinsic height and location relative
to neighbor peaks or valleys. Thus, the prominence of a peak
was defined as the vertical distance between the peak point and
its lowest contour line. The measurement of valleys adopted the
same method with peaks.

After the above eight numerical measurements of eight peaks
or valleys for both SR beat and PVC at every lead were
collected, we generated a feature matrix with the size of 192 (2
beats × 12 leads × 8 peaks or valleys) by 8 (the number of
numerical measurements). We transformed the feature matrix
using ratios of features in the rows and columns of the
matrix to create a new level of features that can reveal vital
details of the ECG morphology. Finally, 1,600,800 features were
automatically obtained, and their definitions can be found in
Supplementary Section B.2. The estimated 95% CI of each
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FIGURE 4 | Description of automated ECG feature extraction method. The proposed feature extraction method automatically finds peaks presented by P# and
valleys presented by V# in panel (A) through 430 data points of one SR beat in 12 leads. Panel (B) presents the numerical measurements that capture essential
information of a peak, including location = sample points at P3, prominence = distance from P2 to P3, distance from peak or valley location to left prominence
boundary = distance from P1 to P3, distance from peak or valley location to right prominence boundary = distance from P3 to P4, width at half of the
prominence = the length of green line, distance from left prominence boundary to right prominence boundary = distance from P1 to P4, amplitude = distance from
P2 to zero baseline, contour height = prominence – amplitude. X-axis presents sampling data points, and Y-axis presents voltage.

numerical measurement in the feature matrix is documented in
Supplementary Section B.2 and Supplementary Table 5.

Conventional QRS Morphological Feature Extraction
Even though we intended to develop an automated ECG
measurement system that is favored by the machine learning
algorithm, the conventional QRS morphological ECG
measurement method, such as metrics of Q-, R-, and S-waves;
segments among them; and the ratios among segments, is
studied and compared in this work. The conventional QRS
morphological ECG measurement protocol is defined below.
SR and VT ECG morphology were measured on the same
12-lead ECG by a customized MATLAB program. During the
clinical arrhythmia, the following measurements (presented in
Supplementary Section B.3 and Figure 1) were obtained from
both one SR beat and one PVC: (Dukes et al., 2015) amplitude of
Q-, R-, and S-waves (Cronin et al., 2019) duration of Q-, R-, and
S-waves as well as QRS complex; and (Joshi and Wilber, 2005)
R/S amplitude ratio (Kamakura et al., 1998; Ito et al., 2003),
transitional zone (Hachiya et al., 2000; Tanner et al., 2005), V2
transition ratio (Betensky et al., 2011), transitional zone index
(Yoshida et al., 2011; Di et al., 2019), R-wave deflection interval
(Cheng et al., 2013), V2S/V3R index (Yoshida et al., 2014),
R-wave duration index (Ouyang et al., 2002), and R/S amplitude
index (Ouyang et al., 2002). The T-P segment was considered one
of the isoelectric baselines to measure R- and S-wave amplitudes.

The QRS duration was measured from the site of the earliest
initial deflection from the isoelectric line to the time of the
latest activation. The R-wave length was calculated from the site
of the earliest initial deflection from the isoelectric line to the
time at which the R-wave intersected the isoelectric line. For
all cases, QRS measurements were performed on an isolated
PVC representative of the clinical VT before the induction of
sustained VT and compared with the SR QRS complex. All
measurements above were used to compare our approach against
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al., 2015;
He et al., 2018; Xie et al., 2018; Di et al., 2019).

In addition to the above conventional ECG measurements, we
developed the following protocol to generate features to supply to
the machine learning model. Amplitudes of Q-, R-, and S-waves
based on the voltage at the onset of Q-wave, the offset of S-wave,
the Q-wave, and the S-wave were also input variables in the
machine learning model. To give the same length input to the
machine learning model, we set the measures of Q-, R-, and
S-waves for these waves’ missing cases to zeros, such as QS
morphology in the V1 lead and RS morphology in the V5 or
V6 lead. As we implemented the automated feature extraction
method, we also transformed the measurements mentioned
above into new variables and put them into the machine learning
model. The total number of features generated by this method
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is 155,784, and the entire definition of features can be found
in Supplementary Section B.3. The 95% CI of each numerical
measurement are listed in Supplementary Section B.3 and
Supplementary Table 7.

Statistical Analysis
For the continuous variables of age and ECG measurements,
we calculated the mean and standard deviation. For all count
variables, total sample size, number of males, number of subjects
with frequent PVC, sustained VT, and sublocations under RVOT
or LVOT, we calculated frequency counts and percentages. One-
sample test for proportions, two-sample t test, two-sample test
for proportions, and Fisher’s exact test were adopted to test the
difference of the sample numbers, average ages, genders, and the
number of frequent PVC or sustained VT between RVOT and
LVOT groups. The Cramer Von Mises, Anderson–Darling, and
Shapiro–Wilks tests did not reject the data normality hypothesis,
and a two-sample t test was used to test for equal means
of continuous variables between RVOT and LVOT. Statistical
optimization of the gradient boosting tree model was done
through iterative training using the extreme gradient booster
(XGBoost) package. The following performance measures were
formally analyzed, including the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve, accuracy
(ACC), sensitivity (SE), specificity (SP), and F1-score. A two-
sided 95% CI summarizes the sample variability in the estimates.
The CI for the AUC was estimated using the Sun and Su
optimization of the Delong method implemented in the pROC
package. In contrast, CIs for F1-score, SE, and SP were obtained
by the bootstrap method with 20,000 replications. All analyses
were done by R version 3.5.3.

RESULTS

We analyzed data from 420 patients who underwent CA of
OTVT at the Ningbo First Hospital of Zhejiang University from
March 2007 to September 2019. After the CA procedure, two
(0.5%) patients developed slight ecchymosis. A total of five (1.2%)
patients were excluded from this study because of frequent PVC
or VT recurrence in the first 6-month follow-up.

Patient demographic and clinical characteristics data for the
RVOT and LVOT groups are shown in Table 1. We compare the
distributions of these background characteristics in the RVOT
and LVOT groups and list the associated p-values in the table.
The RVOT cohort consists of 20.95% left cusp, 17.62% posterior
septal, 14.29% anterior septal, 10% anterior cusp, 7.86% free wall,

and 7.14% right cusp. The LVOT cohort consists of 10.71% left
coronary cusp, 5.71% aortomitral continuity, 2.62% left coronary
cusp and right coronary cusp ommisure, 1.67% right coronary
cusp, and 1.43% summit (shown in Supplementary Section A
and Table 1).

The patients were assigned to training, validation, and testing
cohorts, consisting of 340 (81%), 38 (9%), and 42 (10%) patients,
respectively, using random proportional allocation (demographic
summary shown in Table 1). For a fair comparison, the machine
learning model was supplied with different features from two
feature extraction methods. The performance was assessed using
the same training, validation, and testing cohorts.

We used 1,600,800 automatically generated ECG features as
machine learning model input. The proposed approach achieved
an ACC of 97.62 (87.44–99.99); F1-score of 98.46 (90–100);
prediction of RVOT origins with SE of 96.97 (82.54–99.89);
and SP of 100 (62.97–100) (shown in Table 2), respectively;
and AUC of 98.99 (96.89–100) (presented in Figure 5). Among
the 1,600,800 initial automatically generated ECG features, we
found a total of 1,352 critically important features with non-zero
Shapley additive explanations (SHAP) values (Lundberg and Lee,
2017), showing the importance of their contributions to RVOT
and LVOT prediction. The detailed interpretation of SHAP value
is introduced in Supplementary Section C.1. We chose and
analyzed the top three important features (shown in Figure 6)
that have significant classification capability: (Dukes et al., 2015)
the ratio between the location of the 5th peak or valley at the SR
beat V1 lead and the right boundary of the 5th peak or valley at
the V1 lead of PVC, Cronin et al. (2019) the ratio between the
prominence of the 5th peak or valley at the V1 lead of PVC and
the prominence of the 5th peak or valley at the V3 lead of PVC,
and (Joshi and Wilber, 2005) the difference between the distance
of the 5th peak or valley to the left boundary at the V1 lead of PVC
and the distance of the 5th peak or valley to the left boundary at
the V1 lead of the SR beat.

Training the machine learning model using 155,784
features extracted from conventional QRS morphological
ECG measurements, the proposed method attained an ACC of
92.86 (80.35–98.85), F1-score of 95.38 (86.62–98.86), prediction
of RVOT origins with SE of 93.94 (78.64–98.99) and SP of 88.89
(50.86–99.45) (shown in Table 2), and AUC of 95.62 (89.78–100)
(presented in Figure 5). Among the initial 155,784 features, we
found a total of 1,003 critically important features with non-zero
SHAP values (Lundberg and Lee, 2017), showing the importance
of their contributions to RVOT and LVOT prediction. The top
three important features (shown in Supplementary Section C.1
and Figure 2) that show significant classification capability are

TABLE 2 | Classification performance comparison with 95% CI.

AUC SE SP F1-Score ACC

Automated ECG feature extraction 98.99% (96.89–100) 96.97% (82.54–99.89) 100% (62.97–100) 98.46% (90–100) 97.62% (87.44–99.99)

Conventional QRS morphological
feature extraction

95.62% (89.78–100) 93.94% (78.64–98.99) 88.89% (50.86–99.45) 95.38% (86.62–98.86) 92.86% (80.35–98.85)

Cardiologists NA 97.86% 81.72% 96.39% 94.29%

F1-score = 2 × Precision × recall / (precision + recall); SE, sensitivity; SP, specificity; ACC, accuracy; CI, confidence interval.
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FIGURE 5 | Receiver-operating characteristic curve generated by the optimal machine learning model supplied with two feature extraction methods. The CI for the
AUC was estimated using the Sun and Su optimization of the Delong method. Sensitivity and specificity of RVOT prediction are indicated for different thresholds.

(Dukes et al., 2015) the ratio between R-wave amplitude based
on the zero isoelectric baselines at lead III PVC and the R-wave
amplitude based on the offset of S-wave at V1 lead PVC, Cronin
et al. (2019) the ratio between the R-wave amplitude based on
R-wave onset at V2 lead SR beat and the R-wave amplitude
based on zero isoelectric baseline at V3 lead PVC, and (Joshi and
Wilber, 2005) the ratio between the R-wave amplitude based on
the zero isoelectric baseline at aVL lead SR beat and the R-wave
amplitude based on S-wave offset at V1 lead PVC. The statistical
summary of conventional QRS morphological measurements for
leads V1 to V6 is listed in Supplementary Section A and Table 2.

Finally, the average performance of eight cardiologists who
determined RVOT and LVOT using the same ECG samples
in this study is presented in Table 2. The classification
confusion matrix for these three methods shows correct and
incorrect frequency counts in Supplementary Section A and
Table 3. Furthermore, we compared our approach against related
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al.,
2015; He et al., 2018; Xie et al., 2018; Di et al., 2019). ACC,
F1-score, SE, SP, positive predictive value, negative predictive
value, and AUC were used to compare performances and are
shown in Table 3.

DISCUSSION

We designed and implemented a high-accuracy algorithm
for LVOT and RVOT origins of OTVT classification, using
1,600,800 ECG measurements automatically extracted from

12-lead ECGs using our proprietary method. The prediction
accuracy comparison among our method combined with the
XGBoost classifier, a conventional QRS feature extraction method
combined with XGBoost, and the performance of human experts
(shown in Table 2) shows that the machine learning model with
the automated ECG feature extraction method was uniformly
superior. We used DeLong’s test (DeLong et al., 1988) to
demonstrate that the automated ECG feature extraction method
had a significantly higher AUC compared with that attained by
the conventional QRS morphological feature extraction approach
with a P-value = 0.035. The comparison of our approach against
methods from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014;
Cheng et al., 2013, 2018; Nakano et al., 2014; Efimova et al.,
2015; He et al., 2018; Xie et al., 2018; Di et al., 2019) shows that
our algorithm achieved the highest performance scores (shown
in Table 3). Additionally, we evaluated the general classification
capability of each criterion proposed by previous studies using
the database in this study. Not surprisingly, we observed
significant differences between previously reported performances
and the reproduced results of these methods because most of
the prior studies used the univariate analysis to make predictions
(shown in Table 3).

The excellent performance of our machine learning algorithm
demands an enormous volume of data and features. It is an
extremely time- and cost-consuming task to generate such
amount of features by the conventional ECG QRS morphological
measurements introduced in prior studies because these
measurements are manually obtained. Thus, we did not
make any assumptions about ECG criteria before training the
machine learning algorithm and intended to exhaust all possible
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TABLE 3 | Comparison with prior studies to localize the origins of outflow tract arrhythmia.

Author Patients ECG criteria/algorithm Reported performance in the article Performance using the database in
this study

ThisStudy 420 1,600,800 ECG criteria and extreme
gradient boosting tree model

SE 96.97% SP 100%
PPV 100% NPV 90%

AUC 98.99% ACC 97.62%
F1-Score 98.46%

Kamakura et al. (1998) 40 The R/S transition (first precordial lead
with R/S ration >1) in Lead V3 to
predict LVOT

SE 80% PPV 40%
SP 82.86% NPV 96.67%

SE 30.1% PPV 18.92% SP 63.3%
NPV 73.4%

Zhang et al. (2009) 65 (a) Transitional zone ≥ V4 predicts
RVOT origin

SE 94.87%
PPV 100%

SE 60.86%
PPV 72.47%

(b) R-wave duration index<0.5 and R/S
wave amplitude index<0.3 in V1/V2
predicts RVOT origin

SE 94.87%
PPV 100%

SE 80.24%
PPV 73.52%

Betensky et al. (2011) 61 (a) V2 transition ratio (defined as
percentage R wave during VT divided
by percentage R wave in SR) ≥ 0.6
predicts LVOT origin

SE 95% SP 100%
PPV 100% NPV 95%
ACC 91%

SE 78.49% SP 89.6%
PPV 68.22%
NPV 93.61%
ACC 87.14%

(b) PVC precordial transition later than
SR transition predicts RVOT origin

SE 19% SP 100% SE 23% SP81%

Yoshida et al. (2011) 207 V2S/V3R index ≤ 1.5 predicts LVOT
origin

SE 89% SP 94%
PPV 84% NPV 96%

SE 69.89% SP 85.63% PPV 58.04%
NPV 90.9%

Cheng et al. (2013) 94 (a) R/S transition at lead V1/V2 predicts
LVOT origin

SE 52.4% SP 92.1% PPV 72.6% NPV
85.3% ACC 84.2%

SE 76.34% SP 91.43% PPV 71.72%
NPV 93.15% ACC 88.09%

(b) R/S transition at lead V3 predicts
RVOT origin

SE 39% SP 35.2% PPV 74.2% NPV
29.4% ACC 46.3%

SE 33.33% SP 48.93% PPV 15.66%
NPV 72.07% ACC 45.48%

(c) R/S transition at lead V4 or later
predicts RVOT origin

SE 59.3% SP 93.1% PPV 94.6% NPV
46.7% ACC 68.3%

SE 43.01% SP 52.6% PPV 20.51%
NPV 76.44% ACC 50.47%

Yoshida et al. (2014) 112 TZ index = TZ score of OTVT minus TZ
score of a sinus beat

To aortic sinus cusp
SE 88% SP 82% AUC 0.9

SE 76.05% SP 52.59%

Nakano et al. (2014) 63 (a) R > S concordance in synthesized
right-sided chest leads (Syn-V3R,
Syn-V4R, Syn-V5R) predicts an LVOT
origin

SE 100%
SP 100%

Could not be reproduced by standard
12-lead ECG

(b) R/S index (>0.3): A ratio of R-wave
amplitude to S-wave amplitude in leads
V1 or V2 predicts an LVOT origin

SE 90%
SP 98%

SE 53.12%
SP 46.05%

Efimova et al. (2015) 105 A QRS-RVA (right ventricular apex)
interval ≥ 0.49 ms predicts an LVOT
origin. The QRS-RVA interval was
measured from the onset of the QRS
complex to the distal RVA signal.

SE 98%, SP 94.6%, PPR 94.1%, NPR
98.1%, ACC 96.1%

Could not be reproduced by standard
12-lead ECG

Cheng et al. (2018) 94 R-wave deflection interval in lead
V3 > 80 ms and R-wave amplitude
index in lead V1

SE 100% SP 83%
PPV 85.7% NPV 100%
ACC 91.7%

SE 59.14% SP 58.1%
PPV 28.64% NPV 83.33%
ACC 58.33%

He et al. (2018) 488 Y = −1.15*(TZ) − 0.494*(V2S/V3R) SE 90% SP 87% AUC 0.88% SE 78.39% SP 67.23% AUC 0.79%

Xie et al. (2018) 75 R-wave amplitude ≥ 0.1 mV to predict
LVOT

SE 75% SP 98%
PPV 92.3% NPV 93%
AUC 0.85%

SE 67.74% SP 58.1%
PPV 31.5% NPV 86.36%

Di et al. (2019) 184 V1-V3 transition index to predict RVOT SE 93% SP 86%
AUC 0.931
ACC 95%

SE 70.33% SP 67.74%
ACC 69.76%

The first column presents the first author name and the reference number in the main text; TZ, transition zone; SE, sensitivity; SP, specificity; PPV, positive predictive value;
NPV, native predictive value; ACC, accuracy; AUC, area under curve.

relationships among morphological measures of Q-, R-, and
S-waves as well as the entire QRS complex. We designed and
implemented an automated ECG feature extraction method that
can generate 1,600,800 ECG signal characteristics. Not only did
these features contain a considerable amount of the classical

statistics from 12 prior studies (Kamakura et al., 1998; Zhang
et al., 2009; Betensky et al., 2011; Yoshida et al., 2011, 2014; Cheng
et al., 2013, 2018; Nakano et al., 2014; Efimova et al., 2015; He
et al., 2018; Xie et al., 2018; Di et al., 2019), but they also captured
morphological measures not considered by previous studies, such
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FIGURE 6 | Analysis of top three significant ECG measurements found by machine learning model with automated feature extraction method. The univariate analysis
(A) shows that features 1 (A.1) and 2 (A.2) have significant capability to separate RVOT and LVOT. The bivariate analysis (B) indicates the classification ability of
one–one interaction of the top 3 significant features. In the multivariate analysis (C), the smaller feature 1 (C.1), feature 1 (C.2), and feature 3 (C.3) generate a higher
probability of LVOT, but the magnitude of influence varies across features. The color in panel (C) represents the feature value (red high, blue low).

as rsR’ waves and rsr’s’ waves. However, one may be concerned
that such a feature extraction method will include the P- and
T-wave within SR beats and retrograde P-waves within PVC. The
machine learning model captures and analyzes a large amount
of information from every beat but filters out all unimportant

features based on their classification accuracy contribution. As we
can see from the top three important features (shown in Figure 6)
selected by the machine learning model, none of the features that
presented waves mentioned above played a role in the prediction.
The important morphological features of the Rsr’ and rsr’s waves
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may be caused by noise and lead placement of the 12-lead ECG
electrodes because the 12-lead ECG electrodes are frequently
misplaced due to the mapping patches used during the ablation
procedure. In this study, we avoid such a problem because chest
and limb leads were placed carefully in a standard position when
the 12-lead surface ECGs were collected before the procedure.

Moreover, before the machine learning model is safely applied
in practice, an unambiguous interoperation is necessary for
cardiologists to gear this advanced tool, such as explaining what
crucial criteria are and why they play vital roles. For instance, the
machine learning model shows that the smaller the magnitude
of the first important feature (shown in Figure 6C.1), the higher
the possibility of LVOT origin of OTVT. The first important
feature is the ratio of the location of the 5th peak or valley
at the V1 lead SR beat and the right boundary of the 5th
peak or valley at the V1 lead of PVC. In our feature extraction
system, the 5th peak or valley at the V1 lead of PVC is an
S-wave in most cases. The key ECG lead in the initial site
prediction of VT origin is the V1 lead because it is located nearly
orthogonal to the septal plane and, thus, is the best lead to
resolve initial right- vs. left-sided activation. When the V1 lead
has a positive QRS (R > s), the VT is considered to have the
right bundle branch block (RBBB) configuration. Conversely, net
negative QRS (r < S) defines a left bundle branch block (LBBB)
configuration (Haqqani and Marchlinski, 2019). The top three
important features (shown in Figure 6) were exactly measured
activation time, RBBB, and LBBB configuration. Therefore, such
interpretation makes the machine learning decision process not a
black box anymore.

Last but not least, the machine learning model proposed in
this study can be immediately and effortlessly deployed to EP
labs. The pretrained model, source code, and data are available
online and found in the “Data Availability Statement” section.
The model inputs are only two QRS complexes, one for PVC and
one for SR beat, and they can be easily acquired from 12-lead
standard ECG. The analysis of one patient’s data takes less than a
second provided every step of measurement and computation is
automatically done by the model and the preprocessing approach.
The precise prediction of origins can significantly reduce CA
duration and reduce the risk of complications.

Study Limitations
Because the data set did not produce enough well-labeled data
to feed a machine learning model, the algorithm currently
only predicts LVOT and RVOT rather than subsites of them.
For instance, the origin of PVC is sometimes in the middle
of septal RVOT/LVOT. The presence of expertly labeled data
for three categories, RVOT, LVOT, and septal, will allow
the machine learning model to predict the origins with
higher accuracy. Although this study includes patients with

comprehensive anatomy sites under RVOT and LVOT, the
performance of the method could improve in the presence of
more cases of RCC and summit under LVOT. Moreover, some
conditions, such as cardiomyopathies, reentrant VT coronary
heart disease, and prior structural and congenital abnormalities,
are underrepresented or absent from the study. Thus, the
algorithm potentially has a limitation if applied in such scenarios.

CONCLUSION

Considering the performance of prediction, the capacity of
extracting vital information from 12-lead ECG and the
robustness of application, our results provide the promising and
reliable decision support to guide a successful CA treatment of
ventricular arrhythmia by machine learning technology.
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