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Abstract

Background: The homeobox gene Prox1 is required for lens, retina, pancreas, liver, and lymphatic vasculature development
and is expressed in inner ear supporting cells and neurons.

Methodology/Principal Findings: We have investigated the role of Prox1 in the developing mouse ear taking advantage of
available standard and conditional Prox1 mutant mouse strains using Tg(Pax2-Cre) and Tg(Nes-Cre). A severe reduction in the
size of the canal cristae but not of other vestibular organs or the cochlea was identified in the E18.5 Prox1Flox/Flox; Tg(Pax2-
Cre) mutant ear. In these mutant embryos, hair cell differentiated; however, their distribution pattern was slightly
disorganized in the cochlea where the growth of type II nerve fibers to outer hair cells along Prox1 expressing supporting
cells was severely disrupted. In the case of Nestin-Cre, we found that newborn Prox1Flox/Flox; Tg(Nestin-Cre) exhibit only a
disorganized innervation of outer hair cells despite apparently normal cellular differentiation of the organ of Corti,
suggesting a cell-autonomous function of Prox1 in neurons.

Conclusions/Significance: These results identify a dual role of Prox1 during inner ear development; growth of the canal
cristae and fiber guidance of Type II fibers along supporting cells in the cochlea.
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Introduction

The mammalian inner ear is composed of the cochlea that mediates

the auditory function, and the vestibule that mediates the gravitational

and angular acceleration sensing. In mammals, six epithelial sensory

patches found in the cochlear and vestibular regions of the inner ear

mediate auditory and vestibular functions: the organ of Corti is the

sensory patch found in the cochlea and three cristae and two maculae

are the sensory patches of the vestibule. Each of these sensory patches

includes mechanosensory hair cells and non-sensory supporting cells.

Both of these cell types originate from epithelial progenitors that

become specified as prosensory precursors. According to their position

in the ear, these prosensory patches will give rise to the definite

vestibular or cochlear sensory patches. Cells in those sensory patches

ultimately assume final fates as either hair cells (e.g., inner and outer

hair cells in the cochlea) or a variable number of non-sensory

supporting cells (distributed between hair cells). While the molecular

machinery governing the development of hair cells has received much

attention [1,2] far less is known about the molecular basis of cell fate

decision in supporting cells [3,4]. In the mammalian cochlea, at least

five unique types of supporting cell can be identified: Pillar cells,

Deiter’s cells, Hensen cells, Claudius cells and inner sulcus cells [3,5].

We and others have proposed that the development of the

vertebrate ear sensory epithelium shares certain similarities with the

development of the sensilla in insects [6,7,8]. In Drosphila, the

homeobox gene prospero plays important roles in cell fate decision

during glia, sensory sensilla, and eye development [9,10,11,12,13,14].

Prox1, the vertebrate counterpart of prospero [15] is expressed in

several murine cell types where its function is essential for proper

development and differentiation [15,16,17,18,19,20,21,22,23,24].

Interestingly, in addition to the developing retina [15,20] and

spinal cord [25], Prox1 expression was also identified in another

sensory organ; i.e., the developing ear of zebrafish [26], chicken

[27], and mice [28,29]. By taking advantage of available standard

and conditional Prox1 mouse mutant strains [30,31], we have now

determined that Prox1 is an important new player during the

development of the mammalian vestibular and auditory systems.

We demonstrate that in the canal cristae, lack of Prox1 function

affects the overall growth of these vestibular sensory epithelia. In

contrast, in the cochlea, absence of Prox1 disrupts stereotyped

cellular organization and fiber guidance of Type II neurons

apparently in a cell autonomous fashion.

Methods

Mice
Prox1+/LacZ, Prox1flox/flox, Atoh1, and Tg(Pax2-Cre) and Tg(Nes-Cre)

mice have been previously reported [30,31,32,33,34,35,36]. The
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developmental stage of mouse embryos was determined by

considering noon of the day the vaginal plug was detected in the

pregnant dam as E0.5. All of the mouse experiments were

approved by the Creighton University, University of Iowa, and St.

Jude Children’s Research Hospital Animal Care and Use

Committees.

Detection of b-Galactosidase Activity
To detect b-gal activity, ears were dissected and X-gal staining

was performed as described previously [37]. Whenever required,

we enhanced the X-gal reaction using 2-photon photoactivation

on whole mounts and sections [38]. In addition, we ran some ears

without fixation to avoid any quenching of the b-galactosidase

activity. Stained ears were mounted flat or alternatively, they were

embedded in epoxy resin, sectioned (20 mm) and imaged using a

compound lightmicroscope (Nikon Eclipse 800) and captured

using a Coolsnap camera and Metamorph software. Some ears

were processed for transmission electron microscopy and viewed

in a Hitachi TEM as previously described [39]. Unfortunately, use

of either Tg(Pax2-Cre) or Tg(Nes-Cre) leads to early postnatal

lethality; therefore, we were not able to analyze the conditional

mutant ear beyond P1.

Prox1 in situ hybridization. Whole mount in situ hybridization

was performed using a riboprobe as previously described [15].

Immunohistochemistry
Primary antibodies were rabbit anti–b-gal (ICN), rabbit (Covance

Research Products) anti–mouse Prox1 (Promega), rat anti–mouse b-

tubulin (Sigma), Hoechst nuclear stain (Sigma), Myo VII (gift of T.

Hasson, San Diego), Sox2 and BDNF (Invitrogen). Secondary

antibodies were Alexa 488, 543, and 634–conjugated donkey anti-

rabbit (Molecular Probes), Cy3-conjugated donkey anti–guinea pig

(Jackson ImmunoResearch Laboratories), and Cy3-conjugated

donkey anti-rat (Jackson ImmunoResearch Laboratories) were used

Figure 1. The early onset of Prox1 expression is revealed by b-galactosidase expression and in situ hybridization. Whole mount b-
galactosidase histochemcial reaction using X-Gal was performed in Prox1 heterozygous and nullizygous embryos. A. Starting at E11.0, a progressive
upregulation of Prox1 is seen in the anterior (AC) and posterior (PC) canal cristae. B. By E13.5, expression is also detected in the horizontal canal crista
(HC), the striolar region of the utricle (U), the canals and the endolymphatic duct (ED); expression in the saccule is barely detected (S). In the cochlea,
upregulation of b-galactosidase expression is detected in the apex and decreases toward the base. Arrows indicate expression in anterior and
posterior canal with their expression. C. Expression of b-galactosidase is identical in heterozygous and nullizygous mice with the exception that the
signal is stronger in nullizygous mice. Faint b-galactosidase expression is also detected in the delaminating spiral ganglion neurons (SPG; C and insert
in B,C). D. In situ hybridization shows at E14.5 expression in the canal cristae and the cochlea, but indicates a more prominent upregulation in the
base at this stage. Only spiral ganglion sensory neurons are faintly positive for Prox1 in situ (SPG in D). E,F At postnatal stages, Prox1 expression
remains in the canal cristae as revealed by in situ hybridization for Prox1 mRNA or X-Gal reaction, but does not show the extensive expression in the
non-sensory parts of the canals as in earlier stages (insert in F). Bar, 100 mm.
doi:10.1371/journal.pone.0009377.g001

Prox1 in Mouse Inner Ear
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predominantly on whole mounted microdissected sensory epithelia

[40]. Sections and whole mounts were imaged using a confocal

system (Zeiss LSM 510 or Leica SP5). Images were assembled into

plates using CorelDraw software. Size of sensory epithelia was

measured using ImagePro software on fully calibrated confocal

images. PTI lipophilic tracers (NV Maroon) were used for afferent

and efferent fibers [41]. Briefly, dyes were inserted into central

targets or as small local injections and the fibers were filled with the

diffusible dye, epithelia were microdissected and viewed with a

confocal system (Zeiss LSM 510 or Leica SP5).

Quantification
In order to evaluate the qualitative effects of lack of Prox1

function on the growth of the vestibular epithelia we measured the

length of the anterior canal crista and the utricle using the

calibration setting of the Zeiss LSM 510 system in six flat mounted

vestibular organs of Prox1flox/flox; Tg(Pax2-Cre) (E18.5 mutant) and

Pax2-Cre (E18.5 control). Differences were evaluated for signifi-

cance suing a T-test. We also counted the number of hair cells

using Myo VII immunocytochemistry to identify hair cells and

Hoechst nuclear staining to label the nuclei in three of these

vestibular areas of control and mutant mice. Counting was done

on flat mounts of three anterior canal cristae by grabbing a

Figure 3. Prox1 inactivation reduces the size of the anterior
crista. As measured at E14.5, the length of the anterior cristae (AC) of
Prox1 mutant embryos is 20% reduced when compare vs. that of wild-
type littermates. The size reduction is 30% when compared with the
size of E18.5 Prox1 flox/flox; Tg(Pax2-Cre) mutant embryos. No significant
changes in the length of the utricle were observed. Asterisks indicate a
level of significance (p,0.05; t-test).
doi:10.1371/journal.pone.0009377.g003

Figure 2. Effects of Prox1 loss-of function in the vestibular epithelia. A. X-gal staining of E14.5 Prox1 heterozygous embryos reveals b-
galactosidase activity in the anterior (AC) and horizontal (HC) parts of the canal cristae. B. Although morphologically normal, a reduction in the size of
the crista epithelia is detected of Prox1-null littermates (white bar in the AC); gravistatic sensors such as utricle (U) show only transient Prox1
expression and no apparent reduction in size. C, E. Hair cells are revealed using antibodies against Myo VII in a normal E18.5 Prox1flox/flox conditional
embryo. Note absence of imunoreactivity in the cruciate eminence (CE) of the anterior canal crista. E9. As shown by 2-photon activation, at this later
stage, Prox1 expression is high in supporting cells, but is also found in hair cells of the canal cristae as well as outside the sensory epithelium. Dotted
line in B indicate the plane of sections through the horizontal canal crista, white arrows align lateral walls of the whole mount with the section. E,F.
Despite the overlap of some Prox1 expression with hair cells in the canal cristae there is no morphologically obvious defects in hair cell differentiation
other than reduced intensity of Myo VII staining are observed in Prox1 flox/flox; Tg(Pax2-Cre) as compared to Prox1flox/flox littermates. However the
reduction in size of the anterior canal crista (AC) is becoming more obvious at this late stage (C–F). CE-Cruciate eminence. Bar, 100 mm.
doi:10.1371/journal.pone.0009377.g002
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confocal stack at 6 mm interval (slightly wider than the average

nuclear diameter to avoid double counting). Shrinking or other

counting artifacts should be equal but this procedure will slightly

underestimate the total number of hair cells [42,43]. A non-

parametric rank correlation test was used to assess statistical

significance of cell counts.

Results

Prox1 Expression in the Developing Inner Ear
Previous work using immunohistochemistry reported that Prox1

expression in the inner ear starts around E11.0 in three vestibular

sensory patches and around E11.5 is highly expressed in the canal

cristae and saccule of the sensory epithelia and weakly in the

utricle [28]. Expression in the cochlea starts at around E14.5 in

Pillar cells, Deiter’s cells and outer hair cells, and also extends

weakly to nonsensory parts of the ear [29].

In order to precisely compare the profile of Prox1 expression

with the well known onset of hair cell proliferation [40,44] and

differentiation [45,46] we took advantage of an available Prox1

heterozygous strain in which the b-galactosidase reporter gene was

inserted in frame into the Prox1 genomic locus [31]. As shown in

Fig. 1A, at E11.0 Prox1 expression was restricted to two X-gal

positive patches corresponding to the anterior and posterior canal

Figure 4. Prox1 expression in the cochlea is biphasic. A. As shown by X-gal staining, at E13.5 Prox1 expression in the cochlea is higher in the
apex and gradually faints toward the base; with limited expression in delaminating sensory neurons (SPG in A, A9). B,C. Expression is later on found
throughout the organ of Corti. C. This elevated expression has not yet reached the undifferentiated apex (C, E,E9) which is confirmed by Prox1 in situ
hybridization (C9) that also indicates Prox1 expression in the spiral ganglion (SPG; C9). D, D9. Whole mount analysis, including 2 photon activation of
the b-galactosidase reaction product (D9) show that near the base the expression of Prox1 is nearly exclusive found in the five supporting cells of the
lesser epithelial ridge (three rows of Deiter’s cell, D1–3; two rows of pillar cells (IP, OP) with limited expression in some outer hair cells (arrow C9) and
inner phalangeal cells (arrows in D, D9). E,E9. In the apex the expression of Prox1 is not restricted to just five rows of cells, reflecting the immature state
of the apex with incomplete convergent extension and possible expanded expression of Prox1. F,G. Expression in supporting cells stays on in young
adults and there is a faint expression in spiral ganglion cells (SPG; F). No labeling is found around inner hair cells (IHC) in postnatal animals (F–I). H, I.
Prox1 expression was verified using in situ hybridization in newborn wildtype and Prox1 flox/flox; Tg(Pax2-Cre) conditional mutants. Note the prominent
presence of the in situ signal in sensory neurons and the slight reduction of the overall signal in the organ of Corti in the conditional null mice (I) that
is possibly related to the disorganization of supporting cells (see Fig. 5). The in situ hybridization will detect the full length and the conditionally
truncated and non functional mRNA of Prox1. Immunocytochemistry on whole mounts (J,K) and sections (L) verifies the data obtained with X-Gal
reaction and in situ hybiridization and reveals a prominent expression in supporting cells (J,J9, K,K9 L) and spiral ganglion neurons (SGN, J, J9). Myosin
VII (Myo VII) stain hair cells (J0, K0, L) but not supporting cells. Bar, 100 mm.
doi:10.1371/journal.pone.0009377.g004
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cristae. Two days later, an additional third patch of expression was

seen in the region corresponding to the horizontal crista (Fig. 1B).

Around E13.5 Prox1 expression also starts to be detected in what

appears to be the striola region of the utricle and is barely detected

in the saccule (Fig. 1B). It is only at around this stage that Prox1

expression starts to be detected in the cochlea where Prox1

upregulation begins broadly in the apex and expands toward the

base (Fig. 1B). Prox1 expression is not restricted to sensory epithelia

but is also found in the forming canals and the endolymphatic duct

(Fig. 1B). In addition, Prox1 expression starts in the spiral ganglia

around that time (Fig. 1C, insert). Prox1 in situ hybridization

detects signal in the canal cristae but in the organ of Corti of the

cochlear duct only at E14.5 (Fig. 1D). As indicated by X-gal

staining (Fig. 1F) and in situ hybridization (Fig. 1E), Prox1

expression remains in the newborn canal cristae but is lost in the

non-sensory part of the canal (insert in Fig. 1F).

Canal Cristae Are Smaller in Prox1-Null Embryos
Next, and in order to identify possible functional roles of Prox1

during the development of the ear, we characterized the inner ear

of E14.5 Prox1-null embryos [31]. It was previously reported that

Prox1-null embryos die at around E14.5 [31]. In agreement with

the lack of Prox1 expression in developing sensory neurons at early

developmental stages, no obvious phenotypic alterations were

identified in the Prox1-null ears prior to E14.5 (Fig. 1B,C). This

data indicated that Prox1 activity is not required for sensory

neuron differentiation at these early stages.

As indicated above, high levels of Prox1 expression are detected

in the developing canal cristae (Fig. 1). In agreement with this

expression and as revealed by X-gal and Myo VII stainings [an

early marker of hair cell differentiation; [47]], the size of the

anterior canal cristae (AC) was clearly reduced in E14.5 Prox1-null

embryos (Fig. 2A–D, Fig. 3). The posterior canal cristae (PC) was

similarly affected (data not shown) and the horizontal canal cristae

(HC) was not as affected (Fig. 2A–D). In addition to the high level

of expression in the canal cristae, X-gal staining of E14.5 Prox1

heterozygous and nullizygous embryos confirmed that Prox1

expression was only transient and weak in the utricle (Fig. 2A,B)

and almost not detectable in the saccule (Fig. 1C). In situ

hybridization verified that a weak but detectable signal persisted in

the utricle at least until P1 (Fig. 1F) as previously described [29].

We determined that on average (N = 6), the size of the anterior

canal cristae in Prox1-null embryos was 20% smaller (p,0.05; t-

test) than in their heterozygous littermates (Fig. 3) (no differences

in size were found between wild-type and Prox1 heterozygous

littermates; data not shown). We also counted the number of hair

cells and found that the anterior canal cristae of Prox1-null

embryos had only about 605 (+265) hair cells compared to the

control littermate that had about 913 (+278) hair cells (p,0.05).

To confirm and expand this observation indicating that removal

of Prox1 activity affects the size of the vestibular sensory epithelia,

we took advantage of a previously generated Prox1 conditional

knock-out strain [30] to remove Prox1 activity from the inner ear in

a time and tissue specific manner. To this end, Tg(Pax2-Cre)

Figure 5. Fiber growth to outer hair cells is defective in E18.5 Prox1 flox/flox; Tg(Pax2-Cre) mutant embryos. A. Prox1 antibody staining
reveals the normal expression of pattern of Prox1 in supporting cells (three rows of Deiter’s cells, D1–3; two rows of pillar cells, IP, OP). There is also
faint immunostaining in cells medial to the inner pillar cell (IP), probably in inner phalangeal cells. A9. Successful conditional inactivation of Prox1 is
indicated by the barely detectable expression of Prox1 in Prox1 flox/flox; Tg(Pax2-Cre) mutant littermates at this stage. B, B9. Wildtype mice have four
rows of hair cells (three rows of outer hair cells, OHC1–3, one row of inner hair cells, IHC). As seen by Myo VII staining, a partial fourth row and some
misaligned outer hair cells (arrows) were occasionally detected in Prox1 flox/flox; Tg(Pax2-Cre) mutant embryos that is obvious in Hoechst stain with p75
labeling of pillar and Hensen cells (inserts). Otherwise, no other obvious changes in the distribution and maturation of Myo VII-expressing hair cells
were detected. C, D. Normally and as seen by b-tubulin immunostaining, fibers grow out through the tunnel of Corti (TC) and turn to form three
parallel outer spiral bundles (arrows) that run along Deiter’s cells to reach the three rows of outer hair cells (OHC) in the base. C9, D9. Guiding defects
in the extension of these fibers to outer hair cells are obvious in conditional Prox1 flox/flox; Tg(Pax2-Cre) mutant littermates in the middle turn. In this
case, fibers follow a predominantly radial path with random turns toward the apex and the base. Further comparison with wildtype (E, E9, E0) and
FGFR3 null mutant mice (F) shows the level of disorganization more clearly (G). FGFR3 mutants have disorganized supporting cells much like the
Prox1-null mice but clearly do not show an equally severe disorganization of afferent growth (compare F with G. Bar, 20 mm.
doi:10.1371/journal.pone.0009377.g005
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transgenic mice [33] were used to delete Prox1 from E9.0 onward

in all cells of the ear, including all hair cells and sensory neurons

[48]. Using this approach we also expected to overcome the early

embryonic lethality of standard Prox1-null embryos [31]. Analysis

of Prox1flox/flox;Tg(Pax2-Cre) conditional mutant embryos at E18.5

identified phenotypic alterations similar to those described in the

E14.5 Prox1-null embryos; e.g., the size of the anterior cristae was

significantly reduced (30% N = 6; p,0.05; T-test) (Fig. 2D, Fig. 3).

Despite this size reduction, the overall shape and morphology of

the cristae, and the formation of the non-sensory cruciate

eminence (CE) were not affected in these mutant embryos

(Fig. 2D, F). As indicated by Myo VII staining, no obvious gross

morphological alterations were detected in the development and

distribution of the vestibular hair cells of the canal cristae at these

later stages (Fig. 2D, F). No obvious alterations in the distribution

and morphology of supporting cells (indicated by Hoechst stained

nuclei), or in the size of the utricle were identified in these

conditional mutant embryos (Figs. 2,3). In E18.5 Prox1 heterozy-

gous animals, expression as revealed with 2 photon photoactiva-

tion of the b-galactosidase reaction product [38], is found

throughout all supporting cells of the canal cristae. In agreement

with a recent report [29], at this stage Prox1 expression was also

detected in some hair cells and non-sensory cells adjacent to the

canal cristae (Fig. 2E9).

In summary, these initial results revealed that removal of Prox1

function from the developing ear resulted in a significant reduction

in the size of the canal cristae.

Lack of Prox1 Function Results in Hair Cell Misalignment
and Disrupted Type II Spiral Ganglion Cell Guidance

Previous work has shown that cell cycle exit of hair cells in the

canal cristae starts around E11.5 [44]. Accordingly, Prox1

expression is detected prior and during cell cycle exit of hair cells

and supporting cells of the canal cristae (Fig. 1). In contrast, in the

cochlea Prox1 expression started to be detected in the cells of the

apex at around E13.5; although, it was faintly expressed in cells

near the base at this stage (Fig. 4A) and clearly is upregulated only

after hair cells have exited the cell cycle [40].

Multiple rows of hair cells and supporting cells form initially as a

short aggregate, but undergo convergent-extension movement to

eventually form three rows of outer and one row of inner hair cells

[49]. At around this stage of convergent extension, hair cells have

already exited the cell cycle which progresses from the apex to the

base of the cochlea between E11.5–E14.5 [40,44,45]. X-gal

staining of Prox1+/LacZ embryos and Prox1 in situ hybridization at

different developmental stages revealed that in the cochlea, Prox1

expression progressed initially from the apex to the base (Fig. 1B,C;

Fig. 4A); a result suggesting that its expression is in cells that have

already exited the cell cycle [45]. As shown in Fig. 4B–D, by

E17.5, Prox1 expression is prominent throughout the cochlea and

near the base is almost exclusively detected in the five supporting

cells of the lesser epithelial ridge (the three rows of Deiter’s cells

and the two rows of pillar cells); only limited expression was seen in

some outer hair cells and inner phalangeal cells (arrows in Fig. 4D,

D9). This limited expression in inner phalangeal cells seen in the

X-gal stained and photoactivated organ of Corti (Fig. 4C9, D9), is

also observed when using Prox1 antibodies (Fig. 5A). At this stage,

Prox1 expression in the apex is fainter and not organized into the

five rows of supporting cells (Fig. 4E, E9; [29]. The prominent

expression in supporting cells remained during postnatal stages, at

least until P16 as shown by X-gal staining of Prox1+/LacZ (Fig. 4F,G;

[29]. In later stages, a faint Prox1 signal was also detected in

sensory neurons (Fig. 4F). This signal was more prominent using in

situ hybridization (Fig. 4H,I). We verified the expression of Prox1

as revealed by X-gal staining using in situ hybridization (inserts in

Fig. 4A, C; Fig. 4H,I0 and immunocytochemistry. For unknown

reasons, X-gal staining of Prox1+/LacZ was easily lost after fixation

in sensory neurons and could be demonstrated only in unfixed ears

(Fig. 1D and insert). We also verified the supporting cell and

neuronal expression that was so obvious with in situ hybridization

starting at E15.5 (Fig. 4A, insert; Fig. 4C, insert) with

immunocytochemistry (Fig. 4J). Combined, all three techniques

show a profound upregulation of Prox1 in supporting cells and

sensory neurons (with the caveat of suppression of X-gal staining of

Prox1+/LacZ in sensory neurons following fixation).

In order to determine whether Prox1 expression in supporting

cells (Fig. 4C,D, D9, J,K,L9) is an indication that its functional

Figure 6. Organization of hair cells and supporting cells is
mildly disrupted in Prox1 flox/flox;Pax2-Cre conditional mutant
embryos. This image shows near radial thick (A,B) and ultrathin (C–F)
sections through the middle turn of a Prox1flox/flox control and a
Prox1flox/flox; Pax2-Cre conditional mutant animal. Note that the overall
organization into 4 rows of hair cells (one inner and three outer) and
five rows of supporting cells surrounding outer hair cells (two rows of
pillar and three rows of Deiter’s cells) is preserved in the conditional
mutant (B,D,F). However, closer examination reveals that the regular
organization of hair cells and supporting cells with two heads of pillar
cells between inner and first row of outer hair cells (A,C,E) is only
partially conserved in conditional mutants. In fact occasionally only a
single pillar cell is found between inner and outer hair cells that appears
to be the outer pillar cell (D,F). Hair cells develop normal with respect to
apical kinocilia and stereocilia polarity and development (arrows in E,F).
Abbreviations: D1–D3, first to third row of Deiter’s cells; IHC, inner hair
cell; IP, inner pillar cell; OHC, outer hair cell; OP, outer pillar cell. Bar
indicates 100 mm in A,B and 10 mm in D–F).
doi:10.1371/journal.pone.0009377.g006
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activity is required to control any developmental aspect of this cell

type, we analyzed the cochlea of E18.5 Prox1f/f;Tg(Pax2-Cre)

mutant embryos. Using this approach, Prox1 expression was

extensively removed from the developing cochlea (Fig. 5A9).

Although as discussed above (Fig. 2D, F), no obvious alterations in

hair cell differentiation were observed, hair cells patterning was

found to be occasionally disrupted. At this stage and as shown by

Myo VII staining (Fig. 5B), wild-type hair cells exhibit the typical

one row of inner hair cells and three parallel rows of outer hair

cells. In the mutant littermates, inner and particularly outer hair

cells appeared disorganized, misaligned, and containing extra rows

near the apex (Fig. 5B9arrows). These results indicated that lack of

Prox1 function did not affect hair cell differentiation (hair cell

differentiation markers Myo VII and BDNF were normally

expressed in the mutant hair cells; Figs. 5B, B9, 6); however, hair

cell patterning was slightly defective. Light and electron micro-

scopic radial sections confirmed the near normal development of

hair cells and supporting cells but also some degree of

disorganization of both cell types (Fig. 6).

These results indicate that Prox1 activity is not required for hair

cell differentiation were further corroborated by the fact that

Prox1 expression was not affected in E18.5 Atoh1-null embryos

(Fig. 7) with defective hair cell differentiation [37,50]. These results

also demonstrate that Prox1 expression is not dependent on Atoh1

or on hair cell differentiation consistent with recent reports,

indicating autonomy of Prox1 expression from hair cell differen-

tiation [4,51].

Together, these results suggested that in the organ of Corti, lack

of Prox1 function promotes some limited phenotypic alterations in

the overall patterning resulting in a slightly disorganized

distribution of supporting and hair cells, including short extra

rows of outer hair cells and misalignment of inner hair cells.

Interestingly, direct comparison of Prox1flox/flox;Tg(Pax2-Cre) and

wildtype littermates showed that the Prox1 in situ signal was

somewhat weaker in the organ of Corti but unaltered in the

sensory neurons (Fig. 4H,I). This could indicate that the

disorganization of supporting cells may affect overall level of

Prox1 expression.

Next, we analyzed whether these phenotypic alterations

identified in supporting and hair cells affected nerve fiber growth.

Previous work [52,53,54,55,56] showed that the stereotyped

growth of Type II fibers toward outer hair cells is more advanced

in the base and upper middle turn (Fig. 5C, D). Type II spiral

ganglion cells extend first radially through the tunnel of Corti and

then turn sharply toward the base to form three parallel rows in

front of the three rows of Deiter’s cells that are spaced between the

three rows of outer hair cells (arrows Fig. 5C, D). We found that in

Prox1flox/flox; Tg(Pax2-Cre) mutant littermates, the fibers also

extended radially (arrows Fig. 5C9, D9). We found that all mutant

nerve fibers extended beyond the first row of Deiter’s cells (D1;

Fig. 8B9, B0) and randomly turned at the 2nd and 3rd row of

Deiter’s cells (D2, D3; Fig. 9C,C9, C0). No obvious reduction in

the density of the radial fibers was observed (Fig. 5C9, D9). These

results were corroborated further by triple immunolabeling where

supporting cells were identified by the use of Sox2 antibodies

(Fig. 8). The normal organization of the Sox2-expressing

supporting cells (green), BDNF-expressing hair cells (blue), and

b-tubulin-expressing fibers (red) is shown in Fig. 8A–A0. In

contrast, misaligned supporting and hair cells are seen in E18.5

Prox1flox/flox;Tg(Pax2-Cre) mutant littermates (Fig. 8B–B0, C–C0).

These results and those obtained using electron microscopy (Fig. 7)

suggested that in the absence of Prox1, the signaling mechanisms

controlling where and to which direction fibers should turn is

disrupted. Close comparison between wildtype (Fig. 5E), FGFR3

null mice (Fig. 5F) and E18.5 Prox1flox/flox;Tg(Pax2-Cre) show that

type II afferents are disorganized in FGFR3 null mice (Fig. 5E.F),

but that this disorganization is different from that seen in

Prox1flox/flox;Tg(Pax2-Cre).

Next we investigated fiber growth in Prox1flox/flox;Tg(Nes-Cre) mice

to evaluate possible spiral sensory neuron cell autonomous defects.

Nestin (Nes), a neuronal stem cell marker, is expressed in developing

sensory neurons of the ear [57]. We used a Tg(Nes-Cre) line [36] to

conditionally delete Prox1. As seen in Fig. 9A, Prox1 expression was

deleted in the spiral neurons but remained in the sensory epithelium

(Fig. 9A, A9, A0). We traced the nerve fibers with lipophilic dyes or

tubulin immunocytochemistry. Similar to what was observed in

Figure 7. Hair cell differentiation is not required for Prox1 expression. A, B. Prox1 expression is maintained in undifferentiated supporting
cells of E18.5 Atoh1- null embryos. This result argues that Prox1 expression is independent of hair cell mediated differentiation of sensory epithelia. A9
shows the Prox1 immunostaining in the apex. Abbreviations: AC, anterior crista; HC, horizontal crista; U, utricle. Bar, 100 mm.
doi:10.1371/journal.pone.0009377.g007
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Prox1flox/flox;Tg(Pax2-Cre) pups, P1 Prox1flox/flox;Tg(Nes-Cre) mice

showed severe disruption in the organization of Type II fibers

(Fig. 9A,C,D,H). In the apex, where Type II fibers are growing out

we could clearly identify that each fiber made an almost random

turn to either the base or the apex (Fig. 9D,H) compared to the

stereotyped decision of growth cones in wildtype (Fig. 9F,G), which

always turn toward the base. Near the base, were Type II fibers

have a longer trajectory at this stage, we find an intertwined mesh of

fibers near the second and third row of Deiter’s cells (Fig. 9C)

instead of the very regular organization near all three rows of

Deiter’s cells (Fig. 9B). Given that our Prox1 antibody shows a clear,

only somewhat interrupted signal in supporting cells (Fig. 9A9, A0,

C,D), it seems that this disruption of fiber projection is

predominantly due to the lack of Prox1 expression in sensory

neurons in the Prox1flox/flox;Tg(Nes-Cre) conditional null mice, a signal

which, according to our in situ hybridization data, is becoming

increasingly prominent after E14.5 (Fig. 4H,I). Since the first Type

II fibers are growing toward outer hair cells at around E16.5

[53,55], it appears that Prox1 upregulation coincides with the ability

of Type II fibers to navigate their normal stereotyped trajectory. In

the absence of Prox1 either in sensory neurons or in sensory neurons

and supporting cells combined this ability is partially disrupted.

However, Type II fibers may be able to reach the outer hair cells but

extend beyond the first row of Deiter’s cells thus might miss the first

row of outer hair cells.

To better understand the inability of type II fibers to turn

correctly, we investigated the outgrowth of fibers to the outer hair

cells in E18.5 Prox1flox/flox;Tg(Nes-Cre) conditional null mice

Figure 8. Triple immunolabeling reveals cellular and fiber disorganization in the organ of Corti of Prox1 flox/flox; Tg(Pax2-Cre)
conditional mutant embryos. Whole mount antibody staining of the organ of Corti highlighting the hair cells (anti-BDNF, blue), supporting cells
(anti-Sox2, green) and nerve fibers (anti-b-tubulin, red). (A–C) The top row shows all three immunostaining together, the middle shows nerve fibers
and supporting cells, and the bottom one nerve fibers and the hair cells. In contrast to the wild-type condition (A, A9 A0), in Pax2-Cre;Prox1 flox/flox

conditional mutant embryos fibers extend beyond the first row of Deiter’s cells (B9,C9) where they turn randomly toward the base or apex. In addition,
hair cells are not in close proximity to the nerve fibers (A0, B0, C0). D1–D32 Deiter’s cells, IP-inner Pillar cell, OP-outer Pillar cell, IHC-Inner hair cell,
OHC1–3-outer hair cells. Bar, 100 mm.
doi:10.1371/journal.pone.0009377.g008
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(Fig. 10). We used different colored lipophilic dyes to trace small

subsets of spiral sensory neurons from the cochlear nuclei [52]. To

avoid confusion with the second fiber type that reaches the outer

hair cells, the olivocochlear efferent system [58,59], we labeled

these fibers with a differently colored lipophilic dye [60]. At this

stage, only type II afferents grow to outer hair cells. In control

mice all fibers navigated their way between supporting cells and

turned invariably toward the base (Fig. 10. A–C). In contrast, in

Prox1flox/flox;Tg(Nes-Cre) conditional null mice we found that the

initial fiber growth was undirected, frequently stalled with

branches in both directions or turned randomly toward the base

or the apex (Fig. 10D–J). Absence of Prox1 protein disables

recognition of directional signals during type II fiber growth.

Discussion

In this paper we identified Prox1 as a novel regulator of inner ear

development and extent previous expression data [28,29]. We

determined that this gene’s activity is required for the proper

growth of the canal cristae and correct fiber patterning of Type II

afferents in the cochlea. Consistent with the transient low level of

expression, no phenotypic alterations were identified in the

gravistatic receptors organs (utricle and saccule).

Prox1 Regulates Canal Cristae Growth
During inner ear development, one of the earliest and more

prolonged expression patterns of Prox1 was detected in the canal

cristae. In this organ, the onset of Prox1 expression overlaps with

that of other gene products such as Gata3 [61], Fgf10 [62], Foxg1

[63], Sox2 [64], Lmx1a [65] and Bmp4 [66], whose activities are

essential for the formation and differentiation of the sensory

epithelia. In general, gene inactivation of any of these factors

resulted in the partial or total loss of the sensory canal cristae

[67,68] or overgrowth [65]. In Prox1-null embryos the canal cristae

did not exhibit any morphological alteration; however, their size

was reduced. Accordingly, it could be speculated that Prox1 activity

Figure 9. Immunolabeling and dye tracing reveals Type II fiber disorganization in the organ of Corti of Prox1 flox/flox; Tg(Nes-Cre)
conditional mutant embryos. (A, A9,A0) This 1 day old basal turn shows that the Prox1 protein is present in the supporting cells (A9, A0) and that
neuron processes extend beyond the first row of Deiter’s cells to form a bundle of intertwined fibers near the second and third row of Prox1 positive
Deiter’s cells. Inserts in A, A9 and A0 show tubulin immunostaining in spiral ganglion cells (SPG) but show no immunoreaction for Prox1. The
disorganization of nerve fibers becomes particularly obvious in a side by side comparison with the regular pattern of cells (shown with Hoechst stain)
Type II process in wildtype (B,C). In the apex, Type II fibers extend in a random way towards base and apex between Prox1 positive supporting cells
(D). Epoxy section of Prox1 (red) and tubulin immunostained (green) and Hoechst counterstained (blue) organ of Corti shows the normal organization
of the greater epithelial ridge (GER) with Prox1 being restricted to 5 rows of supporting cells. Point applications of lipophilic dyes allows imaging the
growth cones and their regular turns toward the base in wildtype (F,G) but shows a disorganized outgrowth and growth cones (GC) in Prox1 flox/flox;
Nes-Cre conditional mutant mice. D1–3, Deiter’s cells row 1–3; IP, inner pillar; OP, outer pillar; SPG, spiral ganglion. Bar, 100 mm (A–D), 50 mm (E–H;
inserts in A,A9, A0).
doi:10.1371/journal.pone.0009377.g009
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is necessary to maintain and expand the pool of neurosensory

progenitor cells. Atoh1 is essential for hair cell differentiation [50]

and Atoh1-null mice fail to differentiate hair cells and supporting

cells [37]. Therefore, our finding that Prox1 expression remained

normal in Atoh1-null ears, and that Prox1-null hair cells expressed

typical hair cell markers eliminates the possibility that Prox1 was

required for hair cell differentiation at the level of neurosensory

progenitors. This does not rule out that misexpression of Prox1 in

hair cells can result in their degeneration, as was recently shown

for cochlea but not for vestibular hair cells [29].

Prox1 Regulates Fiber Guidance of Type II Spiral Neurons
in a Cell Autonomous Way

Similar to what has been reported for the cell cycle kinase

inhibitor p27 [45,69], the neurotrophin Bdnf [70,71] and the

growth factor Fgf10 [62], Prox1 expression in the cochlea starts to

be detected almost a day after hair cell precursors exited the cell

cycle [40,45]. While Prox1 is not expressed in hair cell progenitor

cells, it is expressed transiently in differentiating hair cells [29].

However, its continued expression in organ of Corti cells of Atoh1-

null mice [4,51], who have only hair cell precursors that fail to

differentiate [37], indicates that at least the expression in

supporting cells is not regulated by Atoh1 or other genes

specifically expressed in differentiated hair cells (Fig. 7). Given

that Prox1 expression persists at least until P26 in supporting cells

[29], it is possible that this gene remains expressed after at least

neonatal hair cell loss and its promoter could be used to drive

molecular expression toward reconstitution of the a functional

organ of Corti.

As previously reported [28], later during embryogenesis Prox1

expression is detected in the five supporting cells of the lesser

epithelial ridge (Fig. 4). In these cells, lack of Prox1 function lead to

subtle phenotypic alterations; e.g., defective alignment of hair cells

and supporting cells (Fig. 5) However, major pathfinding defects

Figure 10. Dye tracing reveals Type II fiber outgrowth problems in the organ of Corti of Prox1 flox/flox; Tg(Nes-Cre) conditional
mutant embryos. NV Maroon (green) was inserted into the cochlear nucleus and NV Orange (red) was inserted into the olivocochlear bundle to
label a small population of afferents (green) and all efferents (red). Efferents show a similarly organized intraganglionic spiral bundles in wildtype (A–C)
and Prox1 flox/flox; Nes-Cre conditional mutant mice (D–J) and grow toether with afferents in radial fiber bundles (RF) to the organ of Corti. Note that at
this stage only occasional efferents extent to outer hair cells. In contrast, type II afferents grow to the second or third row of outer hair cells (OHC) where
they invariably turn toward the base (B,C). At this stage, none of the multiple type II afferents of Prox1 flox/flox; Nes-Cre conditional mutant mice show
this coordinated growth pattern. Instead, fibers grow randomly toward the base or apex but mostly seem to stall with multiple branches extending
toward the base and the apex (F,G). IGSB, intraganglionic spiral bundle; OHC, outer hair cells; RF, radial fibers; SPG, spiral ganglion. Bar, 100 mm (A–D),
50 mm (E–H; inserts in A,A9, A0).
doi:10.1371/journal.pone.0009377.g010
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were identified in Type II spiral ganglion fibers. In this case, the

turning of these fibers toward the base [52,55] was severely

disrupted (Fig. 5,8,9,10). We found that in conditional null

mutants fibers abnormally extended toward the second and third

rows where they turned randomly instead of turning toward the

base in front of each of the three rows of Deiter’s cells. Radial fiber

growth beyond the inner pillar cells was not affected. It is worth

mentioning that pathfinding defects have been identified in the

CNS of Prospero mutant flies [72].

While Prox1 is the first gene that plays a cell autonomous role in

Type II pathfinding, at the moment it is not known how Prox1

affects fiber pathfinding of these neurons. It is known that Fgf8 and

Fgf10 mediated activation of Fgfr1, 2b and 3 signaling participates

in the differentiation of supporting cells of the lesser epithelial

ridge [3,62,73,74,75,76], and Fgfr3 -null mice also exhibit short

extra rows of outer hair cells [3,77] with some minor fiber

disorganization that is clearly distinct from the Prox1 effects

(Fig. 5F,G), but where exactly Prox1 fits into these interactions

remains to be determined.
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