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Abstract
Purpose: Glioma is the most common type of primary brain tumor in adults, and it 
causes significant morbidity and mortality, especially in high-grade glioma (HGG) 
patients. The accurate prognostic prediction of HGG is vital and helpful for clinicians 
when developing therapeutic strategies. Therefore, we propose a machine learning-
based survival prediction model by analyzing clinical and dose-volume histogram 
(DVH) parameters, to improve the performance of the risk model in HGG patients.
Methods: Eight clinical variables and 39 DVH parameters were extracted for each 
patient, who received radiotherapy for HGG with active follow-up. Ninety-five pa-
tients were randomly divided into training and testing cohorts, and we employed ran-
dom survival forest (RSF), support vector machine (SVM), and Cox proportional 
hazards (CPHs) models to predict survival. Calibration plots, concordance indexes, 
and decision curve analyses were used to evaluate the calibration, discrimination, and 
clinical utility of these three models.
Results: The RSF model showed the best performance among the three models, with 
concordance indexes of 0.824 and 0.847 in the training and testing sets, respectively, 
followed by the SVM (0.792/0.823) and CPH (0.821/0.811) models. Specifically, in 
the RSF model, we identified age, gross tumor volume (GTV), grade, Karnofsky per-
formance status (KPS), isocitrate dehydrogenase (IDH), and D99 as important vari-
ables associated with survival. The AUCs of the testing set were 92.4%, 87.7%, and 
84.0% for 1-, 2-, and 3-year survival, respectively. According to this model, HGG 
patients can be divided into high- and low-risk groups.
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1  |   INTRODUCTION

Glioma is the most common type of primary brain tumor in 
adults, representing more than 80% of malignant intracranial 
tumors.1,2 The World Health Organization (WHO) patholog-
ically classifies glioma into Grades I, II, III, and IV glioma 
according to histological features.3 Among them, Grades III 
and IV are categorized as high-grade glioma (HGG), charac-
terized by poorly differentiated and highly aggressive tumor 
cells and a poor prognosis.3 Despite the standard treatment 
consisting of surgery followed by radiotherapy and temozolo-
mide (TMZ) chemotherapy,4,5 the morbidity and mortality of 
HGG are still very high.1 It is therefore essential to accurately 
predict the prognosis of patients, to guide clinicians in mak-
ing personalized treatment decisions and surveillance strate-
gies for patients with different risk levels.

Researchers have made great efforts to understand indi-
vidual risk profiles and develop survival prediction models. 
Previous studies have shown that tumor grade, age, Karnofsky 
performance status (KPS), extent of surgery, and other clini-
cal data are important prognostic factors for HGG patients.6 
A few molecular markers, such as isocitrate dehydrogenase 
(IDH) 1 and 2 mutations, 1p/19q chromosomal codeletion, 
and O-6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, have also been suggested to be use-
ful in survival prediction.7,8 Interestingly, recent studies have 
elucidated that dosimetric parameters can affect prognosis. 
For example, Yang et al. found that the dose-volume histo-
gram (DVH) signature reflecting the planning score was an 
independent predictor of progression-free survival in locore-
gionally advanced nasopharyngeal carcinoma.9 Rijkmans 
et al. evaluated the association of dosimetric parameters with 
tumor regression in local advanced rectal cancer and found 
that tumor volume is the most important predictive factor.10 
Considering the crucial role of radiotherapy in the treatment 
course, in this study, we will integrate clinical variables with 
DVH parameters to predict the overall survival (OS) of HGG 
patients.

To resolve this issue, different approaches can be used. 
The classical approach—the Cox proportional hazard (CPH) 
model—can be employed to identify clinical parameters and 
dosimetric parameters that significantly affect the outcome of 
interest. The CPH model is the most frequently used method 
in survival analysis because of its convenience. However, it 

assumes that the outcome is a linear combination of covari-
ates, but patient data are diverse and complex and generally, 
they cannot be considered linear.11,12 The random survival 
forest (RSF) model, one of the most widely used methods 
of machine learning, enables the detection of relationships 
from complex datasets. RSF is a flexible nonparametric tree-
ensemble method for the analysis of right-censored survival 
data.13 It builds hundreds of trees and outputs the results by 
voting.14 In addition, it reduces variance and bias by using all 
variables collected and by automatically assessing nonlinear 
effects and complex interactions.12 In addition to RSF, the 
support vector machine (SVM) is another supervised ma-
chine learning algorithm used for classification and regres-
sion.15 It separates the data by constructing a hyperplane in a 
high- or infinite-dimensional space, and it can classify non-
linear data using the kernel trick.16

Therefore, in this study, we propose three models, namely, 
the machine learning-based RSF and SVM models, and the 
classical CPH model, to identify predictors of survival and 
examine treatment outcomes in patients with HGG by inte-
grating clinical and DVH parameters. In addition, we used 
the calibration plot, concordance index (c-index), and deci-
sion curve analyses to evaluate the calibration, discrimina-
tion, and clinical utility of these three models.

2  |   METHODS AND MATERIALS

2.1  |  Patients and treatment

Patients diagnosed with HGG at the Second Affiliated 
Hospital, Zhejiang University School of Medicine, from 
January 2015 to June 2018 were consecutively enrolled in 
this study. All patients underwent surgery and were histo-
logically diagnosed with WHO Grades III–IV glioma. In ad-
dition, patients underwent postoperative intensity-modulated 
radiation therapy (IMRT) with standard contouring, with 
concomitant TMZ chemotherapy. Those who did not receive 
IMRT with standard contouring or without follow-up were 
excluded. Clinical data on patient age, gender, grade, KPS, 
cycles of adjuvant chemotherapy, MGMT expression, IDH1 
R132 mutation, Ki-67 expression, and OS were collected. 
Specifically, MGMT expression, IDH1 R132 mutation, and 
Ki-67 expression were determined by immunohistochemistry 

Conclusion: The machine learning-based RSF model integrating both clinical and 
DVH variables is an improved and useful tool for predicting the survival of HGG 
patients.
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in postoperative tissues. OS was defined as the number of 
months between the date of diagnosis and the date of death 
from any cause. For concurrent chemotherapy, TMZ was 
administered once daily (7 days/week) at a dose of 75 mg/
m2/day. For adjuvant chemotherapy, TMZ started 4  weeks 
after the completion of radiotherapy. Adjuvant TMZ was 
administered at a dose of 150 mg/m2 during the first cycle 
(Days 1–5 per 28-day cycle) if no toxicity was observed. 
Then, TMZ was administered at a dose of 200 mg/m2 from 
the second cycle onwards.17 This project was approved by 
the Independent Ethics Committee of the Second Affiliated 
Hospital, Zhejiang University School of Medicine, and in-
formed consent was obtained from all patients.

2.2  |  IMRT planning and DVH 
feature extraction

All patients were immobilized in the supine position by a 
thermoplastic head fixation mask, followed by CT simula-
tion. The generated CT images were fused with enhancement 
magnetic resonance imaging (MRI) images and delineated 
slice-by-slice. According to our protocol, gross tumor volume 
(GTV) was defined as the surgical cavity and any residual 
contrast-enhancing tumor on postcontrast T1-weighted MRI, 
ignoring any edematous region.18 Clinical target volume 
(CTV) 1 was GTV plus a margin of 1 cm, while CTV2 was 
GTV plus a margin of 2 cm. In addition, both were modified 
to avoid barriers of spread (i.e., bone, falx cerebri, ventri-
cles). Then, the corresponding planning target volume (PTV) 
1 and PTV2 were obtained by expanding the CTVs by 3 mm. 
The standard fractionation scheme was a dose of 60 Gy de-
livered in 30 fractions (2 Gy per day from Monday to Friday, 
6 weeks). The prescription dose was 60 Gy for CTV1 and 
54  Gy for CTV2 by the use of the Eclipse 10.0 treatment 
planning system.19 A 6-MV photon beam was provided by 
the Varian Trilogy LINAC with a multileaf collimator.

DVH features were collected from the initial treatment 
plans, including GTV, CTV1, CTV2, equivalent spherical 
diameter, minimal dose, maximal dose, mean dose, modal 
dose, STD, EUD, TCP, the dose that covered 1% to 99% of 
the CTV2 (D1–D99), and the percent volume of CTV2 that 
received the dose of 50 Gy to 65 Gy (V50–V65). Some of 
the DVH features for each patient are exported directly from 
DVH text files, and the rest of the features such as modal 
dose, STD, EUD, TCP, D1–D99 and V50–V65 of CTV2, 
were calculated from the DVH with a program written in 
MATLAB (MATLAB R2011b, Mathworks, Inc.). The modal 
dose is the most frequent dose in CTV2. STD is the standard 
deviation of the dose distributions in CTV2. EUD represents 
the equivalent uniform dose which leads to the same control 
probability as the nonuniform dose distribution.20 Therefore, 
it can be used to compare the local control or radiobiological 

effect for different dose distributions. TCP is the EUD-based 
tumor control probability.21 The EUD and TCP equations are 
as follows:

where a is a specific parameter of the EUD model, the Di and 
vi data pairs are obtained from the differential DVH, the TCD50 
is the dose to achieve 50% tumor control, and γ50 is a specific 
parameter to describe the slope of the dose response curve. In 
this study, TCD50 and γ50 were set to −10, 60, and 2, respec-
tively.20,22,23 All doses are described as the total dose per course.

2.3  |  RSF model

To make the statistics easier to analyze, we transformed all 
the continuous variables into categorical variables by the 
maxstat package using R version 3.6.1 (R Foundation for 
Statistical Computing), which is a bioinformatics tool to de-
termine the optimal cut point for one or multiple continuous 
variables. The included patients were randomly divided into 
training and testing cohorts. The data were sampled using 
random bootstrapping to generate a training dataset. To mini-
mize classification error in the training data, the model ran-
domly selected a subset of feature variables (mtry) to obtain 
the optimal result. The corresponding trees of the training 
set were repeatedly generated until the out-of-bag (OOB) 
error rate had stabilized. Then the RSF model selected the 
model with the lowest OOB error rate. On the basis of the 
RSF model, the predicted survival time and risk score of each 
patient was calculated. The optimal cutoff point of the corre-
sponding patient risk scores with the smallest Kaplan–Meier 
log-rank was determined by the maxstat package in R soft-
ware. We used the cutoff point to stratify patients into high- 
and low-risk groups. Then, Kaplan–Meier survival curves 
of the high- and low-risk groups were generated using the 
survminer R package.

2.4  |  SVM model

The SVM model was constructed based on the training data-
set via the caret package in R software. Each included fea-
ture was ranked according to its predictive ability. To obtain 
the optimal number of features to build the model, a 5-fold 
cross-validation approach was applied in the training set, and 
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the variable number was identified according to the cross-
validation accuracy. The established model was then used to 
predict the samples in the testing dataset.

2.5  |  CPH model

In the CPH model, univariate and multivariate models were 
constructed to evaluate factors correlated with survival. 
Univariate and multivariate Cox regression analyses were 
conducted to generate hazard ratios (HRs) with confidence 
intervals (CIs). Then, we calculated the predicted 1-, 2-, 
and 3-year survival probabilities for each patient using the 
nomogram that was constructed on the basis of the CPH 
model.

2.6  |  Calculation of the area under the 
ROC curve

Receiving operator characteristic (ROC) curves were used 
to assess the predictive accuracy of the different survival 
analysis models (CPH, SVM, and RSF models). The area 
under the ROC curve (AUC) was used as a performance 
metric for all the models. The ROC curve and AUC were 
obtained by using the timeROC package in R. The AUC 
was calculated to compare the discriminatory ability of the 
above models.

2.7  |  Construction and 
evaluation of the nomogram model

The nomogram of each model was constructed via the rms 
package in R based on the selected features in the RSF, SVM, 
and CPH models. Calibration plots were constructed and the 
c-indexes were calculated to evaluate the predictive accuracy 
of the nomogram model. DCA, which compares benefit ver-
sus harm, was used to estimate whether the clinical utility of 
the prediction models would do more harm than good. The 
net benefits were quantified to determine the clinical utility 
of each model.

2.8  |  Statistics

The Pearson χ2 test was employed to investigate significant 
differences between the training set and testing set. DVH fea-
tures were exported from the treatment planning system and 
calculated by MATLAB software. All statistical analyses and 
plotting were conducted using R version 3.6.1. A p value of 
<0.05 was considered statistically significant. All tests were 
two sided, and 95% CIs were used.

3  |   RESULTS

3.1  |  Clinical and pathological 
characteristics of the included patients

A total of 95 patients were assessed as eligible for inclusion in 
this study by using the patient selection algorithm described 
in the Methods section (Figure  1). The clinicopathologi-
cal characteristics of these 95 patients are shown in Table 1. 
There were 26.3% patients (N = 25) with Grade III glioma 
and 73.7% patients (N = 70) with Grade IV glioma. Among 
them, 63.2% (N = 60) were younger than 60 years, and 36.5% 
(N = 35) were older than 60 years. Gender was almost evenly 
distributed, with 51.6% male patients and 48.4% female pa-
tients. In terms of the patients’ functional abilities, which were 
evaluated by the KPS in this study, most (N = 84, 88.4%) had 
good functional status, with KPS scores of more than 60.

Twenty-four percent of patients (N = 23) did not receive any 
adjuvant chemotherapy, 51.6% of patients (N  =  49) received 
less than 6 cycles of adjuvant chemotherapy, and the remaining 
patients (N = 23, 24.2%) received more than 6 cycles of adju-
vant chemotherapy. We also included pathological factors, such 
as MGMT expression, IDH1 R132H mutation, and Ki-67 ex-
pression. Specifically, MGMT expression in 82.1% of patients 
(N = 78) was negative, and most of the patients (N = 78, 82.1%) 
did not carry the IDH1 R132H mutation. Moreover, Ki-67 ex-
pression in 68.4% of patients (N = 65) was greater than 50%. The 
median OS was 38.3 months, ranging from 31.6 to 45.0 months.

3.2  |  Characteristics of DVH features

For patients with HGG, the NCCN guidelines recommended 
surgery first, followed by radiotherapy and concurrent chemo-
therapy, and then adjuvant chemotherapy. The contouring and 
treatment planning are specifically described in the Methods and 
Materials section. Figure 2 depicts the contoured structures and 
dose planning. In this study, we extracted 39 DVH features from 
the initial treatment plans, including GTV, CTV1, CTV2, equiv-
alent spherical diameter, minimal dose, maximal dose, mean 
dose, modal dose, STD, TCP, EUD, D1–D99, and V50–V65 
of CTV2 (Table  S1). Previous research illustrated the effects 
of DVH parameters on the biological outcomes of patients. To 
explore the association between DVH features and prognosis, 
we transformed these continuous variables into categorical vari-
ables to simplify the following statistical analyses (Table S1).

3.3  |  Machine learning-based RSF model for 
predicting prognosis

The random forest method is a machine learning technique 
used for classification and regression, presenting several 
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advantages over other predictive methods. Therefore, we 
used random forest to predict the prognostic factors of HGG 
patients. First, the entire dataset was split into two mutu-
ally exclusive datasets, with 60% assigned to the training set 
(N = 57) and 40% assigned to the testing set (N = 38). There 
were no statistically significant differences in terms of clin-
icopathological features or survival outcomes between the 
two sets (Table 1). Then, we obtained the optimal results with 
an mtry value of 1, a nodesize value of 7, and an ntree value 
of 2000, which yielded a low OOB error rate of 21.11% in 
the training set (Figure 3A and B). Finally, we identified six 
significant factors strongly associated with survival, whose 
minimal depth was lower than the threshold of 2.247. Of 
those, age was of the highest importance, followed by GTV, 
grade, KPS, IDH, and D99 (Figure 3C and D).

Based on these variables, we generate our RSF model. 
Figure  4A and B shows the ROC curves of the training and 
testing sets at 1, 2, and 3 years. For 1-, 2-, and 3-year survival, 
the AUCs were 85.6% (95% CI [75.63%, 95.65%]), 85.4% (95% 
CI [74.81%, 96.08%]) and 91.4% (95% CI [81.92%, 99.99%]), 
respectively, in the training set and 92.4% (95% CI [83.63%, 
99.99%]), 87.7% (95% CI [75.65%, 99.78%]) and 84.0% (95% 
CI [68.82%, 99.14%]), respectively, in the testing set (Table 2). 

Based on the RSF model, we divided the patients into high- 
and low-risk groups (Figure  4C and D). The low-risk group 
had a longer OS than the high-risk group in both the training 
(HR = 9.075, 95% CI [3.603, 22.86], p < 0.0001) and testing sets 
(HR = 17.4394, 95% CI = 3.738–81.37, p < 0.0001). Overall, 
this machine-learning-based survival prediction model enables 
us to identify HGG patients who are at risk of poor outcomes.

3.4  |  Machine learning-based SVM model 
for predicting prognosis

In addition to the RSF model, we also used another super-
vised machine learning-based model, the SVM model, to 
predict the prognosis of HGG. In the SVM model, a 77% 
prediction accuracy was achieved using a four-feature com-
bination (Figure  5A). Specifically, age, grade, GTV, and 
CTV1 were identified as prognostic predictors (Figure 5B). 
Subsequently, the AUCs for 1-, 2-, and 3-year survival were 
82.6% (95% CI [71.95%, 93.21%]), 83.3% (95% CI [71.88%, 
94.73%]), and 88.5% (95% CI [77.51%, 99.53%]), respec-
tively, in the training set (Figure  5C) and 89.5% (95% CI 
[76.93%, 99.99%]), 87.1% (95% CI [76.25%, 97.98%]), and 

F I G U R E  1   Flow chart of patient 
inclusion
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82.3% (95% CI [67.38%, 97.39%]), respectively, in the test-
ing set (Figure 5D) (Table 2).

3.5  |  Classical analysis of potential 
prognostic factors

To evaluate the performance of the machine learning-based 
models, we also used the classical multivariate CPH model to 
predict the survival of patients. As shown in Table 3, we found 
that age (p  =  0.011), KPS (p  =  0.017), grade (p  =  0.017), 
and D90 (p = 0.049) were significantly correlated with OS. 
Specifically, older age (>60 years), higher grade (Grade IV), 
and high D90 dose (>5829.90  cGy) were related to poorer 
survival, with HRs of 2.902, 12.377, and 2.236, respectively, 
and a higher KPS score (>60) was related to improved survival 

Total patients Training set Testing set p value

Total patients 95 (100%) 57 (60.0%) 38 (40.0%)

Age 0.385

≤60 60 (63.2%) 34 (59.6%) 26 (68.4%)

>60 35 (36.8%) 23 (40.4%) 12 (31.6%)

Gender 0.054

Male 49 (51.6%) 34 (59.6%) 15 (39.5%)

Female 46 (48.4%) 23 (40.4%) 23 (60.5%)

Grade 0.634

III 25 (26.3%) 14 (24.6%) 11 (28.9%)

IV 70 (73.7%) 43 (75.4%) 27 (71.1%)

KPS 0.793

≤60 11 (11.6%) 7 (12.3%) 4 (10.5%)

>60 84 (88.4%) 50 (87.7%) 34 (89.5%)

Adjuvant 
chemotherapy

0.324

<6 cycles 41 (43.2%) 28 (49.1%) 13 (34.2%)

6 cycles 31 (32.6%) 19 (33.3%) 12 (31.6%)

>6 cycle 23 (24.2%) 10 (17.5%) 13 (34.2%)

MGMT expression 0.08

Negative 78 (82.1%) 50 (87.7%) 28 (73.7%)

Positive 17 (17.9%) 7 (12.3%) 10 (26.3%)

IDH1 R132H 
mutation

0.452

WT 69 (72.6%) 43 (75.4%) 26 (68.4%)

MUT 26 (27.4%) 14 (24.6%) 12 (31.6%)

Ki−67 0.587

≤50 65 (68.4%) 39 (68.4%) 26 (68.4%)

>50 30 (31.6%) 18 (31.6%) 12 (31.6%)

Meadian OS 38.30 
(31.60–45.00)

44.24 
(34.19–54.29)

30.81 
(26.23–35.39)

0.113

T A B L E  1   Clinical and pathological 
characteristics of included patients

F I G U R E  2   An example of treatment planning in a patient with 
HGG
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F I G U R E  3   (A and B) Out-of-bag 
(OOB) error rate to assess the quality of 
the survival prediction for HGG in the RSF 
model. The OOB error rate was 21.11% 
with mtry = 1, nodesize = 7 (A), and ntree 
value = 2000 (B). (C and D) Minimal depth 
to predict the survival of HGG patients 
in the RSF model. We identified six 
significant factors associated with survival, 
whose minimal depth was lower than the 
threshold of 2.247. Age was of the highest 
importance, followed by GTV, grade, KPS, 
IDH, and D99

F I G U R E  4   (A) The ROC curves of the 
training set in the RSF model. The AUCs 
were 85.6% (95% CI [75.63%, 95.65%]), 
85.4% (95% CI [74.81%, 96.08%]), and 
91.4% (95% CI [81.92%, 99.99%]) for 1-, 2-, 
and 3-year survival, respectively. (B) The 
ROC curves showed that the AUCs were 
92.4% (95% CI [83.63%, 99.99%]), 87.7% 
(95% CI [75.65%, 99.78%]), and 84.0% 
(95% CI [68.82%, 99.14%]) for 1-, 2-, and  
3-year survival in the testing set, 
respectively. (C and D) HGG patients were 
divided into high- and low-risk groups 
according to the RSF model. The low-risk 
group had a longer OS time than the high-
risk group in both the training (HR = 9.075, 
95% CI [3.603, 22.86], p < 0.0001) (C) and 
testing sets (HR = 17.4394, 95% CI [3.738, 
81.37], p < 0.0001) (D)
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(HR =0.286). The AUCs for 1-, 2-, and 3-year survival were 
83.5% (95% CI [72.36%, 94.66%]), 87.1% (95% CI [76.96%, 
97.24%]) and 91.6% (95% CI [82.05%, 99.99%]), respectively, 
in the training set and 87.9% (95% CI [74.01%, 99.99%]), 87.3% 
(95% CI [76.04%, 98.68%]), and 84.9% (95% CI [68.93%, 
99.99%]), respectively, in the testing set (Figure 5B) (Table 2).

3.6  |  Assessment of the predictive 
capabilities of the RSF model

The performance of the model was verified by calibration 
and discrimination. The calibration plots matched well with 

the ideal 45-degree line, implying good consistency between 
the model predictions and actual observations of the 1-, 2-, 
and 3-year survival probabilities in the training and valida-
tion cohorts for the RSF (Figure S1), SVM (Figure S2) and 
CPH models (Figure S3). In terms of discrimination ability, 
to compare the performance of the three models, we calcu-
lated the c-index, which measures the concordance between 
the predicted risks and the actual survival, applied to both the 
training and testing sets. As shown in Table 4, the c-indexes 
of the training and testing sets were 0.824 and 0.847 for the 
RSF model, 0.792 and 0.823 for the SVM model, and 0.821 
and 0.811 for the CPH model, implying the good perfor-
mance of the RSF model (Figure 6).

T A B L E  2   AUCs of 1-year, 2-year and 3-year survival in RSF, SVM and CPH models

ACU (95% CI)

1-year survival 2-year survival 3-year survival

Machine learning-based RSF model Training set 85.6% [75.63%, 95.65%] 85.4% [74.81%, 96.08%] 91.4% [81.92%, 99.99%]

Testing set 92.4% [83.63%, 99.99%] 87.7% [75.65%, 99.78%] 84.0% [68.82%, 99.14%]

Machine learning-based SVM model Training set 82.6% [71.95%, 93.21%] 83.3% [71.88%, 94.73%] 88.5% [77.51%, 99.53%]

Testing set 89.5% [76.93%, 99.99%] 87.1% [76.25%, 97.98%] 82.3% [67.38%, 97.39%]

Classical CPH model Training set 83.5% [72.36%, 94.66%] 87.1% [76.96%, 97.24%] 91.6% [82.05%, 99.99%]

Testing set 87.9% [74.01%, 99.99%] 87.3% [76.04%, 98.68%] 84.9% [68.93%, 99.99%]

F I G U R E  5   (A) The prediction 
accuracy with a certain number of features 
in the SVM model. When the number of 
features was four, it achieved the optimal 
accuracy of 77%. (B) The top four features 
included in the SVM model were age, 
grade, GTV and CTV1. (C and D) In 
the SVM model, the AUCs for 1-, 2-, 
and 3-year survival were 82.6% (95% CI 
[71.95%, 93.21%]), 83.3% (95% CI [71.88%, 
94.73%]), and 88.5% (95% CI [77.51%, 
99.53%]) in the training set (C) and 89.5% 
(95% CI [76.93%, 99.99%]), 87.1% (95% 
CI [76.25%, 97.98%]), and 82.3% (95% 
CI [67.38%, 97.39%]) in the testing set, 
respectively (D)
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Moreover, DCA calculates the net benefit to evaluate 
whether a model is clinically useful. The results in Figure 7 
show that the RSF model offered the best clinical utility, 
with greater net benefits than the SVM and CPH models. 

The results indicated that the RSF model has greater clinical 
utility than the SVM and CPH models in terms of survival 
prediction. Overall, the RSF model shows better performance 
and improvement over the SVM and CPH models.

4  |   DISCUSSION

In this study, we used two machine learning-based models 
and a classical model to predict OS by analyzing patient 
clinical parameters and DVH parameters. The RSF model 
showed the best performance and improvement among the 
three models, with c-indexes of 0.824 and 0.847 for the train-
ing and testing sets, respectively, followed by the SVM model 

Variable

Univariate analysis Multivariate analysis

Hazard ratio (95% 
CI) p

Hazard ratio (95% 
CI) p

Age 0.000 0.011

≤60 1 1

>60 4.551 [2.089, 9.914] 2.902 [1.271, 6.623]

Grade 0.008 0.017

III 1 1

IV 15.424 [2.074, 
114.720]

12.377 [1.581, 
96.917]

KPS 0.007 0.017

≤60 1 1

>60 0.276 [0.109, 0.702] 0.286 [0.102, 0.803]

D90 (cGy) 0.162 0.049

≤5829.90 1 1

>5829.90 1.742 [0.801, 3.792] 2.236 [1.002, 4.989]

T A B L E  3   Classical analysis of potential 
clinical and DVH features influencing OS

T A B L E  4   C-index of RSF, SVM, and CPH model

Machine learning-based RSF model Training set 0.824

Testing set 0.847

Machine learning-based SVM 
model

Training set 0.792

Testing set 0.823

Classical CPH model Training set 0.821

Testing set 0.811

F I G U R E  6   In the CPH model, the AUCs for 1-, 2-, and 3-year survival were 83.5% (95% CI [72.36%, 94.66%]), 87.1% (95% CI [76.96%, 
97.24%]), and 91.6% (95% CI [82.05%, 99.99%]), respectively, in the training set (A) and 87.9% (95% CI [74.01%, 99.99%]), 87.3% (95% CI 
[76.04%, 98.68%]), and 84.9% (95% CI [68.93%, 99.99%]) in the testing set, respectively (B)
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(0.792/0.823) and CPH model (0.821/0.811). RSF is one of 
the widely used methods of machine learning, and it bypasses 
the requirement of parametric or semiparametric constraints 
on the underlying distributions and automatically deals with 
high-level interactions and higher order terms in variables, 
to generate much more accurate predictions.24 SVM is also a 
learning method for the classification of linear and nonlinear 
data. However, it was generally proposed for response pre-
diction and was recently extended to survival prediction.25 In 
our study, the RSF model also outperformed the SVM model 
in predicting survival. Additionally, the CPH model was not 
designed to predict outcomes but to infer the impact of vari-
ables on a survival curve, while machine learning is more 
suitable for making predictions. The predictive accuracy of 
the CPH model as calculated by the c-index was the lowest 
among the three models.

In the RSF model, the AUCs were 92.4%, 87.7%, and 84.0% 
for predicting 1-, 2-, and 3-year survival, respectively, in the 
testing set, suggesting that the model had good predictive 
ability. Thus, we can divide patients into high- and low-risk 
groups to predict OS according to this model. These results 
demonstrate the possibility of identifying HGG patients who 
are at risk of having a poor outcome. This stratification of 
risk will help clinicians provide much more individualized 
interventions and strategies in cancer therapy. The higher 
accuracy and better performance of the RSF model make it 
highly valuable for predicting survival in HGG patients. In 
fact, a few researchers have expended great effort to develop 
a prognostic prediction model for this highly malignant can-
cer, proposing a survival prediction model for HGG based on 
MRI radiomic features combined with genetic and clinical 
risk factors.26–29 Imaging features from fluorodeoxyglucose-
positron emission tomography (FDG-PET) have also been 
used to predict survival in recurrent HGG.30 This field has at-
tracted increasing attention because of its noninvasive nature 
and easy access.31 However, there are challenges in image 

analyses, including the lack of standardization in imaging 
acquisition, poor reproducibility, and complex quantitative 
features.32 Hence, comparing results across institutions can 
be challenging, thereby limiting its clinical use. Therefore, 
we did not include the imaging features of HGG patients in 
this study. Instead, we used the DVH features combined with 
clinicopathological variables to construct a prediction model. 
Few studies make use of the DVH -based treatment plan, 
which is essential for HGG patients after surgery.

In the RSF model, feature selection identified age, GTV, 
grade, KPS, IDH, and D99 as the most important predictors 
of HGG. Among them, age, grade, and KPS are all well-
known prognostic factors and were unsurprisingly selected 
as significant parameters in the RSF model.6 Regarding 
well-studied molecular parameters, such as IDH1 R132H 
mutation, 1p/19q chromosomal codeletion, and MGMT pro-
moter methylation, genomic sequencing, fluorescence in 
situ hybridization and methylation-specific PCR are recom-
mended for detection.7,8 However, these detection methods 
can be cost-prohibitive and are not covered by basic medical 
insurance in China. Therefore, our oncology center used im-
munohistochemistry for IDH1 R132H mutation and MGMT 
expression. The 1p/19q chromosomal codeletion is not rou-
tinely detected, so we did not include it in this study. We iden-
tified the IDH1 R132H mutation as a significant variable in 
the RSF model but not in the SVM and CPH models, which 
indicates that the RSF model might be more appropriate and 
accurate to some extent. GMT expression was not identified 
in the three models. This may be because we used immuno-
histochemistry for its detection, which is neither accurate nor 
sensitive.

Furthermore, in the RSF model, GTV and D99 were 
identified as prognostic predictors. These results support the 
notion that dosimetric parameters can predict patient prog-
nosis. GTV was defined as the surgical resection cavity plus 
any residual tumor. A higher GTV might indicate a larger 

F I G U R E  7   DCA curves for the clinical benefit and the corresponding scope of application of the three models in the training (A) and testing 
sets (B). The RSF model had greater net benefits than the SVM and CPH models in the testing set
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preoperative tumor volume. It is difficult to irradiate large tu-
mors with sufficient doses due to the limited toxicity tolerance 
of adjacent normal tissues. In addition, tumor hypoxia is more 
pronounced in larger tumors and is associated with treatment 
failure due to decreased radiosensitivity. D99, also called the 
near-minimum absorbed dose, presents the dose that covers 
99% of the target volume. The near-minimum absorbed doses, 
including D99 and D98, can be used to evaluate the uniformity 
of dose distribution33 and are recommended when reporting 
treatment plans.21,34 D99 is more accurate than the minimum 
absorbed dose, because the minimum absorbed dose is often 
located in a high-gradient region, making it highly sensitive to 
the dose calculation resolution and the accuracy of target vol-
ume delineation. In addition, D99 was a potential predictive 
parameter in the tumor control probability model and demon-
strated a better correlation with clinical outcome.35

We did not identify EUD or TCP, which are very import-
ant biophysical factors for predicting radiobiological effects 
and tumor control probability, as significant prognostic pre-
dictors in the RSF model. As biological optimization pa-
rameters, EUD and TCP are increasingly being applied to 
treatment plans, but their credibility is still questionable. The 
model parameters, such as TCD50 and γ50, are not constant 
and can vary according to tumor volume, intrinsic radiosen-
sitivity, tumor heterogeneity, tumor hypoxia, and so on. In 
addition, the tumor is time varying during treatment, so these 
parameters might change over time in different regions and to 
different extents. As a result, it is difficult to predict survival 
using EUD and TCP models, and the results in this study at 
least confirmed the limitations and instability of these bio-
physical models. Tumor heterogeneity and radiobiological 
factors should be considered in EUD and TCP models in the 
future.

There are two major strengths of this study. First, there 
are many reports on the survival analysis of patients with 
HGG based on clinicopathological factors and data mining of 
imaging variables. However, only a limited number of stud-
ies have investigated the importance of DVH for survival.36 
In this study, clinical and DVH features were combined to 
construct a prognostic prediction model, and we found that 
radiation dose information can affect prognosis. Therefore, 
DVH parameters should be taken into consideration in fu-
ture prognostic studies of HGG. Second, we compared the 
performance of different models in the survival prediction of 
HGG and demonstrated that the RSF model showed a higher 
performance with HGG patient data than the SVM and CPH 
models. The RSF model offers potential benefit to patients 
by stratifying their risk and guiding clinicians in develop-
ing much more individualized interventions and strategies.12 
Undoubtedly, some limitations also exist in this study. First, 
the sample size was relatively small, which led to higher 
AUCs for 1- and 2-year survival in the testing set than in the 
training set for the SVM and RSF models.37 To compare the 

performance of different models and select the best one, we 
did not conduct repeated cross-validation, which is a useful 
alternative in machine learning for small sample size stud-
ies.38 Second, this was a single institute-based study, with-
out multi-institutional validation. Third, longer follow-up is 
needed, especially for Grade III glioma patients. Finally, mo-
lecular parameters detected by standard diagnostic methods 
and radiomics features should be included in future studies.

In summary, we identified age, GTV, grade, KPS, IDH, 
and D99 as important variables associated with survival in 
the RSF model. The machine learning-based RSF model, 
which integrates both clinical and DVH variables, is an im-
proved and useful tool for predicting the survival of HGG 
patients. Additional multi-institutional studies with more pa-
tients are needed to assess the interactions between clinical 
and DVH features and prognosis.
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