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Overexpression of GAB2 in ovarian cancer cells promotes
tumor growth and angiogenesis by upregulating chemokine
expression
C Duckworth1,2,3, L Zhang1,2,3, SL Carroll1,2,3, SP Ethier1,2,3 and HW Cheung1,2,3

We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset
of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for
activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an
important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines.
Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell
proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the
secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only
signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine
growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer
cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K,
mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced
chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of
ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian
cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-
dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian
cancer that overexpresses GAB2.
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INTRODUCTION
Ovarian cancer is the most lethal gynecological cancer, causing
414 000 deaths each year in the United States alone. Ovarian
cancers are a heterogeneous group of neoplasms. Aside from
being classified into different histologic subtypes, increasing
evidence suggests that they can be broadly classified into two
subtypes based on clinicopathological and genetic features.1

Type I tumors (low-grade serous, mucinous, endometriod, clear
cell) are generally low-grade, localized to the ovary at diagnosis
and have an indolent disease course and a better prognosis.1 They
lack mutations of TP53 but have frequent mutations in KRAS,
PIK3CA or BRAF depending on the histologic subtype.1 By contrast,
type II tumors (high-grade serous, undifferentiated cancers,
carcinosarcomas) are high-grade, highly aggressive, mostly have
widespread disease at presentation and thus have a poor
prognosis.1 They have a high frequency of mutations in TP53
and BRCA1/2 but very rare mutations of genes that are detected in
type I tumors.1 High-grade serous ovarian cancers (HGSOCs)
represent typical type II tumors and are the most aggressive
subtype that accounts for ~ 70% of all ovarian cancer deaths.2

Recent large-scale efforts by the Cancer Genome Atlas show that
ovarian cancer genomes are characterized by widespread
recurrent copy number alterations.3 Identifying and characterizing

the driver genes targeted by these alterations will provide insights
into the development of novel therapeutic strategies for this
aggressive disease.
We previously assessed 455 genes that are significantly

amplified in HGSOCs for the ability to promote tumor growth
using a multiplexed open-reading frame (ORF)-based expression
assay, and identified the GRB2-associated binding protein 2
(GAB2) as a putative oncogene.4 The chromosome 11q14.1 region
involving GAB2 is highly amplified in 14% of 562 primary HGSOCs
characterized in the Cancer Genome Atlas project.4 Moreover,
immunohistochemical analysis showed that GAB2 protein was
overexpressed in 43 of 132 (33%) primary HGSOCs.4 These
findings suggest that overexpression of GAB2 driven by genomic
amplification or other mechanisms may have an important role in
development and progression of HGSOCs.
GAB2 is a scaffold protein involved in signal transduction

downstream of many receptor tyrosine kinases, cytokine receptors
and antigen receptors.5 Upon receptor stimulation, GAB2 is
tyrosyl-phosphorylated and capable of interacting with Src
homology 2 domain-containing molecules such as the p85
regulatory subunit of phosphatidylinositol 3-kinase (PI3K), tyrosine
phosphatase SHP2, phospholipase C gamma and CRK/CRKL,
thereby regulating many biological processes including cell
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proliferation, survival, migration and differentiation.5 Overexpres-
sion of GAB2 has been shown to promote primary and metastatic
tumor growth in breast cancer and melanoma.6 For example,
transgenic mice overexpressing Gab2 display accelerated
NeuT-induced mammary tumorigenesis through activation of
Shp2-dependent mitogen-activated protein kinases signaling,7

whereas loss of Gab2 severely suppressed lung metastatic
potential of NeuT-induced mammary tumors.8 Overexpression of
GAB2 in NRAS-driven melanoma enhances tumor growth and
angiogenesis by increasing mitogen-activated protein kinase
kinase (MEK)-dependent vascular endothelial growth factor and
hypoxia inducible factor 1, alpha subunit (HIFα) expression.9
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Overexpression of GAB2 in ovarian cancer cells promotes cell
migration and invasion by inducing PI3K-dependent zinc finger
E-box binding homeobox 1 (ZEB1) expression.10 However, the
mechanisms by which GAB2 overexpression contributes to
tumorigenesis in ovarian cancer remain poorly defined.
The PI3K pathway is frequently activated in HGSOCs11 (often

being described as PI3Kness) and associated with resistance to
chemotherapy.12 As mutation of PIK3CA is rare (o1%), the
observed PI3K pathway activation might be driven by other
alterations such as loss of phosphatase and tensin homolog.13

We and others have shown that ovarian cancer cell lines
overexpressing GAB2 are dependent on GAB2 for PI3K pathway
activation and are sensitive to PI3K inhibition but not MEK
inhibition,4,14 suggesting GAB2 overexpression as a mechanism
contributing to the PI3Kness in HGSOCs.
Although targeting PI3K pathway holds great promise

for treating ovarian cancer, substantial tumor regression has not
been observed in early clinical trials with inhibitors against the
PI3K/AKT/mechanistic target of rapamycin (mTOR) pathway.15,16 It
has been suggested that inhibition of additional signaling
pathways may be required to increase its efficacy.17 The nuclear
factor-κB (NF-κB) pathway is frequently activated in ovarian
cancer, and increased expression of its transcriptional targets
have been associated with aggressiveness of ovarian cancer.18,19

Chemokines CXCL1 and CXCL8 are well established NF-κB target
genes that are frequently upregulated in serum, ascites, and
tumors and are associated with poor survival in patients with
ovarian cancers.20,21 These chemokines could function as auto-
crine and paracrine growth factors for ovarian cancer.20,21

In this study, we investigated the role of GAB2 overexpression in
tumorigenesis of ovarian cancer. We obtained evidence that
overexpression of GAB2 in ovarian cancer cells increased
expression of multiple chemokines. We evaluated the efficacy of
several small-molecule inhibitors against inhibitor of nuclear factor
kappa-B kinase subunit β (IKKβ) on suppressing GAB2-induced
chemokine expression and showed that combinatorial inhibition
of IKKβ and PI3K/mTOR was more effective in suppressing
proliferation and survival of GAB2-dependent ovarian cancer cells
than individual inhibition.

RESULTS
Suppression of GAB2 in ovarian cancer cells inhibits tumor growth
and angiogenesis
To investigate the role of GAB2 overexpression in tumorigenesis,
we examined the effect of suppressing GAB2 by inducible RNA
interference on ovarian tumor growth. FUOV1 ovarian cancer cells
were used in this experiment. FUOV1 cells did not harbor
amplification of GAB2 but displayed overexpression of GAB2 at
both mRNA and protein levels (Supplementary Figures 1a and b).
Significant suppression of GAB2 protein could be achieved in
FUOV1 cells using an inducible small hairpin RNA (shRNA)
expression system (as described below). To enable noninvasive

monitoring of intraperitoneal tumor growth by luminescent
imaging, FUOV1 cells were transduced to stably express luciferase
(FUOV1+Luc). We then introduced these cells with a control
shRNA or two previously published shRNAs targeting GAB2
(shGAB2 #9 or #11) in vectors in which the expression of shRNA
was under the control of a doxycycline-inducible promoter.
Doxycycline treatment of cells containing the inducible shGAB2
#9 and #11 decreased GAB2 protein expression compared with
cells grown in the absence of doxycycline or in cells expressing
the control shRNA (Figure 1a). Consistent with our previously
published results from direct shRNA transduction experiments,4

inducible suppression of GAB2 also reduced phosphorylated
(p-) AKT S473, p-S6 and p-ERK1/2 levels (Figure 1a) and reduced
cell proliferation 6 days post treatment with doxycycline
(Supplementary Figure 2).
We implanted FUOV1+Luc cells expressing inducible control

shRNA or shGAB2 #11 by intraperitoneal injection into female
athymic nude mice. After 17 days, mice with comparable tumor
burden, as indicated by bioluminescence signals, were fed with
doxycycline-containing diet for another 7 weeks (Figures 1b and c).
We found that inducible suppression of GAB2 durably impaired
tumor growth as the tumor burden signals remained low
throughout the induction period (Figures 1b and c). By contrast,
the tumor burden highly increased in control mice (Figures 1b
and c). In concordance with the observed luminescence signals,
palpable tumors could be resected in control mice, whereas only
microscopic tumor cells that stained positive for PAX8 were
detectable by immunohistochemistry in all of the four mice
inoculated with cells expressing inducible shGAB2 (Figure 1d).
Furthermore, we found that suppression of GAB2 inhibited tumor
cell proliferation and blood vessel formation as indicated by reduced
Ki67 and CD31 staining, respectively, compared with tumors
expressing the control shRNA (Figure 1d). These results suggest
that overexpression of GAB2 in ovarian cancer cells promotes tumor
cell proliferation, angiogenesis and peritoneal tumor growth.

Overexpression of GAB2 in ovarian cancer cells upregulates
expression of CXCL1, CXCL2 and CXCL8
To investigate the mechanisms by which GAB2 overexpression
promotes angiogenesis, we examined the repertoire of secreted
factors affected by GAB2 overexpression using antibody arrays
that analyzed 1000 factors including cytokines, chemokines,
growth factors and other proteins. We previously showed that
overexpression of GAB2 in immortalized fallopian tube secretory
epithelial cells (FTSECs that were immortalized by human
telomerase reverse transcriptase and SV40 early region) induced
anchorage-independent growth.4 We therefore used FTSECs in
this experiment. We cultured FTSECs overexpressing GAB2 or a
control vector in serum-deprived media (0.1% fetal bovine serum)
for 48 h before collecting the cell culture supernatant for antibody
array analyses. As shown in Figure 2a, increased levels of six
factors, including CXCL1, CXCL2, CXCL8, CCL2, SLPI and IGFBP2,
and decreased levels of EDA-A2 were detected in conditioned

Figure 1. Suppression of GAB2 inhibits ovarian tumor growth. (a) Generation of FUOV1 ovarian cancer cell lines expressing doxycycline
(Dox)-inducible control shRNA or GAB2-targeting shRNAs. FUOV1 cells expressing luciferase (FUOV1+Luc) were stably transduced with
lentiviruses expressing a control shRNA or two GAB2-targeting shRNAs that were under the control of Dox-inducible promoter. Cells were
cultured in the absence or presence of 1 μg/ml Dox for 96 h with the last 24 h cultured in serum-free media. Immunoblotting for GAB2,
phosphorylated (p-) AKT S473, p-ERK1/2 and p-S6 were performed. The values below the figures represent relative intensity of the bands
normalized to β-actin and compared with cells without doxycycline treatment. (b) Effect of GAB2 suppression in FUOV1 cells on the xenograft
growth. FUOV1+Luc cell lines expressing Dox-inducible control shRNA or shGAB2 #11 were implanted intraperitoneally into female athymic
nude mice. After 17 days, tumor burden was monitored by bioluminescent imaging. Mice were then fed on Dox-containing diet for another
49 days. Imaging was performed on 52, 59 and 66 days post implantation. n= 4–5. Data are averages± s.e.m. (c) Images showing
bioluminescent signals obtained on days 17 and 66 post implantation of FUOV1+Luc cells expressing Dox-inducible control shRNA (n= 5) or
shGAB2 #11 (n= 4), as described in b. Note that the range of luminescence signals and color representation was different in each panel.
(d) Representative images showing immunohistochemistry for PAX8, Ki67 and CD31 on tumors expressing Dox-inducible control shRNA or
shGAB2 #11 obtained 66 days post implantation as described in b.
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media derived from GAB2-overexpressing cells compared with
control vector-expressing cells.
CXCL1, CXCL2 and CXCL8 are of particular interest because the

upregulation of CXCL1 and CXCL8 has been associated with poor
survival in patients with ovarian cancer.20,21 CXCL1 and CXCL2 are
90% identical in their amino-acid sequences.22 Quantitative RT–PCR
analyses showed that the mRNA levels of CXCL1, CXCL2 and CXCL8

were also significantly increased in GAB2-overexpressing FTSECs
compared with control vector-expressing cells (Figure 2b). To
examine whether high GAB2 levels in ovarian cancer cells are
required for expression of CXCL1, CXCL2 and CXCL8, we
suppressed GAB2 with inducible shRNAs in FUOV1 cells and
observed that induced suppression of GAB2 decreased the mRNA
levels of CXCL1, CXCL2 and CXCL8 compared with un-induced cells
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(Figure 2c). To confirm these findings, we tested two additional
previously published shRNAs targeting GAB2 (shGAB2 #6 and #7)
or a control shRNA into FUOV1 cells and 2 additional ovarian
cancer cell lines that also overexpressed GAB2 (NIH:OVCAR3 and
IGROV1 cells) (Supplementary Figure 1). NIH:OVCAR3 cells harbor
amplification of GAB2. Suppression of GAB2 in all three ovarian
cancer cell lines decreased the mRNA levels of CXCL1, CXCL2 and
CXCL8 (Figure 2d and Supplementary Figure 3). Furthermore,
using enzyme-linked immunosorbent assay, we detected a
significant reduction of the levels of CXCL1 and CXCL8 proteins
in the conditioned media derived from FUOV1, NIH:OVCAR3 and
IGROV1 cells after GAB2 suppression compared with respective
control shRNA-expressing cells (Figure 2e). Therefore, these
findings indicate that overexpression of GAB2 in ovarian cancer
cells upregulates expression of CXCL1, CXCL2 and CXCL8 at both
the transcriptional and protein levels.
We next examined whether there are correlations between

expression levels of GAB2 and these three chemokines in 573
primary HGSOCs characterized by the Cancer Genome
Atlas project at cBioPortal (http://www.cbioportal.org). We
assigned primary tumors into high and low expression levels by
using z-score threshold ± 0.7. We observed that tumors expressing
high levels of GAB2 showed statistically significant or tendency
toward significant co-occurrence with tumors expressing high
levels of CXCL1, CXCL2 and CXCL8, though significance was
reached in CXCL2 (P= 0.033, Fisher’s exact test) and CXCL8
(Po0.001) but not CXCL1 (P= 0.198) (Supplementary Figures 4a
and b). We next examined the expression levels of GAB2 and these
chemokines in 50 ovarian cancer cell lines characterized by the
cell line encyclopedia project. We divided cell lines into high or
low expression lines by mean expression value from all cell lines.
We observed that cell lines expressing high levels of GAB2 showed
significant or tendency toward significant co-occurrence with cell
lines expressing high levels of CXCL1 (P= 0.0099, Fisher’s exact
test) and CXCL2 (P= 0.0697), but no significant correlation was
observed between GAB2 and CXCL8 (Supplementary Figure 4c).
Together, these findings suggest that overexpression of GAB2 in
ovarian cancers may contribute to upregulation of CXCL1, CXCL2
and CXCL8 expression in a context specific manner.

GAB2-induced chemokines promote endothelial cell tube
formation
To further confirm whether GAB2-induced chemokines in ovarian
cancer cells contribute to angiogenesis, we performed
tube-formation assays using human umbilical vein endothelial
cells (HUVECs) with matrigel. We introduced a control shRNA or a
shRNA targeting GAB2 (shGAB2 #7) into FUOV1, NIH:OVCAR3 and
IGROV1 cells, and determined whether conditioned media
collected from these cells supported the tube formation of
HUVECs. We observed that conditioned media from control
shRNA-expressing cells induced tube formation of HUVECs

(Figure 3a). By contrast, conditioned media from ovarian cancer
cells after GAB2 suppression failed to support tube formation of
HUVECs (Figure 3a). As the chemokines CXCL1, CXCL2 and CXCL8
signal through the receptor CXCR2, whereas CXCL8 can also bind
to CXCR1, we also tested the effect of blocking CXCR2 by an
antagonist SCH527123 on angiogenesis. We found that CXCR2
blockade abrogated the tube formation of HUVECs cultured in the
presence of conditioned media from FUOV1, NIH:OVCAR3
and IGROV1 cells (Figure 3b). These results suggest that
GAB2-regulated CXCL1, CXCL2 and CXCL8 in ovarian cancer cells
display pro-angiogenic effect via CXCR2 on endothelial cells to
induce tube-formation phenotype.

GAB2-induced chemokines promote proliferation and survival of
ovarian cancer cells
Previous studies have suggested that CXCL1 and CXCL8 exhibit
autocrine effects on ovarian cancer cell proliferation and
survival.21,23,24 We therefore examined whether CXCL1, CXCL2
and CXCL8 are required for GAB2-induced transformation. We
introduced a previously published shRNA22 that simultaneously
targeted CXCL1 and CXCL2 (shCXCL1/2 #1), a shRNA targeting
CXCL8 that induced 480% decrease in CXCL8 mRNA
levels (shCXCL8 #1) or a control shRNA targeting LacZ into
GAB2-overexpressing FTSECs (Supplementary Figure 5). We found
that suppression of CXCL1/2 or CXCL8 in GAB2-overexpressing
FTSECs markedly abolished the anchorage-independent growth
(Figure 4a), suggesting that the autocrine signaling generated by
CXCL1/2 and CXCL8 contributes to GAB2-induced transformation.
We next determined whether CXCL1, CXCL2 and CXCL8 were
required for proliferation and survival of ovarian cancer cells with
GAB2 overexpression. We found that suppression of CXCL1/2 or
CXCL8 in FUOV1, NIH:OVCAR3 and IGROV1 cells significantly
inhibited the cell proliferation and clonogenic growth that
recapitulated the effect of GAB2 suppression (Figures 4b and c).
To confirm the inhibitory effects of shGAB2s to be GAB2
gene-specific, we performed a rescue experiment in which we
transduce FUOV1 cells to stably overexpress GAB2 ORF or a
control vector followed by infection with shGAB2s (which target
the 3′-UTR of endogenous GAB2 mRNA). We observed that
overexpression of GAB2 ORF in FUOV1 cells enhances clonogenic
growth compared with control vector-expressing cells. Impor-
tantly, the overexpression of GAB2 ORF protected FUOV1 cells
from the shGAB2-induced inhibition on clonogenic growth
(Figure 4d). Taken together, in consonance with previous
observations, our results suggest that CXCL1, CXCL2 and CXCL8
could act as autocrine growth factors that directly promote
proliferation and survival of ovarian cancer cells that
overexpressed GAB2.

Figure 2. Induction of IL8, CXCL1 and CXCL2 by GAB2 overexpression. (a) Antibody array analyses of cell culture supernatants of FTSECs
expressing a control vector or GAB2. Cells were cultured in serum-deprived media (0.1% FBS) for 48 h. Cell culture supernatants were collected
and labeled with biotin before incubation with array membranes for detection. Upregulated or downregulated proteins were highlighted in
red or blue, respectively. Representative images from two independent experiments were shown. (b) Quantitative RT-PCR analysis of CXCL8,
CXCL1 and CXCL2 mRNAs in FTSECs expressing a control vector or GAB2. Cells were plated for 48 h before harvesting total RNA. Data are
averages± s.e.m. from three independent experiments. *Po0.05; **Po0.01. (c) Quantitative RT–PCR analysis of CXCL8, CXCL1 and CXCL2
mRNAs in FUOV1 cells expressing Dox-inducible control shRNA or two independent shRNAs targeting GAB2. Cells were cultured in the
absence or presence of 1 μg/ml Dox for 72 h with the last 24 h cultured in serum-free media. Data are averages± s.e.m. from three
independent experiments. *Po0.05; **Po0.01. (d) Quantitative RT–PCR analysis of CXCL8, CXCL1 and CXCL2 mRNAs in FUOV1, NIH:OVCAR3
and IGROV1 ovarian cancer cells 48 h after transduction with a control shRNA targeting LacZ or two independent shRNAs targeting GAB2.
Cells were cultured in serum-free media for the last 24 h before harvesting total RNA. Data are averages± s.e.m. from three independent
experiments. *Po0.05; **Po0.01. (e) CXCL1 levels and (f) CXCL8 levels in the conditioned media measured by ELISA. FUOV1, NIH:OVCAR3
and IGROV1 cells were transduced with a control shRNA or two independent shRNAs targeting GAB2 for 48 h and then cultured in serum-free
media for 24 h. Data are averages± s.d. from three independent experiments. *Po0.05; **Po0.01.
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GAB2-induced chemokine expression is dependent on IKKβ-NF-κB
signaling
As PI3K and mitogen-activated protein kinases pathways
represent two major effector pathways regulated by GAB2, we

investigated if inhibition of PI3K or MEK could suppress GAB2-
induced chemokine expression. GAB2-overexpressing FTSECs
were treated with a pan-PI3K inhibitor (GDC-0941), a dual PI3K/
mTOR inhibitor (BEZ235) and a MEK inhibitor (AZD6244) alone or
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Figure 3. Effect of GAB2 suppression and CXCR2 blockade on tube formation of endothelial cells. (a) Representative phase contrast and
green fluorescent Calcein AM images showing tube formation of HUVECs. Ovarian cancer cells were transduced with a control shRNA or a
GAB2-targeting shRNA (shGAB2 #7) for 48 h and then cultured in serum-free media for 24 h. Conditioned media were added to HUVECs on
matrigel and incubated for 8 h before imaging. Scale bar= 400 μm. (b) Representative phase contrast and green fluorescent Calcein AM
images showing the effect of CXCR2 antagonist on tube formation of HUVECs. Ovarian cancer cells were cultured in serum-free media for 24 h.
Conditioned media were mixed with DMSO or 0.5 μM of SCH527123 before adding to HUVECs on matrigel and incubated for 8 h. Scale
bar= 400 μm. Representative images from two independent experiments were shown.
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in combination for 6 h and then collected for quantitative
PCR analyses. To our surprise, inhibition of PI3K, PI3K/mTOR or
MEK failed to suppress CXCL1, CXCL2 and CXCL8 mRNA levels
compared with control treatment (Figure 5a). Previous studies
suggest that IKKβ regulates the expression of CXCL1, CXCL2 and
CXCL8 in ovarian cancer cells. We therefore tested the effect of
several small-molecule inhibitors against IKKβ (TPCA-1, IKK16 or
Bay 65–1942) on expression of these chemokines in GAB2-
overexpessing FTSECs. Indeed, treatment with each of these IKKβ
inhibitors could effectively reduce the mRNA levels of CXCL1,
CXCL2 and CXCL8 after 6 h exposure (Figure 5a). To confirm
these findings, we introduced shRNAs targeting IKKβ, NF-κB p65
subunit or a control shRNA targeting LacZ into GAB2-
overexpressing FTSECs. In agreement with the results from
small-molecule inhibitors, suppression of IKKβ or p65 also
significantly reduced CXCL1, CXCL2 and CXCL8 mRNA levels
compared with control shRNAs (Figure 5b and Supplementary
Figure 6). Taken together, these results suggest that GAB2-
induced chemokine expression could be effectively suppressed
by inhibition of IKKβ-NF-κB pathway, but not inhibition of PI3K,
mTOR or MEK.
We next determined whether NF-κB pathway has an important

role downstream of GAB2 overexpression by assessing the
effects of expressing constitutively active p65 mutant (S536E)
in FUOV1 cells followed by GAB2 suppression. We found that
overexpression of RELAS536E in FUOV1 cells not only protected
cells from the shGAB2-induced inhibition on clonogenic
growth, but also enhanced clonogenic growth compared
with control vector-expressing cells (Figure 4d). These results
suggest that p65-dependent transcriptional activity is required
for proliferation and survival of ovarian cancer cells that
overexpresses GAB2.

IKKβ inhibition increases sensitivity of ovarian cancer cells to
PI3K/mTOR inhibition
Increased CXCL8 secretion in breast cancer has been shown to
mediate adaptive resistance to PI3K/mTOR-targeted therapy,25

whereas loss of phosphatase and tensin homolog protects breast
cancer cells from CXCL8/CXCR1 inhibition,26 indicating that
chemokine signaling may promote survival of cancer cells in
response to PI3K-targeted therapy. We therefore tested the
hypothesis that combined inhibition of both IKKβ and PI3K/mTOR
pathways may inhibit proliferation and survival of ovarian cancer
cells more effectively than individual inhibition. We first evaluated
the effect of BEZ235 and Bay 65–1942 treatment individually or in
combination on the PI3K/mTOR signaling and IKKβ target gene
expression in FUOV1, NIH:OVCAR3 and IGROV1 ovarian cancer
cells. We confirmed that BEZ235 treatment for 6 h effectively
inhibited activities of PI3K/mTOR effectors as assessed by reduced
p-AKT S473, p-S6 and p-4E-BP1 levels compared with control
treatment (Figure 6a), whereas Bay 65–1942 treatment consis-
tently reduced CXCL1, CXCL2 and CXCL8 mRNA levels in all
three ovarian cancer cell lines tested (Figure 6b). By contrast,
BEZ235 treatment reduced mRNA levels of these chemokines
in IGROV1 cells but led to upregulation of CXCL1/2 or CXCL8
in FUOV1 and NIH:OVCAR3 cells, respectively (Figure 6b). We next
evaluated the effect of PI3K/mTOR and IKKβ inhibition alone
and in combination on proliferation and survival of ovarian
cancer cells. We found that combining Bay 65–1942 with BEZ235
did not further reduce the number of viable ovarian cancer
cells after 3-day treatment compared with BEZ235 alone. Although
treatment with Bay 65–1942 alone only resulted in 20–30%
inhibition on proliferation of three ovarian cancer cell lines
after 3-day exposure (Figure 6c), we observed a pronounced
inhibition on the clonogenic growth following exposure to
Bay 65–1942 alone for 12–14 days (Figure 6d). Furthermore,

0

1

2

3

4

sh
IK

BKB #1

sh
RELA

 #1

Con
tro

l s
hR

NA

R
el

at
iv

e 
m

R
N

A
 le

ve
ls

CXCL1
CXCL2
CXCL8

FTSECs + GAB2

** ****

**
** **

0

1

2

3

4

5

6

7

8

DMSO

GDC-09
41

AZD62
88

GDC-09
41

+A
ZD62

88

BEZ23
5

TPCA-1

IK
K-16

Bay
 65

-19
42

DMSO

R
el

at
iv

e 
m

R
N

A
 le

ve
ls

CXCL1
CXCL2
CXCL8

+GAB2+vector

FTSECs

**
****

**

**
**

**

*****
**

**

**

*

**

n.s.

n.s.
n.s.

n.s.

n.s.

n.s.

Figure 5. GAB2-induced chemokine expression is dependent on IKKβ-NF-κB activity. (a) Effect of small-molecule inhibitors against
PI3K (GDC-0941), PI3K/mTOR (BEZ235), MEK (AZD6288) or IKKβ (TPCA-1, IKK16 and Bay 65–1942) on CXCL1, CXCL2 and CXCL8 mRNA levels in
GAB2-overexpressing FTSECs. Cells were treated with 2 μM of each inhibitor or DMSO control for 6 h before collected for quantitative PCR
analyses. Data are averages± s.e.m. of four independent experiments. Comparison between DMSO- or inhibitor-treated GAB2-overexpressing
FTSECs were used for statistical analyses. n.s., not significant; *Po0.05; **Po0.01. (b) Effect of suppressing IKKβ (encoded by IKBKB) or NF-κB
p65 (encoded by RELA) on CXCL1, CXCL2 and CXCL8 mRNA levels in GAB2-overexpressing FTSECs. Cells were infected with a control
shRNA targeting LacZ or shRNAs targeting IKBKB or RELA and cultured for 48 h before collected for quantitative PCR analyses. Data are
averages± s.e.m. of three independent experiments. *Po0.05; **Po0.01.

GAB2 promotes tumor growth and angiogenesis
C Duckworth et al

4043

© 2016 Macmillan Publishers Limited, part of Springer Nature. Oncogene (2016) 4036 – 4047



combinatorial treatment with Bay 65–1942 and BEZ235 inhibited
clonogenic growth of ovarian cancer cells more effectively than
individual treatment (Figure 6d). These results suggest that
co-targeting IKKβ and PI3K/mTOR is more effective in suppressing
proliferation and survival of ovarian cancer cells than individual
inhibition.

DISCUSSION
Patients with ovarian cancer are often diagnosed at advanced
stage when tumors have spread into the peritoneal cavity.
Although the standard therapy involves aggressive surgery
followed by platinum/taxane-based chemotherapy, the majority
of patients will experience relapse with chemo-resistant disease.2
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Therefore, improved targeted therapies are urgently needed. This
led the Cancer Genome Atlas projects to comprehensively
characterize genetic abnormalities in primary HGSOCs to identify
novel therapeutic targets.3 In parallel with such effort, we
previously performed multiplexed in vivo transformation screens
and identified GAB2 as a potent transforming gene.4 In addition to
recurrent genomic amplification, GAB2 is overexpressed in
one-third of primary HGSOCs.4 Here, we provided additional
evidence showing that overexpression of GAB2 in ovarian cancer
cells was required for peritoneal tumor growth by increasing
tumor angiogenesis and cell proliferation. We found that over-
expression of GAB2 in ovarian cancer cells upregulated expression
of multiple chemokines, including CXCL1, CXCL2 and CXCL8 that
exhibited mitogenic and pro-angiogenic activities. Taken together,
these findings not only support our conclusion that GAB2 is a
frequently altered oncogene in ovarian cancer but also assign
GAB2 as an inducer of tumor angiogenesis important for disease
development and progression.
Formation of new blood vessels is crucial for solid tumor growth

and metastasis.27 Higher tumor microvessel density is associated
with a shorter survival in patients with ovarian cancer. Tumor cells
actively release pro-angiogenic factors such as vascular endothe-
lial growth factor to promote endothelial cell proliferation, survival
and migration for the formation of new blood vessels.28 In
corroboration with previous findings showing that CXCL1 and
CXCL8 are potent pro-angiogenic factors frequently upregulated
in ovarian cancer,20,21 we showed that CXCR2 blockade by
antagonist SCH527123 completely inhibited the tube formation
of HUVECs induced by ovarian cancer cells. Many CXCR2
antagonists are being investigated in clinical trials for chronic
inflammatory diseases and have safe profiles with long-term
usage.29 Another approach that coordinately targets these
chemokines is to suppress IKKβ-NF-κB activity. We showed that
inhibition of IKKβ by both genetic and pharmacological means
effectively reduced the transcription of CXCL1, CXCL2 and CXCL8 in
GAB2-overexpressing FTSECs and ovarian cancer cells. The
paracrine signaling network induced by CXCL1/2 has recently
been linked to cancer chemoresistance and metastasis in breast
cancer.22 Further study is required to evaluate whether targeting
CXCR2 or IKKβ alone will exhibit anti-angiogenic activity and also
augment the efficacy of chemotherapy against ovarian cancer.
Elevated levels of CXCL1 and CXCL8 in serum, ascites and

tumors have been associated with poor prognosis and shorter
survival in patients with ovarian cancer.20,21,30 We showed
that suppression of CXCL1/2 or CXCL8 significantly inhibited
proliferation and clonogenic growth of GAB2-transformed FTSECs
and ovarian cancer cells. Our findings are in agreement with
previous studies showing that CXCL8 acts as a mitogenic factor
and increases ovarian cancer cell proliferation, anchorage-
independent growth and invasion, likely by activating AKT and
ERK signaling.24 Silencing of CXCL8 with liposome-encapsulated
siRNA inhibited ovarian tumor growth and angiogenesis.20 Recent
study further revealed that autocrine CXCL8 signaling through the
receptor CXCR1 in breast cancer is required for maintaining cancer
stem cells,26 and CXCR1 blockade by antagonist reparixin
selectively eliminated these cells and impaired tumor growth.26

Similarly, induction of CXCL1 has been demonstrated to be
required for survival of RAS-transformed ovarian surface epithelial
cells and ovarian cancer cells.21 Overexpression of CXCL1 or its
primary receptor CXCR2 increases ovarian cancer cell proliferation
in part by transactivation of EGFR signaling.23,31 Blocking CXCL1 by
a selective neutralizing antibody or suppression of CXCR2 by RNAi
induces apoptosis in ovarian cancer cells.21,31 The diverse roles of
NF-κB signaling in ovarian cancer development and progression
make it an attractive therapeutic target. Indeed, we showed that
inhibition of IKKβ not only significantly reduced expression of
CXCL1, CXCL2 and CXCL8, but also suppressed clonogenic growth
of ovarian cancer cells as a single agent. Importantly, we found

that combinatorial inhibition of IKKβ and PI3K/mTOR could
effectively abolish clonogenic growth of ovarian cancer cells
compared with individual inhibition. As BEZ235 exhibits
multifaceted anti-tumor activities in part by suppressing vascular
endothelial growth factor-dependent angiogenesis,32 further
study of this combination strategy in ovarian cancer is warranted
to determine whether greater anti-angiogenic and anti-tumor
effects could be achieved.
GAB2 is a scaffold adapter protein that lacks intrinsic enzymatic

activities but mediates protein–protein interactions to transduce
signals from receptors to diverse downstream effectors. Our prior
study showed that GAB2 is amplified and/or overexpressed in
approximately one-third of primary HGSOCs.4 We and others
observed that ovarian cancer cell lines overexpressing GAB2 are
sensitive to PI3K inhibition.4,14 This study revealed an important role
of GAB2 overexpression in promoting ovarian tumor growth and
angiogenesis by upregulating IKKβ-dependent expression of CXCL1,
CXCL2 and CXCL8. Therefore, amplification and overexpression of
GAB2 may represent one of the early genetic events that promote
ovarian tumor growth, and as a result, ovarian tumors over-
expressing GAB2 exhibit dependence on high GAB2 levels for tumor
growth. Recent studies have identified several mechanisms by
which cancer cells adapt to PI3K-targeted therapy, such as
reprogramming of mitochondrial trafficking33 and upregulation of
prosurvival proteins.17 Although it remains challenging to directly
target protein–protein interactions between GAB2 and effectors, our
results suggest that co-targeting IKKβ and PI3K pathways down-
stream of GAB2 might be a promising therapeutic strategy for
ovarian cancer that overexpresses GAB2.

MATERIALS AND METHODS
Plasmids
pLX304-blasticidin-GAB2, -GAB2Δp85 and pLX empty control vector have
been described.4 pLenti6.2-blasticidin-luciferase has been described.34

RELAS536E ORF was obtained from Addgene (Cambridge, MA, USA; #24156)
and cloned into pLX304 vector. All pLKO.1-shRNA plasmids were designed by
The RNAi Consortium with the following clone reference numbers or targeting
sequences: control shRNA targeting LacZ (shLacZ) (TRCN0000231710), shGAB2
#6 (TRCN0000154991), #7 (TRCN0000155271), #9 (TRCN0000413156), #11
(TRCN0000415678), shCXCL1/2 #1 (TRCN0000057940), shCXCL8 #1
(TRCN0000232051), #2 (TRCN0000369255), #3 (TRCN0000058028), shIKBKB
#1 (5′-TGGACAGTGTCCAATTCAAAT-3′), shRELA #1 (TRCN0000014684), #2
(TRCN0000014687), #3 (TRCN0000329800) and #4 (TRCN0000329877).

Cell culture
FTSECs expressing human telomerase reverse transcriptase and the
SV40 large T and small T antigens were provided by Dr Ronny Drapkin
(Dana-Farber Cancer Institute, Boston), and cultured in DMEM/Ham’s F12
50/50 mix (Corning, Corning, NY, USA) supplemented with 10% fetal
bovine serum (Corning). Additional introduction of GAB2 or a control
vector into FTSECs were described previously.4 FUOV1, NIH:OVCAR3 and
IGROV1 cells were obtained and cultured as described.35 These cell lines
have been authenticated by sequenom genotyping assays for a panel of
48 single-nucleotide polymorphism loci with reference to the established
fingerprint (http://www.broadinstitute.org/ccle). No mycoplasma contam-
ination was detected.

Chemicals
Bay 65–1942 was purchased from ChemScene. GDC-0941, BEZ235,
AZD6244, TPCA-1 and IKK16 were purchased from Selleck Chemicals
(Houston, TX, USA).

Antibody array detection
In total, 1 × 106 of FTSECs expressing GAB2 or a control vector were plated
into 10-cm culture dishes for 24 h. The media were replaced with serum-
deprived media containing 0.1% fetal bovine serum, and the cells were
cultured for 48 h. The culture supernatants were collected, centrifuged at
1000× g, and dialyzed with 2 l of 1 × phosphate-buffered saline (pH 8)
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twice for overnight at 4oC. Samples were labeled with biotin and incubated
with Human L1000 Antibody Arrays (#AAH-BLM-1000, RayBiotech,
Norcross, GA, USA). Representative images from two independent
experiments were shown.

Cell proliferation assays
For assessing cell proliferation, 2000 of FUOV1, 4000 of NIH:OVCAR3 and
1500 of IGROV1 cells were seeded into each well of 96-well plates for 24 h.
Six replicate infections were performed for control shLacZ or each
gene-specific shRNA in the presence of 4 μg/ml polybrene for 24 h. Media
were then replaced with fresh media with three replicate wells containing
2 μg/ml puromycin. After 5 days, the cell viability was measured by
CellTiter-Glo luminescent cell viability assay (Promega, Madison, WI, USA).
Data represent averages ± s.e.m. of three independent experiments.
For assessing clonogenic growth, 10 000 of FUOV1, 8000 of NIH:OVCAR3

and 3000 of IGROV1 cells were seeded into each well of six-well plates for
24 h. Infections were performed for control shLacZ or each gene-specific
shRNA in the presence of 4 μg/ml polybrene for 24 h. Media were replaced
with fresh media containing 2 μg/ml puromycin. After 12–14 days, cells
were fixed in 2.5% of buffered formalin for 15min and stained with 0.1%
(w/v) crystal violet, 20% (v/v) ethanol solution for 15min. After several
rinses in tap water and air-drying, plates were scanned by an Epson photo
scanner. Representative images from two independent experiments
were shown.

Anchorage-independent growth assay
Growth in soft agar was determined by plating 5 × 104 cells in triplicate in
0.4% Noble agar. Colonies 40.1 mm in diameter were counted 4 weeks
after plating. Data represent averages ± s.e.m. of three independent
experiments.

Endothelial cell tube-formation assay
Primary HUVECs were purchased from Life Technologies (Carlsbad, CA,
USA) and cultured in medium 200PRF supplemented with large vessel
endothelial supplement. Trypsinized HUVECs were resuspended in
conditioned media derived from ovarian cancer cells and seeded in
growth factor reduced matrigel (Corning) for 6 h before staining with
Calcein AM (Life Technologies) for imaging.

Tumorigenicity assay
In total, 5 × 106 each of FUOV1+Luc cells expressing pLKO-TetOn-Control
shRNA or pLKO-TetOn-shGAB2 #11 were resuspended in 200 μl of
1 × phosphate-buffered saline, and injected intraperitoneally into
each of 6-week-old female athymic nude mice (Harlan Laboratories,
Indianapolis, IN, USA). Noninvasive bioluminescent imaging was performed
at 17, 52, 59 and 66 days post implantation. Doxycycline-containing diet
(#TD.01306) was purchased from Harlan Laboratories. Five mice per group
were followed for tumor growth and luminescence signals were compared
via two-sided t-test. With five mice per group, the t-test has 90% power to
detect a difference between groups of approximately 2.3 s.d.s. One mouse
was excluded from the study because the luminescence signals detected
before shRNA induction were too low. No randomization of animals was
used for these groups. The investigator responsible for bioluminescent
imaging was blinded to the group allocation. Animal experiments were in
compliance with ethical regulations approved by Institutional Animal Care
and Use Committee at Medical University of South Carolina.

Immunoblotting
Cell lysates were prepared in radioimmunoprecipitation assay lysis buffer
supplemented with Halt Protease and Phosphatase Inhibitor Cocktail
(Pierce, Waltham, MA, USA). Protein concentration was measured by the
BCA Protein Assay kit (Pierce). Equal amount of protein (30 μg) was
separated by NuPAGE Novex Bis-Tris 4–12% gels (Life Technologies) and
transferred onto a nitrocellulose membrane using iBlot Gel Transfer Device
(Life Technologies). The membrane was incubated with primary antibodies
for 2 h at room temperature. Antibodies against p-AKT, p-ERK1/2, p-IκBα,
p-RELA, p-S6, total AKT, ERK1/2 and GAB2 were purchased from Cell
Signaling Technology. After incubation with the appropriate horseradish
peroxidase linked secondary antibodies (Bio-Rad, Hercules, CA, USA) for 2 h
at room temperature, the membrane was incubated with Enhanced
Chemiluminescence Plus substrate (Pierce) and signals were detected by

Pierce CL-Xposure Film. Expression of β-actin was assessed as an internal
loading control by use of a specific antibody (sc-8432-HRP; Santa Cruz
Biotechnology, Dallas, TX, USA). The intensity of bands was quantified by
using Fiji image processing software (http://fiji.sc/Fiji).

Enzyme-linked immunosorbent assay
FUOV1, NIH:OVCAR3 and IGROV1 cells were transduced with a control
shRNA or two independent shRNAs targeting GAB2 for 48 h and then
cultured in serum-free media for 24 h. The levels of CXCL1 and CXCL8
proteins in the cell culture supernatants were measured by using enzyme-
linked immunosorbent assay kits from RayBiotech.

Real-time quantitative reverse-transcription PCR
Total RNA was extracted with TRIzol reagent (Life Technologies), and 2 μg
was used to synthesize the first-strand complementary DNA using Maxima
First Strand complementary DNA Synthesis Kit (Thermo Scientific,
Waltham, MA, USA). Quantitative PCRs were performed with Maxima SYBR
Green qPCR Master Mix (Thermo Scientific). The primer sequences used
were: GAPDH (5′-CCTGTTCGACAGTCAGCCG-3′, 5′-CGACCAAATCCGTTGAC
TCC-3′), CXCL1 (5′-GCGCCCAAACCGAAGTC-3′, 5′-TGCAGGATTGAGGCAAGC
TT-3′), CXCL2 (5′-CTGCGCCCAAACCGAAGTCATA-3′, 5′-CTGCGCCCAAACCG
AAGTCATA-3′), CXCL8 (5′-CCTGATTTCTGCAGCTCTGT-3′, 5′-AACTTCTCCAC
AACCCTCTG-3′) and IKBKB (5′-GGAAGTACCTGAACCAGTTTGAG-3′, 5′-GCA
GGACGATGTTTTCTGGCT-3′). For each experiment, triplicate reactions for
each primer set were performed separately on the same complementary
DNA samples using Roche LightCycler 480 II PCR instrument. The mean
cycle threshold was used for the comparative cycle threshold analysis (ABI
User Bulletin #2). Data represent averages ± s.e.m. of three independent
experiments.

Statistical analysis
Two-tailed, unpaired Student’s t-test was used for comparisons using Prism
GraphPad software. Po0.05 was considered statistically significant. Similar
variances between groups were observed by F-test.
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