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Optimization of Storage 
Temperature for Retention of 
Undifferentiated Cell Character of 
Cultured Human Epidermal Cell 
Sheets
Catherine J. Jackson1,2,3, Sjur Reppe1, Jon R. Eidet  4, Lars Eide1, Kim A. Tønseth3,5,  
Linda H. Bergersen2, Darlene A. Dartt6, May Griffith7 & Tor P. Utheim1,2,3,4

Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns 
and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated 
phenotype is therefore important for success in both applications. This study aimed to optimize 
a method for one-week storage of CES for their widespread distribution and use in regenerative 
medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. 
Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane 
damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into 
storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression 
increased between temperatures 8–16 °C. At 24 °C, reduced ABCG2 expression coincided with increased 
mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, 
CK10 and involucrin fluorescence combined with morphology observations supported retention 
of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased 
differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. 
Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-
stored control suggesting that this temperature may be ideal for storage of CES.

Since the first treatment of massive area burns in 19841, use of cultured epidermal sheets (CES) for patients with 
burns has become routine in many burn treatment units2. CESs are used as both allogenic and autologous trans-
plants. Undifferentiated cells within CES have been shown to respond to new signals from the local environment 
following transplantation3. They have been used to restore a clear corneal epithelium in a goat model of wounded 
cornea (limbal stem cell deficiency)4 and to reconstruct urethral epithelium in a rabbit model of urethral injury5. 
Adult epidermal stem cells have been shown to be capable of differentiating to all three germ layers when inserted 
into a mouse blastocyst3. Skin is therefore an attractive alternative source of autologous stem cells for regenerative 
medicine applications as it is highly abundant and easily accessible6.

Whether for use in treatment of skin burns or regeneration of other epithelia, expanded cells require appro-
priate storage conditions to maintain viability and phenotype for clinical application. Short-term storage can 
expand the utility of CES by providing flexibility in timing of transplant operations, back-up sheets for repeat 
operations, wider distribution, and an extended window for quality control and sterility testing in centralized 
culture facilities7. Storage needs are currently met by cryopreservation, which entails a complicated freeze/thaw 
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schedule. Studies have also shown that the quality of cryopreserved CES upon thawing is variable8, 9. Here, we 
seek to extend the availability and use of CES for application in regenerative medicine by developing a short-term 
xenobiotic-free storage system that maintains CES quality and is convenient to use.

Retention of undifferentiated cell phenotype in cultured and stored CES is important for the treatment of 
patients with burns10. Likewise, transplantation of a high percentage of progenitor cells within transplanted cul-
tured limbal epithelial cell sheets in the treatment of limbal stem cell deficiency results in a higher rate of clinical 
success11. Highly proliferative cycling epidermal progenitor cells are the first to contribute to regeneration follow-
ing transplantation, while quiescent SCs provide long-term renewal12. Our objective was therefore to maintain an 
undifferentiated cell phenotype and proliferative capacity within CES during storage.

We have previously shown that temperature has a significant impact on the quality of stored cultured cells 
from a variety of tissues13–16. Based on analyses of phenotype (best at 12 °C) and viability (best at 24 °C) of CES in 
our two-week storage study17, 18, we hypothesized that 12 °C may be most promising for retention of proliferative 
capacity and undifferentiated cell phenotype in CES following one-week of storage. Therefore, in-depth analyses 
were carried out herein to compare one-week storage of CES stored at temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 
24 °C with non-stored control cell sheets.

Results
Work flow is presented in Fig. 1.

Viability and Cell Integrity. Storage Temperatures 12 °C and 16 °C were Optimal for Preservation of Viable 
Cells. The number of live cells in stored temperature groups was compared to non-stored control by measure-
ment of calcein acetoxymethyl (CAM) fluorescence and trypan blue (Fig. 2a–c). CAM fluorescence measures 
esterase activity inside the cell, whereas lack of intracellular blue dye staining indicates live cells when trypan 
blue is used. The highest percentage of live cells compared to the non-stored control was seen at 12 °C (99 ± 3%; 
p = 0.70) and 16 °C (108 ± 2%; p = 0.012) using CAM fluorescence (Fig. 2b and Table S1). All other temperatures 
had significantly lower live cell values compared to control (p ≤ 0.05). Using trypan blue to assess the num-
ber of living cells largely confirmed the same general trend of increasing viability with temperature until 24 °C 
(Fig. 2c). Trypan blue gave a significantly lower number of viable cells at 4 °C compared to non-stored control, 
with 237 ± 6.0 × 103 cells, compared to control with 647 ± 133.2 × 103 cells (p ≤ 0.05). The number of dead cells 
was assessed using ethidium homodimer-1 (EthD-1) fluorescence. No significant difference in dead cells was seen 
in any group compared to control (p ≥ 0.768) (Fig. 2d).

Optimal Preservation of Cell Proliferation was Observed at Storage Temperatures 12 °C and 16 °C. The nuclear 
protein PCNA is a marker for cell proliferation19. The percentage of cells positive for PCNA was significantly 
increased at 12 °C and 16 °C, with 58 ± 6% and 72 ± 5% respectively, compared to 40 ± 3% in control (p ≤ 0.05; 
Fig. 2e and Supplementary S1). High cell proliferation values at these temperatures corresponded to significantly 
higher cell viability (CAM fluorescence). All other groups had PCNA values comparable to control. Apoptotic 
cells were assessed by immunocytochemistry, using an antibody against activated caspase-3. Cleaved caspase-3 
levels were stable throughout the temperature range, indicating no significant increase in apoptosis in any group 

Figure 1. Workflow of culture, storage and quality-testing analyses.
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compared to control (Fig. 2e and Supplementary S1). This aligned with analysis of cell death by EthD-1, but 
dead cells that had detached during storage were not accounted for by either of these methods (Fig. 2d and 
Supplementary S1) (minimum p = 0.064 at 4 °C).

Storage Temperature Influenced the level of Intracellular Oxidative Stress. Increased level of reactive oxygen spe-
cies (ROS) such as hydrogen peroxide (H2O2), superoxide anion (·O2

−), and hydroxyl (·OH−) strongly correlate 
with decreased cell viability20. Commercially available probes with distinct affinity for different types of ROS can 
be used to characterize the intracellular redox landscape. The probe dihydroethidium (DHE) enters cells freely 
and detects mitochondrial superoxide21. Only CES stored at 24 °C showed a significant increase in DHE fluores-
cence to 51 ± 4% indicating an increase in superoxide radical formation compared to control (26 ± 2%) (p ≤ 0.05) 
(Fig. 3a). The cationic probe dihydrorhodamine (DHR) is readily oxidized by mitochondrial peroxyl moieties, 
such as H2O2, and preferentially accumulates in mitochondrial compartments. No significant difference in DHR 
oxidation was seen between the groups or compared to control (Fig. 3b). Thus, the pattern of DHR oxidation had 
low correlation with mitochondrial superoxide.

Highest Increase in Cell Membrane Damage Was Seen at 24 °C. The lactate dehydrogenase (LDH) release assay 
gives an indication of cell membrane porosity and cell damage by quantifying the amount of LDH released to the 
media as a percentage of the total LDH (intracellular and extracellular). Cell damage was significantly increased 
at every temperature compared to control where the percent of LDH release was ~5% (p ≤ 0.05) (Fig. 3c). Release 
at 24 °C was significantly higher than at all other temperatures with ~17% damaged cells compared to ~12% at 
4 °C, 8 °C, 12 °C and 16 °C (p ≤ 0.05).

Integrity of Mitochondrial DNA Was Maintained in Cells Stored at 12 °C. Mitochondrial DNA (mtDNA) is vul-
nerable to oxidation damage caused by intracellular oxidative stress. Hence, the mtDNA damage level is fre-
quently used as a measure of oxidative stress. To investigate if the trend towards lower ROS accumulation at 12 °C, 
and higher levels at 4 °C and 24 °C could have impacted the integrity of intracellular macromolecules, mtDNA 
was assessed at these temperatures. Damage at 4 °C and 24 °C was significantly increased compared to control, 
with a fold change of 1.7 and 1.4 respectively (p ≤ 0.01), while no significant difference was detected at 12 °C com-
pared to control (p = 0.24) (Fig. 3d).

Figure 2. Viable and dead cells. (a) Representative live (CAM)/dead (EthD-1) fluorescence image in control 
cells (X40). The fluorescence value from the live (b) and dead (c) cells in control are represented as 100% in 
graphs for comparison with temperature groups. (b) The number of live cells, indicated by CAM fluorescence 
(*=significantly increased compared to control; §=significantly decreased compared to control; p ≤ 0.05). (c) 
The number of dead cells, indicated by EthD-1 fluorescence. (d) The number of viable cells using trypan blue 
(§=significantly decreased compared to control; p ≤ 0.05) (e) Expression of PCNA and activated Caspase-3.
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Viability and cell integrity studies suggested that 12 °C is the optimum temperature for one-week storage of 
CES.

Morphology. Cell Morphology Was Significantly Impacted by Storage Temperature. Phase contrast micros-
copy was performed to investigate the effect of storage temperature on cell structure and ultrastructure. Analysis 
of microscopy results revealed that the non-stored CES control exhibited typical CES morphology, with a mosaic 
arrangement of small and some larger cells (Fig. 4a). Cell morphology after storage at 12 °C demonstrated an 
uncompromised CES (Fig. 4d), whereas at 4 °C and 8 °C, gaps in the cell layer were seen (arrows, Fig. 4b and c) 
and dead cells were present (arrowhead, Fig. 4b). Cell morphology at 24 °C was markedly different compared 
to control. Extended filopodia suggested many cells were stressed (arrowhead, Fig. 4f), and a higher fraction of 
large flat cells indicated differentiation (arrow, Fig. 4f). The 16 °C group also had more large-sized cells suggesting 
increased differentiation (arrow, Fig. 4e), but without elongated filopodia. Microscopy indicated that cell mor-
phology at 12 °C was most similar to control and a complete cell layer was retained.

Frequency of Large-sized Cells Increased at 16 °C and 24 °C. Flow cytometry was used to assess cell size (Fig. 4g). 
Large cell size is characteristic of differentiated epidermal keratinocytes, whereas small cell size is associated with 
stem cells. Light scattered in a forward direction as a cell passes through the laser beam is related to the size of the 
cell22. Light travels further from a larger cell and thus forward scatter can be used to indicate cell size. Forward 
scatter measurements showed that cells in the lower temperature range, from 4 °C to 12 °C, maintained a mean 
cell size similar to control, whereas the average size of cells stored at 16 °C and 24 °C was significantly increased 
(p ≤ 0.05; Fig. 4g).

Transmission Electron Microscopy Indicated Differentiation at 24 °C. Transmission electron microscopy (TEM) 
observations showed normal desmosome connections between cells at all temperatures (arrows, Fig. 5d and e). 
There were signs of mitochondrial fission23, 24 or fusion at 24 °C (black arrow, insert Fig. 5f) and larger mito-
chondria were more frequent at 24 °C (Fig. 5f). Keratin bundles25 were visible at all temperatures but were more 
pronounced at 24 °C suggesting increased differentiation (arrow head, Fig. 5f).

Figure 3. Mitochondrial reactive oxygen species and damage to macromolecules. (a) Mitochondrial superoxide 
anion level as indicated by dihydroethidium fluorescence (*=significantly increased compared to control; 
p ≤ 0.05). (b) Mitochondrial peroxyl levels as indicated by dihydrorhodamine fluorescence compared to control. 
(c) Membrane damage, indicated by percent lactate dehydrogenase release (*=significantly increased compared 
to control; #=significantly increased compared to other temperature groups; p ≤ 0.05). (d) Fold change mtDNA 
damage (*=significantly increased compared to control; p ≤ 0.05).
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Cell morphology studies using TEM suggested that 12 °C is optimal for storage of CES.

Phenotype. The Storage Temperature 12 °C Demonstrated Highest Preservation of Undifferentiated Cell 
Phenotype. The markers tumor protein p63 (p63)26 and ABC transporter family G2 (ABCG2)27, 28 are asso-
ciated with an undifferentiated cell phenotype, desirable for transplantation, while the transcription factor 
CCAAT/enhancer-binding protein (C/EBPδ)29, 30, involucrin and cytokeratin 10 (CK10)31 are markers of dif-
ferentiated epidermal cells. P63 was used in combination with different keratin-specific antibodies; p63 [4A4 
clone]/CK14 (CK14 = basal cells) and p63 [EPR5701 clone]/CK10 (CK10 = early differentiated cells) (Fig. 6a,b, 
Supplementary S1 and Table 1). Expression of p63 [4A4 clone] was only maintained similar to control (91 ± 2%) 
at 12 °C (92 ± 2%; p = 0.801) and 16 °C (97 ± 1%; p = 0.166) (Fig. 6a,b, Supplementary S1; Table 1). Closer analysis 
of p63 in cells disaggregated from the cell sheet using the cytospin technique confirmed that p63 expression was 
significantly lower than control at 4 °C and 24 °C (p ≤ 0.05) (Figure Supplementary S2). CK14 followed a similar 
expression pattern to p63 [4A4 clone]; weaker expression was seen at 24 °C. These results indicated that 12 °C and 
16 °C were the best temperatures for retention of undifferentiated cell phenotype during storage.

Expression level and localization of ABCG2, a heme and multidrug transporter, varied considerably between 
temperature groups (Figs. 6c, S1; Table 1). In control conditions, ABCG2 fluorescence was shown in 59 ± 6% 
of cells and mostly localized to the nucleus. The expression level was not significantly changed at 4 °C, but the 
pattern of expression included perinuclear, nuclear, and cell membrane localization. A significantly increased 
number of cells with ABCG2 fluorescence was seen in the temperature groups 8 °C, 12 °C and 16 °C, where all 
were ~80% ABCG2 positive. At these three temperatures, the transporter appeared to be predominantly localized 
to the perinuclear region, with some expression at the cell membrane and nucleus. The most intense perinu-
clear staining for ABCG2 was in a punctate pattern at 12 °C and 16 °C. Significantly reduced ABCG2 expression, 
mostly at the nucleus, was seen at 24 °C, with only 27 ± 5% (p ≤ 0.05) positive staining of stored cells (Figs. 6c, S1; 
Table 1). According to ABCG2 expression, the storage temperatures 8 °C, 12 °C and 16 °C were best for storage 
of CES.

The cytokeratin CK10 is found in vivo in suprabasal epidermal cells, and is first expressed in early differentia-
tion31. All CK10 expressing cells also expressed ABCG2 except at 24 °C, where the percentage of cells expressing 
CK10 was significantly higher, with 59 ± 14%, and ABCG2 fluorescence lower. The number of CK10 positive cells 
increased at 16 °C and 24 °C with 56 ± 11% and 59 ± 14% staining respectively, compared to control at 10 ± 2% 

Figure 4. Cell morphology as shown by phase contrast (X200) micrographs. (a) Representative image of 
control. Gaps in the cell layer (arrows) were seen at 4 °C (b) and at 8 °C (c). Dead cells (arrowhead) were also 
present at 4 °C (b). The cell layer was similar to control at 12 °C (d). Large cells (arrows) were more frequent 
at 16 °C (e) and at 24 °C (f) Extended filopodia (arrowhead) were also seen at 24 °C (g) Cell size indicated by 
forward scatter by flow cytometry. (*=significantly increased compared to control; p ≤ 0.05).

http://S1
http://S1
http://S2
http://S1
http://S1


www.nature.com/scientificreports/

6SCIENtIFIC RepORTS | 7: 8206  | DOI:10.1038/s41598-017-08586-7

(p ≤ 0.05) (Fig. 6c, Supplementary S1; Table 1). Expression of C/EBPδ was seen in the cytoplasm of isolated cells 
in control with 5 ± 1% (Fig. 6d). Expression was similar to control at all temperatures apart from at 16 °C with sig-
nificantly increased expression (27 ± 11%; p ≤ 0.05). Though C/EBPδ is a transcription factor, expression was seen 
in the nucleus and cytoplasm. Increased C/EBPδ expression at 16 °C suggested onset of differentiation. Therefore, 
16 °C is less suitable for storage of CES.

Involucrin also showed significantly increased expression at 24 °C with 21 ± 17% compared to control 
at 3 ± 1% (p ≤ 0.05). Involucrin expression occurred in clusters at 24 °C (Fig. 6d, Supplementary S1; Table 1). 
Increased expression of CK10 at 16 °C and 24 °C, as well as increased involucrin at 24 °C indicated more differen-
tiation and suggested that these storage temperatures were less suitable for optimum storage of CES.

These phenotype studies showed that 12 °C was the best storage temperature as undifferentiated phenotype 
was best maintained at this temperature compared to control.

Cytokine Secretion. Media Analyses Showed Secretion of Cytokines Relevant to Regeneration of Epithelia. To 
give an indication of the regenerative potential of cultured sheets following one-week storage we tested media for 
secreted growth factors and cytokines relevant to wound healing using enzyme-linked immunosorbent assays 
(ELISAs). The following cytokines were analyzed: interleukins (IL) IL-1α, IL-1β, IL-4 and IL-8; transforming 
growth factor (TGF-β1 and TGF-β3); vascular endothelial growth factor (VEGF); matrix metalloproteinases 
(MMPs) 1, 2, 3, 8, 9, 10 and 13 and the tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 4. The cytokines 

Figure 5. Cell morphology as shown by transmission electron microscopy (X24500) micrographs. Normal 
desmosome connections between cells (arrows) were seen at all temperatures, represented in (e) and (f). Large 
mitochondria (arrow) were more frequent at 24 °C (f). Mitochondrial fission or fusion (arrow) was also seen 
at 24 °C (inset (f)). Keratin bundles (arrowhead) were visible at all temperatures, but were more pronounced at 
24 °C (f).
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TGF-β1, TGF- β3, EGF, MMP2, MMP8 and MMP13 were not found in any groups before or following one-week 
storage (data not shown). Subtraction of values for CNT-Prime medium alone (without cells) from the con-
trols showed that IL-1α, IL-4 and VEGF are not normally secreted by CES under our culture conditions (Fig. 7; 
Supplementary S3). However, these cytokines were up-regulated during one-week storage at all temperatures. 
In contrast, IL-8, MMP-1, MMP-9, MMP-10, TIMP-1, TIMP-2 and TIMP-4 levels were significantly higher in 
non-stored control medium compared to storage media from all temperature groups (Fig. 7; Supplementary S3). 
The cytokines MMP-1, MMP-9, MMP-10, TIMP-1 and TIMP-2 showed a tendency to increase with storage tem-
perature, while IL-1α and VEGF tended to decrease at higher temperatures, though these tendencies were not 
significant. IL-1α was significantly increased at 4 °C compared to all other temperatures (p < 0.05), whereas IL-4 
was significantly decreased at this temperature compared to 12 °C and 24 °C (p < 0.05). Overall there was a large 
variation in regulation of individual cytokines in response to storage.

Discussion
Retention of undifferentiated cell phenotype in cultured and stored CES is important for the treatment of patients 
with burns10, 12. Based on recent findings an undifferentiated cell phenotype is also likely to be important in the 
regenerative treatment of other epithelia using CES4, 5, 11. We show here that choice of storage temperature has a 
profound effect on the integrity and phenotype of stored CES. Morphology and phenotype analyses revealed that 

Figure 6. Immunocytochemistry using putative epidermal stem cell and differentiated epidermal cell markers. 
Figures show comparison of non-stored control with storage temperature groups. Magnification: 200X.

Control 4 °C 8 °C 12 °C 16 °C 24 °C

ABCG2 [BXP21] +++ ++++ +++++* +++++* +++++* ++*
CK10 [polyclonal] + ++ ++ ++ +++* +++*
P63 [EPR5701] +++++ ++++* ++++* +++++ +++++ ++*
P63 [4A4] +++++ ++++* ++++* +++++ +++++ ++*
CK14 [LL002] +++++ +++* +++++* +++++ +++++ ++++*
Involucrin [SY5] + + + + + ++*
C/EBPδ [polyclonal] + + + + ++* +

PCNA [PC10] +++ +++ +++ +++* ++++* +++

Cleaved Caspase-3 [D175] + + + + + +

Table 1. Percent Positive Cells (Immunocytochemistry). *Significantly different compared to control (p ≤ 0.05). 
+ = present. ++ = 20–39%. +++ = 40–59%. ++++ = 60–79%. +++++ = 80–100%.

http://S3
http://S3


www.nature.com/scientificreports/

8SCIENtIFIC RepORTS | 7: 8206  | DOI:10.1038/s41598-017-08586-7

CES was most differentiated at 16 °C and 24 °C and therefore less suitable for transplantation. While retention of a 
high percentage of live cells was seen at 12 °C and 16 °C, storage at 12 °C uniquely provided optimal morphology 
and undifferentiated phenotype. Onset of differentiation at higher temperatures may be related to accumulation 
of ROS associated with the predictable increase in metabolic activity24.

Maintenance of cell viability is the first priority in storage of CES transplants. Cell viability measured by CAM 
fluorescence was 70% or greater in all temperature groups when normalized to control. Assessment of the number 
of viable cells by trypan blue also showed the same trend. The slight differences between the two methods might 
be explained by the more qualitative estimate of trypan blue exclusion versus quantification of fluorescent signal 
emitted by CAM. Viability was improved compared to results in our two-week storage study17 where cell viability 
values in temperature groups between 4 °C and 37 °C typically ranged between ~20% and ~60%. Cell viability was 
comparable at 24 °C between the two studies (~90% normalized to control). This infers that CES are less stable over 
a longer period at lower temperatures, whereas increased differentiation may have contributed to improved stabil-
ity over a longer time period at 24 °C17. It is interesting to note that while 16 °C had a high number of viable cells 
following storage for one week, we reported only 30% viability at this temperature following two-week storage17.  
This may be explained by 16 °C representing the critical point at which differentiation signaling is activated in 
combination with accumulating damage associated with ongoing metabolism. It could be that during one-week 
storage at 16 °C CES continue to experience signals to differentiate, but are not at a warm enough temperature 
to allow full differentiation. In contrast, at 24 °C cell sheets are able to fully differentiate, which provides stability 
over a longer two-week timeframe.

Apoptosis shown by caspase-3 cleavage and cell death as demonstrated by EthD-1 fluorescence were minimal 
at all temperatures compared to control. However, a caveat is that more dead cells had detached at 4 °C and 8 °C 
and were therefore not included in analyses. Highest viability at 12 °C and 16 °C corresponded to significantly 
increased PCNA expression, potentially32 demonstrating the importance of actively cycling cells in maintenance 
of CES viability. Overall, our results align with a study by Oie Y. et al. in 2014, where viability after transport 
control was shown to increase by ~4% following a 12 hour transport period at above-freezing temperature33. Our 
cell viability, cell death, PCNA, and Caspase-3 results indicated optimal maintenance of CES viability at 12 °C and 
16 °C following one-week storage.

Figure 7. Cytokines and growth factors measured in medium from cultured cells before storage and in storage 
medium following one-week storage. For comparison of secretion during storage, figures show non-stored 
control cell secretion after subtraction of CNT-Prime culture medium alone (without cells). IL = interleukin; 
MMP = matrix metalloproteinase; TIMP = tissue inhibitor of matrix metalloproteinase; VEGF = vascular 
endothelial growth factor; (*=significantly increased; §=significantly decreased; p ≤ 0.05).
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Accumulation of ROS can cause potential long-term oxidation damage to macromolecules, such as lipids 
and DNA20. Generation of ROS may therefore have been the primary cause of membrane damage, which was 
significantly increased in all temperature groups, but was especially high at 24 °C, as shown by lactate dehydro-
genase enzyme release. Although more experiments are needed to address the source of ROS during storage, the 
preferential oxidation of superoxide-sensitive DHE suggests that superoxide production in mitochondria could 
be a factor limiting storage viability of CES.

In accordance with findings by Keyer and Imlay, superoxide may be responsible for damage to mtDNA via the 
release of divalent iron from iron sulfur-clusters in the mitochondria34. Divalent iron and dismutated superoxide 
(to peroxide) produce the highly reactive hydroxyl radical that damage mtDNA. In alignment with generation of 
superoxide species, the present study showed mtDNA damage was minimal at 12 °C, but significantly increased 
at 4 °C and 24 °C. These results suggest that inhibition of mitochondrial superoxide production could be a fruitful 
strategy to increase longevity of stored CES. Results were similar to findings by Zieger et al. who demonstrated 
10 °C was the optimum temperature for storage of cultured endothelial cells due to minimal damage from oxi-
dative stress35. The damage sustained by membrane lipids and metabolic enzymes may have led to further ROS 
generation and a reinforcing cycle of accumulating damage to mtDNA36. Together, these results suggest that 
viability and cell integrity were best maintained in the mid-range of the temperature groups, centered at 12 °C, 
whereas cells stored at lower and higher temperatures, 4 °C and 24 °C, accumulated most damage, potentially due 
to increased ROS generation.

Phase contrast and TEM observations corroborated cell viability and cell damage assessments. Many cells 
had detached at lower temperatures, leaving a compromised CES layer. In agreement with our two-week storage 
study17, optimal morphology and ultrastructure were conserved similar to control at 12 °C. Increased cell size 
shown by flow cytometry and phase contrast observations, and prominent keratin bundles shown by TEM, indi-
cated more differentiation at 16 °C and 24 °C37. Adaption to temperature could reflect not only the level of damage 
from cold-inflicted stress, but also the capacity of cells to respond to ROS, based on enzymatic function and cell 
readiness for onset of differentiation24.

Maintained expression of the progenitor cell marker p63 suggested that retention of undifferentiated cell phe-
notype was best at 12 °C and 16 °C. The marker for basal keratinocytes, CK14, was widely expressed in all groups 
except at 24 °C, where expression decreased. CK10 was significantly increased at 16 °C and 24 °C. Some cells were 
positive for p63 and CK10. These were seen in all storage temperature groups as well as in the control and could 
suggest transition from transient amplifying (TA) phenotype to early differentiation. C/EBPδ, a transcription fac-
tor that works in concert with p63 in epidermal cells to initiate differentiation30 was also seen in all groups but was 
significantly increased at 16 °C. Expression patterns of p63, CK14, C/EBPδ and CK10 combined with morphology 
observations, supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, 
and increased differentiation at 24 °C. These observations are in agreement with our two-week study18 indicating 
a more differentiated phenotype at 24 °C compared to 12 °C. However, at colder temperatures, 4 °C and 8 °C, C/
EBPδ and CK10 fluorescence was lower following one-week storage compared to two-week storage, suggesting 
that cold-inflicted stress may have a cumulative impact on gene expression over a longer period.

Since abcg2 expression is regulated by hypoxia-inducible factor-1α (HIF-1α)38, adaption of cells stored at dif-
ferent temperatures may be partly explained by the protection afforded by this transporter through management 
of ROS generation24. ABCG2 fluorescence in the cytoplasm and perinuclear sub-compartments as seen at 12 °C 
and 16 °C has been similarly reported by others39, 40. This raises the speculation of whether ROS signaling, gen-
erated in mitochondria41, results in increased abcg2 transcription through a feedback mechanism dependent on 
stabilization of HIF-1α by ROS42. The contribution of ABCG2 to management of ROS may be through its estab-
lished role in transport of heme and porphyrins38. These iron-containing complexes can provide divalent iron for 
Fenton reaction-mediated hydroxyl radical generation. Thus, in addition to its identified role in stem cells, efflux 
or sequestration of heme to intracellular compartments by ABCG2 could protect cells. This novel role may be 
especially relevant to epidermal keratinocytes, where progression towards differentiation depends on a balance 
between apoptosis and proliferation, which is managed at the mitochondrial axis23, 24.

Surprisingly, we found nuclear localization of ABCG2 in the control and throughout the temperature range. This 
was less prominent in CES in our two-week storage study18, which could be due to the use of a different antibody 
clone (H-70 compared to BXP-21 used here). To our knowledge, nuclear expression of this transporter in CES has 
not been previously reported, though ABCG2 has been shown to act as a nuclear transcription factor in the tran-
scription of E-cadherin in lung cancer cells43. Alternatively, nuclear membrane localization of ABCG2 would suggest 
a nuclear efflux role for this transporter in epidermal keratinocytes, as has been shown in other cell types44–46.

A recent report by Ma et al. used ABCG2 as a stem cell marker in the interfollicular epidermis, where stem 
cells accounted for 2.1–3.3% of total basal keratinocytes by flow cytometry28. In sharp contrast, we found that 
ABCG2 fluorescence was as high as ~90% at 12 °C and 16 °C, and some cells co-expressed CK10. Co-expression 
of these two markers has been shown in human skin sections by immunohistochemistry47, 48. Hashimoto et al. 
showed that ABCG2 is expressed throughout basal and supra-basal layers in human epidermis, and mostly coin-
cides with CK10 expression. Expression of ABCG2 in suprabasal layers also corresponds to immunohistochem-
istry staining that we have noticed in sections of normal skin18. Similarly, Triel et al. showed that high ABCG2 
expression in side population cells isolated by the Hoechst dye flow cytometry assay identifies TA cells48. Thus, it 
is possible that high ABCG2 expression at 12 °C and 16 °C identifies a large population of highly proliferating TA 
cells as well as progenitor cells49. The coincidence with high PCNA expression at these temperatures also supports 
this. In contrast, at 24 °C, ABCG2 fluorescence dropped significantly to 27 ± 5%, suggesting that expression of 
this transporter was redundant in cells at a later stage of differentiation27, 49. This was reflected by a similar value 
at 24 °C after two-week storage (39 ± 3%)18. However, a relative decrease in ABCG2 expression was seen at 12 °C 
and 16 °C after two-week storage, compared to one-week storage, which could reflect a decline in the number of 
TA cells with prolonged exposure to storage conditions18.
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Media ELISA tests revealed that several cytokines important to wound healing were accumulated over the 
one-week period. Secretion of MMPs and their inhibitors is tightly regulated, both spatially and temporally, to 
orchestrate normal wound healing50. It is therefore important that CES maintain this capacity during storage. 
MMP-1, which is important in keratinocyte migration51 and re-epithelialization through remodeling of the extra-
cellular matrix52, was secreted at 8, 12, 16 and 24 °C. The MMP-1 inhibitor, TIMP-1, was also expressed at these tem-
peratures and both showed a tendency to increase with temperature. Of special interest were IL-1α, IL-4 and VEGF 
that were not expressed in non-stored control. Secretion of IL-1α, a cytokine involved in skin barrier formation53  
collagen secretion54 and keratinocyte migration55, was significantly higher at 4 °C. This may suggest its function 
in protection of skin against cold. Secretion of IL-4 and VEGF was seen at all temperatures, with highest IL-4 
expression at 12 °C and 24 °C. These factors are noteworthy for their established association with skin repair 
through stimulation of angiogenesis56. Overall, we found that cytokines secreted by non-stored control CES were 
also present at a lower level in stored cell sheets despite the larger volume of storage media. In addition, IL-1α, 
IL-4 and VEGF, which are significant factors involved in wound healing, were newly induced in stored CES.

All experimental groups contained identically cultivated cell sheets at the start of one-week storage. It is there-
fore remarkable to observe the radical differences in viability, morphology, and phenotype sustained in response 
to variation in storage temperature. In the present study, we showed that choice of storage temperature is critical. 
Storage of CES at 12 °C may improve the treatment of patients with burns and other skin injuries through mainte-
nance of a high percentage of undifferentiated cells that have high proliferative capacity within the transplant10, 12.  
Likewise, retention of a high fraction of undifferentiated cells may be more conducive to cells responding to 
novel differentiation cues in the new environment when used for regenerative treatment of other types of epi-
thelia. This has been illustrated by the successful integration of CES transplants in the treatment of LSCD and in 
the treatment of damaged urethral epithelium in animal models4, 5. Short-term storage at 12 °C has potential to 
expand the utility and increase access to CES in regenerative medicine by providing an option for transportation, 
increasing flexibility in scheduling surgery, and improving quality control. A limitation of the current work is the 
lack of animal studies that investigate successful integration of CES following storage in xenobiotic-free medium 
at 12 °C. This study prepares the way for such future work by providing analyses that represent a thorough char-
acterization of stored sheets at each temperature. A future clinical trial might follow a similar design to that 
recently conducted by Vasania et al.57, where cultured human conjunctival epithelial cells were transported to four 
regional centers from a centralized culture facility in India. Transplants were successfully used to treat patients 
with pterygium following transport57. A trial such as this might employ the optimal conditions outlined in the 
present study and transport CES for treatment of patients with chronic skin ulcers, which is an operation that can 
be scheduled in advance.

Materials and Methods
Normal adult human epithelial keratinocytes (HEKa) were obtained from ScienCell Research Laboratories (San 
Diego, CA). The defined proprietary culture medium, CNT-Prime, was obtained from Cellntec Advanced Cell 
Systems AG (Bern). Goat serum, trypsin-ethylenediaminetetraacetic acid (EDTA), 4-(2-hydroxyethyl)-1-pi
perazineethanesulfonic acid (HEPES), sodium bicarbonate, sodium azide, Tween-20, Triton X-100, gentamicin, 
bovine serum albumin (BSA), fetal bovine serum (FBS), 4′,6-diamidino-2-phenylindole (DAPI), dispase II, soy-
bean trypsin inhibitor, DHR, DHE, menadione and trypan blue were purchased from Sigma Aldrich (St Louis, 
MO). Nunclon Δ surface multidishes, glass coverslips, pipettes and other routine plastics were obtained from 
Thermo Fisher Scientific (Waltham, MA). Phosphate buffered saline (PBS), Hanks balanced salt solution (HBSS) 
and minimum essential medium (MEM) were from Life Technologies (Carlsbad, CA).

Cell Isolation. After obtaining local ethical approval and informed consent in accordance with the 
Declaration of the Helsinki convention, epidermal keratinocytes were isolated from skin from a living donor. 
Experimental protocols for the isolation and use of epidermal keratinocytes were approved by the Regional Ethical 
Committee for Medicine and Health South-east Norway reference: 2013/815/REK South-east C. The donor was 
a 46-year old female undergoing abdomen reduction surgery. The sub-cutaneous adipose and most of the fibrous 
dermal tissue was removed, leaving a thin dermis and epidermal layer. Pieces ~2 cm × 0.3 cm were incubated in 
1 ml of 1:1 dispase II + CNT-Prime medium with 100ug/ml penicillin and streptomycin antibiotics at 4 °C over-
night. The epidermis was then separated from the dermis and incubated with trypsin (0.025% + EDTA) at 37 °C 
for 10 minutes. Trypsin was quickly neutralized using soybean trypsin inhibitor (1 mg/ml) at a 1:1 ratio. Primary 
cells were initially seeded at a density of 8000 cells/cm2, in serum-free CNT-Prime medium, on 60 cm2 dishes 
coated with 1 µg/cm2 collagen IV, BD Biosciences (New Jersey, USA).

Cell Culture. Epidermal keratinocytes at passage three from Sciencell (HEKa) or isolated from skin were 
seeded at 5000 cells/cm2 in serum-free CNT-Prime medium on multidishes coated with 1 µg/cm2 collagen IV. 
Cells were cultured under normal conditions (5% CO2 and 95% humidified air at 37 °C). Culture medium was 
changed every two days. Upon confluency, cells were used for storage experiments. The experiment scheme for 
the study was executed as shown in Fig. 1.

Cell Storage. Following culture, each multidish was sealed and randomly selected for storage at one of five 
different temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C (n = 4 for each temperature). The standard deviation 
of the temperature in each storage container was ±0.4 °C as demonstrated previously14. The storage medium 
was MEM with 25 mM HEPES, 3.57 mM sodium bicarbonate and 50 μg/ml gentamycin. Cultured HEKa, not 
subjected to storage, served as controls. Cells were stored for 7 days in air-tight culture wells sealed with Nunclon 
adhesive sheets. Following storage, MEM storage medium was replaced with CNT-Prime medium and cells were 
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allowed to equilibrate in the 37 °C incubator for 3 hours before all analyses in order to assess any potential damage 
incurred upon rewarming35.

Viability and Cell Integrity. Number of Live and Dead Cells. The number of live cells and cell death were 
assessed using a standard live/dead kit (Invitrogen Live/Dead Analysis Kit, Life Technologies, Grand Island, 
USA). Cells were incubated with CAM (2 µM) and EthD-1 (1 µM) (n = 4). After passing through the cell mem-
brane, the ester group in CAM is cleaved by esterases in live cells to yield the membrane impermeable calcein 
green fluorescence. EthD-1 permeates the membrane of dead cells, and labels nucleic acids to yield red fluores-
cence. Cells were incubated at room temperature for 45 minutes. Fluorescence was measured with a microplate 
fluorometer (Fluoroskan Ascent, Thermo Scientific, Waltham, MA) with the excitation/emission filter pairs 
485/538 nm for CAM and 530/620 for EthD-1. Background fluorescence, measured in wells containing CAM 
and EthD-1 without cells, was subtracted from all values. The values for live and dead cells in temperature groups 
were normalized to control values. Trypan Blue (0.4% solution) (Sigma) was used to quantify viable cells. Cells 
excluding dye were counted as live cells.

Analysis of Reactive Oxygen Species Using Flow Cytometry. Flow cytometric analysis of intracellular ROS was 
performed in separate analyses. DHR or DHE were added at a final concentration of 3 µM to separate wells (n = 4 
each). After incubation (5% CO2 and 95% humidified air) for 90 minutes at 37 °C (DHR) or for 20 minutes at 
30 °C at ambient CO2 (DHE), cells were detached with 3 minutes trypsin incubation, washed and re-suspended in 
ice-cold HBSS + 4% FBS. Samples were kept on ice and analyzed using the BD Accuri C6 bench top flow cytom-
eter. The production of ROS could be evaluated due to the transformation of the probes from non-fluorescent to 
fluorescent compounds by the oxidative burst intermediates within the cells. Excitation of the DHR dye at 488 nm 
produced green fluorescence with a peak at 530 nm, detected using the standard filter 530/30 (FL1). Excitation 
of the DHE dye at 488 nm produced red fluorescence with a peak at 600 nm, detected using the standard filter 
585/40 nm (FL2). The percentage of cells positive for each probe was recorded for each experiment. Samples with 
no addition of probe (negative control) and samples pre-incubated for 30 minutes with 1 mM menadione (ROS 
generation positive control) were included.

Lactate Dehydrogenase Release Determined by Colorimetric Assay. LDH, a cytoplasmic enzyme, is released extra-
cellularly when cell membranes are compromised58. Cell membrane damage was assessed using a colorimetric 
assay for LDH release to the media (LDH assay kit, Abcam, Cambridge, UK). Upon removal of cells from storage, 
the medium was collected and kept for subsequent analysis. Normal culture medium (collected after the normal 
three hour rewarming period) was added to the reserved storage medium. Cells were lysed in 1% Triton-X 100 
HBSS. The LDH released to the collected storage and culture media and LDH in cells were measured separately 
using an LDH activity colorimetric assay kit (Sigma Aldrich, MO, USA), following the protocol recommended 
by the manufacturer. LDH was measured at 450 nm using a spectrophotometer and %LDH release was calculated 
(LDH in medium/(LDH in cells + LDH in medium) × 100%). Temperature groups were compared based on 
%LDH release relative to control (n = 4).

Mitochondrial DNA Integrity Assessed by Quantitative Real-Time Polymerase Chain Reaction. Mitochondrial 
DNA (mtDNA) integrity was assessed by the ability to inhibit restriction enzyme digestion, as reported pre-
viously (2015)59. Briefly, total DNA from control and cells stored at 4 °C, 12 °C, and 24 °C was isolated using 
the QiagenAmp Blood and Tissue Kit. Quantification and purity of DNA was measured using an Epoch 
Microplate Spectrophotometer (Bio-Tek). Primers designed for mitochondrial gene mt-Rnr1 (actcaaag-
gacttggcggta and agcccatttcttcccatttc) were used to analyze DNA damage by using two separate reactions 
(6 ng total DNA per reaction). The mtDNA damage was calculated from the difference in CT values in the 
group by the relation: damage frequency = 1/2exp(delta CT), and presented relative to that of non-stored 
cells ( = 1).

Morphology. Light Microscopy Analysis. Light microscopy images were taken before and after storage at 
each temperature. Images were taken at random positions within each well at 200X magnification, using a Leica 
DM IL LED microscope and Canon EOS 5D mark II camera (Canon, Oslo, Norway). Individual cell morphology 
as well as the integrity of the complete cell layer were assessed.

Cell Size by Flow Cytometry. After exclusion of cell debris, cells were assessed for mean cell size based on for-
ward scatter using flow cytometry. The mean forward scatter values were collected for each group (n = 4).

Transmission Electron Microscopy Analysis. Cells were cultured and stored in 24-well transwell polyethylene 
terephthalate membrane inserts (0.4 µm pore size) (Corning, NY). Following storage, cell sheets were prepared 
for TEM imaging by fixing in 2.5% glutaraldehyde in 0.2 M cacodylate buffer adjusted to pH 7.4. They were 
post-fixed in 1% osmium tetroxide, and dehydrated through a graded series of ethanol up to 100%. The tissue 
blocks were immersed in propylene oxide twice for 20 minutes and embedded in Epon. Ultrathin sections were 
cut on a microtome (Leica Ultracut UCT; Leica, Wetzlar, Germany) and examined by transmission electron 
microscope (Model CM120; Philips, Amsterdam, The Netherlands). Micrographs were taken at a magnification 
of x24500.

Phenotype. Proliferation, Apoptosis,  Progenitor and Differentiation Markers Assessed by 
Immunocytochemistry. Cells were fixed, and prepared for immunocytochemistry staining following the pro-
tocol in Jackson et al.17. Antibodies and concentrations are listed in Table 2. Images were captured at random 
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positions using an inverted epi-fluorescence microscope (Nikon Eclipse Ti with a DS-Qi1 camera; Nikon 
Instruments, Tokyo, Japan) at 200X magnification. The exposure length and gain were kept constant. ImageJ 
software was used to process the images. The percentage of positive staining for each marker was calculated based 
on an average from counting ~100 cells from randomly selected positions in n = 4 wells. Counts were verified by 
two independent investigators.

P63 Analysis by Cytospin. Cell suspensions from each group and control were fixed in ice-cold methanol at 
−20 °C for 7 minutes and loaded on to a glass slide by cytospinning at 800 g for 5 minutes. The slides were pro-
cessed and analyzed using the immunocytochemistry protocol above for p63 [EPR5701] at 1:300 dilution.

Cytokine Profile Analysis by Multiple ELISA Tests. Medium was collected from non-stored control cells and 
each of the storage groups and frozen at −20C for later cytokine and growth factor analyses. ELISA analyses 
were carried out on samples and standards according to manufacturer instructions (Human MMP antibody 
array including all MMPs and TIMPs from Abcam, Cambridge, UK; IL-1α, IL-1β, IL-4 and IL-8 and EGF from 
Cloud-Clone Corp. Houston, USA; VEGF from Abbexa Ltd., Cambridge, UK; TGF-β1 and TGF-β3 from Assay 
Biotech, Sunnyvale, USA). Standard curves were made using the kit supplied standards and diluents. Background 
diluent controls were subtracted from readings. ELISA readings were taken using an Axon Gene Pix scanner at 
450 nm.

Statistical Analysis. One-way ANOVA with Tukey’s post hoc pair-wise comparisons (SPSS ver. 19.0) was used 
to compare the groups. Data were expressed as mean ± SEM, and values were considered significant if p ≤ 0.05.
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