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Abstract

Obesity is connected to the activation of chronic inflammatory pathways in both adipocytes

and macrophages located in adipose tissues. The nuclear factor (NF)-κB is a central mole-

cule involved in inflammatory pathways linked to the pathology of different complex meta-

bolic disorders. Investigating the gene expression data in the adipose tissue would

potentially unravel disease relevant gene interactions. The present study is aimed at creat-

ing a signature molecular network and at prioritizing the potential biomarkers interacting

with NF-κB family of proteins in obesity using system biology approaches. The dataset

GSE88837 associated with obesity was downloaded from Gene Expression Omnibus

(GEO) database. Statistical analysis represented the differential expression of a total of

2650 genes in adipose tissues (p = <0.05). Using concepts like correlation, semantic similar-

ity, and theoretical graph parameters we narrowed down genes to a network of 23 genes

strongly connected with NF-κB family with higher significance. Functional enrichment analy-

sis revealed 21 of 23 target genes of NF-κB were found to have a critical role in the patho-

physiology of obesity. Interestingly, GEM and PPP1R13L were predicted as novel genes

which may act as potential target or biomarkers of obesity as they occur with other 21 target

genes with known obesity relationship. Our study concludes that NF-κB and prioritized tar-

get genes regulate the inflammation in adipose tissues through several molecular signaling

pathways like NF-κB, PI3K-Akt, glucocorticoid receptor regulatory network, angiogenesis

and cytokine pathways. This integrated system biology approaches can be applied for eluci-

dating functional protein interaction networks of NF-κB protein family in different complex
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diseases. Our integrative and network-based approach for finding therapeutic targets in

genomic data could accelerate the identification of novel drug targets for obesity.

Introduction

Obesity is a complex, multi-factorial metabolic disorder caused by the complex inter talk

between an individual’s physiology and genotype with the environment. It is characterized by

the development of the chronic inflammation in different tissues including adipose tissue and

liver, leading to fat mass accumulation and weight gain [1]. Penetration of the macrophages

and increased levels in proinflammatory cytokines is observed in adipose tissues in obese con-

dition. The increased expression of TNF-α marks the first indication of a proinflammatory

cytokine release in adipose tissues of obese mice [2] [3]. The ubiquitous complication of obe-

sity is faulty insulin signaling in these tissues. Insulin resistance links obesity with cardiovascu-

lar diseases, type 2 diabetes, osteoarthritis, hypertension, and different forms of cancer [4].

It is acknowledged that chronic sub-clinical inflammation plays a crucial role in the initiation

and progression of metabolic diseases [5]. Consistent with its key role in directing inflammatory

responses, several studies have implicated the transcription factor Nuclear Factor-κB (NF-κB)

in the initiation and progression of metabolic diseases, thereby further supporting the critical

role of inflammation mediated metabolic disorders. The NF-κB protein family consists of five

members, including REL, RELA, RELB, NFΚB1, and NFΚB2. NF-κB family of transcription fac-

tors regulates the expression of genes implicated in many important physiological responses

such as inflammation, proliferation, differentiation, cell adhesion and apoptosis [6, 7]. The NF-

κB pathway is a chief regulator of inflammatory processes and is associated with insulin resis-

tance and pancreatic β cell dysfunction in the metabolic syndrome [8]. The NF-κB pathway ties

the inflammatory and metabolic responses together. NF-κB pathway, being a key player in

inflammation may help as an entry point for better understanding the metabolic diseases [9].

NF-κB proteins are activated by proinflammatory cytokines, apoptotic mediators, metabolic

stress and chemical agents [10]. Genome-wide association studies of gene expression in adipose

tissue have shown extensive inflammatory gene networks associated with obesity [11].

Correlating genes with diseases is a major challenge in human health for understanding dis-

ease biology and therapy. Predicting novel protein-protein interactions by incorporating high

throughput functional genomics data has become a key approach in interpreting the protein

functions and understanding molecular functions the inside cell [12]. In general, an efficient

approach to study the regulatory role of genes implicated in any complex metabolic disorder

like obesity is to create a biological network of functionally related genes [13]. The advent of

networks and systems biology has revolutionized the transcriptomic and genomic approach to

biology and influenced every aspect of biological research. Network-based methods have

turned out to be more powerful and informative in studying the disease mechanism [14] [15].

In the genomics era, high-throughput researches have generated huge biological networks of

interacting molecules. These networks are depicted as nodes connected by edges in complex

graphs [16] [17]. In this framework, the characterization of biological networks by graph topo-

logical properties have become popular for gaining insight into the global network structure

for normal and disease conditions.

In the present research analysis, we focused on NF-κB proteins and their inflammatory

inducers. We followed well established network biology concepts in systems biology to identify

the genes connected to NF-κB proteins with valid distinction from lean to obese samples. We
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filtered genes in such a way; they have a strong correlation with NF-κB as targets or inducers.

Systems biology highlights a remarkable impact in understanding the interaction between

genes and their associated pathways at the genome level [18] [19]. Hence its methods have

been adopted in this study to identify the key NF-κB regulatory molecules and their pathways

associated with obesity [20]. We used gene correlation, semantic similarity and topological

parameters based on graph theory for transcriptome data to identify biomarkers. Gene correla-

tion is based on the notion that genes with similar expression patterns are more likely to inter-

act with each other more often [21]. The semantic similarity is based on the fact that genes

associated with phenotypically similar diseases are often functionally associated at the molecu-

lar level [22] [23]. Candidate gene signatures are identified by calculating functional associa-

tion between given genes and the known disease genes [24]. To gain insight into the

organization and structure of the complex protein interaction network, we used topological

parameters like degree, betweenness centrality [25]. It computes and represents nodes, edges,

heterogeneity, and connected components. In this study, visceral adipose tissue gene expres-

sion datasets from lean female and obese female adolescents were collected from GEO data-

base and analyzed. Statistical and knowledge based systemic investigations of high throughput

data were considered to create a signature molecular network to identify candidate genes con-

nected to the NF-κB family of proteins in obesity. We implemented a reliable integrated net-

work-based method for identification of key signatures and their pathways implicated in the

pathogenesis and to elucidate protein-protein interactions of the NF-κB proteins and obesity.

Our biological network-based investigation will provide the novel association with potential

biological insights and support future translational research on NF-κB proteins and obesity.

Materials and methods

Collection of datasets

The gene expression dataset GSE88837 associated with obesity was downloaded from Gene

Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo) [26]. The selected dataset

GSE88837 was generated using the platform GPL570: Affymetrix Human Genome U133 Plus

2.0 Array. The dataset covers expression profiles of lean and obese adolescent females from vis-

ceral adipose tissue. The expression profiles consist of 14 samples from lean female adolescents

(BMI< 25) and 16 samples from obese female adolescents (BMI> 25). The detailed sample

information is given in the S1 Table. The overall work design used in the research investiga-

tions is shown in Fig 1.

Expression data pre-processing and normalization

Expression level data analysis of the samples was performed using R packages [27] [28]. In

order to standardize and reduce the technical noise in the probe level data, all the samples in

the CEL file were loaded into Affy package, and raw signal values of each probe sets were nor-

malized by baseline to a median of all samples using Robust Multiarray Average (RMA) algo-

rithm. This algorithm normalizes the raw signals by creating an expression matrix from the

data which involves background correction and log2 transformation followed by quantile nor-

malization [29]. Next, the normalized samples were experimentally classified into normal

(control) and obese (disease) sets. Further, the identification of statistically significant differen-

tially expressed genes (DEGs) between the normal and obese samples was performed using

unpaired t-statistic. The Benjamini and Hochberg’s false discovery rate with p value� 0.05

was applied to identify the statistically significant list of DEGs.
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Fig 1. The overall work design of our pipeline. Present research analysis for exploring candidate genes from expression profiles.

https://doi.org/10.1371/journal.pone.0214337.g001
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Construction of protein-protein interaction map

We used Bisogenet, a cytoscape plugin, to retrieve all the possible interactions among the

DEGs obtained from the expression profiles [23]. Bisogenet retrieves the interaction among

the significant genes from high-throughput experiments and literature data stored in Database

of Interacting Proteins (DIP), Biomolecular Interaction Network Database (BIND), Human

Protein Reference Database (HPRD), Biological General Repository for Interaction Datasets

(BioGRID), The Molecular Interaction database (MINT) and IntAct databases [30]. Protein-

Protein Interaction Map (PPIM) is a scale free network, based on a heterogeneous distribution

of its node’s connectivity, in which several nodes have low connectivity, and a few nodes have

a large number of connections [31]. In PPIM, nodes represent genes and edges are the physical

or functional connection between the nodes. An edge built between two nodes points out pro-

tein binding, metabolic action or regulatory crosstalk among the nodes [32].

Construction of subnetwork

Considering PPIM on a large scale, focusing down to every protein may be of less importance.

The complex interactome PPIM was decomposed to a significant subnetwork of Significant

Protein Interaction Network (SPIN) by following network biology concepts. From the PPIM,

we extracted genes that belong to (a) hubs based on degree centrality (DC) and betweenness

centrality (BC), (b) proteins of NF-κB family, and (c) inflammatory inducers of NF-κB pro-

teins. To visualize and weigh the network centrality parameters (DC and BC) for each protein

in the network, the PPIM developed from Bisogenet was standardized and incorporated into

Cytoscape 3.2.1 [33]. The Cytoscape plugin Network Analyzer [25] was implemented to cap-

ture the local and global centrality parameters of the network [34].

Identification of hub proteins

The degree of a node is the total number of edges that are linked to that particular node. Nodes

with high DC in any network have large numbers of functional or interacting partners. In the

constructed interactome PPIM, nodes with high degree connectivity correspond to essential

genes. Moreover, several interacting functional partners in biological interactome are more

likely to be involved in important biological pathways and cellular processes [32]. Implement-

ing this concept, genes with high DC were chosen as hub proteins. Also, quite a lot of studies

have proposed that genes associated with the disease have higher connectivity and cross-talks

when compared to non-diseased genes which support the impact of hubs in the biological net-

work [7, 35, 36]. Therefore, identifying hub molecules in the network can provide a better

understanding of the pathogenesis of the disease. We adopted an approach, which has been

formerly applied by Rakshit et al., [37] to identify the hubs. The DC cut-off threshold formula

for choosing the hub protein is defined as:

Hubs ¼ AvgðDCÞ þ ½2 � SDðDCÞ� ðFormula 1Þ

where Avg is the average degree centrality across all significant genes in the PPIM and SD rep-

resents their standard deviation [37].

As mentioned earlier, genes with high DC corresponds to essential genes, but DC does not

measure the significance of a gene in the interactome on a global scale [38]. Hence, a global

parameter BC was introduced to scale the properties of a gene at the whole interactome level.

The BC of a node is the control of a node that exerts over the interactions of other nodes

which are functionally relevant in the network. This centrality magnitude favors nodes that

link dense networks, rather than nodes that are located inside the dense cluster [39]. BC is

Regulatory genes connected to NF-κB family
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calculated using the formula:

BC ðnÞ ¼
X

s6¼n6¼t

sstðnÞ
sst

� �

ðFormula 2Þ

where ‘s’ and ‘t’ are nodes in the network other than ‘n’; sst represents the number of short-

est paths from ‘s’ to ‘t’, and sst nð Þ is the number of shortest paths from s to t that ‘n’ lies on

[40]. Using the node betweenness distribution, genes positioned in the top 50% are scaled as

hub genes.

Proteins of NF-κB family. The NF-κB family consists of five proteins, NFKB1, NFKB2,

REL, RELA, and RELB. S2 Table represents the details of the proteins of the NF-κB family.

Inflammatory inducers of NF-κB proteins. We collected inflammatory inducers of NF-

κB proteins from the database of NF-kB Transcription Factors (www.bu.edu/nf-kb/) maintained

by Boston University. Twenty eight inflammatory molecules were reported in the database

shown in S3 Table. For the ease of exploration, all NF-κB family proteins, hubs and inflammatory

inducers of NF-κB proteins together, we use the term HINNF. The genes of HINNF with their pri-

mary interacting partners were pulled out from the complex interactome PPIM to construct SPIN.

Construction of weighted gene-gene correlation map

The gene-gene correlation map across the entire gene set in the SPIN was generated using Pear-

son’s correlation algorithm. Correlation (r) between every pair of genes in the microarray data

sets was ranked based on Pearson’s correlation coefficient (PCC). The PCC between pairs of

genes is calculated using the formula mentioned in Formula 3.

PCC ðrÞ ¼

Xn

i¼1
ðxi � x

�
Þ ðyi � y

�
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � x

�

q

Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðyi � y

�

q

Þ
2

ðFormula 3Þ

where x
�

and y
�

are the sample mean of the expression values in control and diseased state of the

two genes, respectively.

Gene prioritization algorithm. Prioritizing the most promising candidate genes in the

interactome is a challenging and time consuming task. Thus, we implemented the following

filtering measures centered on biological insights to prioritize the genes in the interactome of

SPIN.

Pearson correlation coefficient between gene pairs in SPIN

In this approach, PCC between the gene-gene pairs in SPIN was generated for both disease and

control group separately. Next, the difference of PCC (DPCC) between gene pairs of disease and

control groups was calculated using the following formula [37]:

DPCC ¼ DiseaseðrÞ � ControlðrÞ ðFormula 4Þ

where Disease rð Þ is the PCC of disease samples and ControlðrÞ represents PCC of control sam-

ples. Higher DPCC score implies distinct variation in gene’s interaction from control to disease

condition. To increase the stringency, gene pairs with absolute difference score, DPCC � 1 were

screened for further analysis.

Functional similarity between gene pairs

Generally, genes having an association in phenotypically similar diseases are often functionally

associated at the molecular level [20]. The functional likeness between two genes is measured
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using encoded evidence in the Gene Ontology (GO) hierarchies. In the current analysis, we

applied Wang’s measure of similarity [41] to the molecular function (MF) hierarchy. This

measure determines the semantic similarity of two genes based on the locations of GO terms

in the graph and their semantic relations with their ancestor terms. The score of semantic simi-

larity between the terms ranges between 0 and 1. A higher score implies a strong functional

association between the genes. The semantic similarity between gene pairs is calculated using

the following formula:

SGOðX;YÞ ¼

X

t2TX\TY
ðSXðtÞ þ SYðtÞÞ

X

t2TX
SXðtÞ þ

X

t2TY
SYðtÞ

ðFormula 5Þ

where TX represents the set of all its ancestor terms including term X itself and SX tð Þ denotes

the contribution of a term t 2 TX to the semantics of X based on the relative locations of t and

X in the graph. Since a gene can be annotated by many GO terms, we used Best-Match Aver-

age (BMA) method which combine semantic similarity scores of several GO terms and calcu-

lates the average of all maximum similarities on each row and column. Based on this concept,

we employed R package, GoSemSim [42] to measure the semantic similarity between gene

pairs with score DPCC� 1. Next, gene pairs were filtered on semantic score� 0.5 as higher

score implies stronger association.

Co-expression analysis of genes in SPIN

In this method, we focused on the gene pairs whose expression is significantly correlated by

selecting the r value cut-off, r� 0.8, as higher r value implies stronger association [37]. Next,

from the correlation matrix, genes in SPIN showing higher correlation, r� 0.8 were screened

for both disease and control groups. Further, DC difference of SPIN (DCSPIN ) between disease

and control groups was calculated as follows:

DCSPIN ¼ DCDisease � DCControl ðFormula 6Þ

where DCDisease and DCControl represents degree of the node in disease and control group respec-

tively. The DC difference of a node represents its gain or loss of functional partners. Positive

value of DCSPIN denotes loss of its interacting genes and negative value denotes gain of interacting

genes from healthy to diseased state. Next, the genes in SPIN with FC of 1.5 (-1.5� FC� +1.5)

were mapped to genes of DCSPIN to identify genes with distinct variation based on fold change.

These filtered genes are used for downstream functional enrichment analysis.

Gene set enrichment analysis (GSEA)

Genes do not interact in isolation, and unforeseen cross-talk may lead to dysregulated func-

tions [43]. Hence, to comprehend the biological system, it demands the knowledge of the

interconnectivity of genes in several processes and pathways that ascend from both physical

and functional interactions. Such biological interactome can be developed by assessing the

functional characteristics of the genes. Performing functional enrichment analysis on gene sets

is a crucial step in understanding high-throughput biological data [44]. This approach substan-

tiates that the genes involved in a biological experiment are functionally significant and helps

to discover unintended interaction between the genes. Functional enrichment of the filtered

genes was performed using ToppGene Suite [45].
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Tissue specific analysis

Tissue specific interactions were identified using GIANT (Genome-scale Integrated Analysis

of gene Networks in Tissues). GIANT powers a gold standard tissue-specific analysis to eluci-

date roles of genes and expose changes in those roles across tissues [38]. GIANT identifies tis-

sue-specific connections by combining diverse functional genomics data over 61400

experiments for 283 diverse tissues and cell types [46]. GIANT generates an interactive net-

work for the queried genes with specific edge weight ranging from 0 to 1. Higher the score

higher is the relationship confidence between the genes.

Results

Assessment of gene expression profiles

High throughput experimental gene expression profiles of visceral adipose tissues collected

from 14 lean female adolescents (BMI < 25) and 16 obese female adolescents (BMI> 25) were

analyzed to pinpoint the dysregulations in key molecular signatures affected in adipose tissues.

The raw expression profiles containing 54675 (probes) entities were normalized using the

Robust Multiarray Average (RMA) algorithm, reduced to 22482 non-redundant data points.

Further, we screened 2650 differentially expressed genes (DEGs) with a statistical significance

of p value� 0.05. The normalized datasets are represented as box plots to show the data distri-

bution (Fig 2).

Constructed protein-protein interaction map

A total of 2650 significant genes obtained from the expression analysis were queried in Biso-

genet, a Cytoscape plugin, to create PPIM by retrieving all possible associations among genes.

The PPIM was then stabilized by removing the outliers, self-loops and duplicated edges to

assess the standardized topological characteristics for each gene. The plugin generated a com-

plex PPIM, comprised of 2650 nodes (genes) and 169118 edges (interactions) with 63.82 aver-

age edge-node ratios. Further, Network Analyzer plugin was employed to calculate local

(degree centrality) and global (betweenness centrality) parameters of the network. An over-

view of the top 10 significant genes based on the highest degree is presented in Table 1 along

with general centrality parameters.

Significant protein interaction map (SPIN)

The genes of PPIM were classified into hubs on the basis of topological parameters for the con-

struction of a significant protein interaction network. Hubs are the key features as they indi-

cate critical intersections among clusters in the network if removed the network will be

disrupted [47]. The threshold cut-off for hubs and bottlenecks were specified based on the For-

mulas 1 and 2. Total of 28 genes was screened as inflammatory inducers of NF-κB proteins.

Implementing this method, we selected 1261 hubs, 28 inflammatory inducers and 5 proteins

of NF-κB family. Hubs, Inflammatory inducers and NF-κB protein family (HINNF) were

together comprised of 1277 genes (17 redundant genes, which comes from inducers and

NFKB were removed). HINNF genes with their respective first level interacting partners were

extracted from PPIM to build significant protein interaction map, SPIN (Fig 3). In total 2525

SPIN genes were selected for downstream analysis.

Gene-gene correlation and semantic similarity of genes in SPIN

The expression matrix across 2525 genes in the SPIN was created for both control and disease

samples based on Pearson’s correlation algorithm. The algorithm generated PCC for 70225010
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gene pairs from 2525 genes for both control and disease samples (Formula 3). A detailed

parametric downstream analysis was performed on the 70225010 gene pairs to dissect most

indispensable signatures from the interactome. For this purpose, we followed filtering methods

centered on biological insights for gene prioritization.

PCC between gene pairs in SPIN

From the correlation map of 70225010 gene pairs obtained, we developed an in-house algo-

rithm to screen and match 169118 gene pairs that are present in SPIN. Then, the difference of

PCC (DPCC) between these extracted gene pairs was calculated from disease and control sam-

ples based on the Formula 4. To narrow down the most crucial gene pairs, we considered a

higher absolute difference score of� 1 for DPCC. We have chosen a higher score of DPCC as it

Fig 2. Gene expression data before and after normalization. The horizontal axis represents the samples, and the vertical axis represents the gene expression values.

https://doi.org/10.1371/journal.pone.0214337.g002
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illustrates the significant variation or instability in interactions among the gene pairs from

control to disease state. We obtained 2424 gene pairs comprising of 1423 genes (This include

some of the inducers and NFkB and 1261 genes in the input) with DPCC greater than or equal

to one. Table 2 shows list of top 10 gene pairs with higher absolute DPCC score (S4 Table).

Semantic similarity between gene pairs

The gene pairs with higher DPCC score was screened from the SPIN, and we applied Wang’s

measure of semantic similarity [41]. We developed a semantic similarity score for 2424 gene

pairs with DPCC � 1 by exploiting GoSemSim package in R. Next, we filtered 992 gene pairs,

comprising 809 genes, with strong functional association based on higher a semantic score

of� 0.5, as shown in the Fig 4A, 4B and 4C. Table 3 depicts a list of top 10 gene pairs with the

highest semantic score (SGO) and absolute DPCC score (S5 Table).

Co-expression analysis of SPIN

In this approach, gene pairs were selected based on the following established concepts. i) The

expression level of genes with high positive correlation. ii) Genes with similar expression pat-

terns are more likely to interact with each other. Thus, gene pairs with higher correlation were

screened for both disease and control sample sets. Gene pairs with r� 0.8 from correlation

map were chosen, as higher r score represents stronger association [37]. Next, the degree

(number of functional partners) of 809 genes obtained from the aforementioned method with

higher correlation was extracted using an in-house script. Again, DC difference of these genes

was calculated using the formula in Formula 6 (section 2.6) which denotes alterations in con-

nectivity of the gene from control to the diseased state. Alterations of gene connectivity in bio-

logical networks are linked to substantial phenotypic changes [48]. Positive value of DCSPIN for

a gene indicates gain of connectivity or functional partners and the negative value represents

the loss of connectivity or functional partners. We applied a FC threshold of ±1.5 (-1.5� FC�

+1.5) to filter deregulated genes based on FC. We obtained total of 193 genes by this filtering

approach, in which 112 genes with loss of functional partners and 74 gene with gain of func-

tional partners (S6 Table). The node degree of the remaining 7 genes did not change in

between controls and disease samples. We developed heat maps for these genes from their

expression pattern to visualize and interpret more comprehensively (Fig 5).

Table 1. List of top 10 significant genes with the highest degree with their general centrality parameters obtained

from network analysis.

Gene BC CC DC

UBC 0.096 0.739 1640

PHF8 0.051 0.617 988

EGR1 0.019 0.567 639

CHD2 0.012 0.553 524

FOS 0.011 0.553 515

JUND 0.011 0.549 479

APP 0.010 0.575 707

EBF1 0.010 0.560 594

STAT3 0.009 0.549 493

IRF1 0.007 0.537 386

#BC = Betweenness Centrality, CC = Closeness Centrality, DC = Degree Centrality

https://doi.org/10.1371/journal.pone.0214337.t001
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Gene set enrichment analysis

To assess the functional and biological significance of the filtered 193 genes, we used the Topp-

Gene functional annotation suite. Functional enrichment implemented using ToppGene

Fig 3. Significant protein interaction map. SPIN, developed from HINNF and their first level interacting partners.

https://doi.org/10.1371/journal.pone.0214337.g003
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represented annotated genes by exploring databases like KEGG, Reactome, Pathway Interac-

tion Database, DisGeNET and GO databases with a p-value threshold� 0.05. The gene sets

were enriched with 1835 biological process (BP), 104 molecular function (MF), 65 Cellular

Component (CC), 326 Pathways and 2329 diseases. The pie chart of enrichment analysis is

shown in Fig 6. Enrichment analysis represented about 70 genes in obesity. Thus, the occur-

rence of known obesity susceptible genes in the prioritized list substantiates the relevance of

our approach. Thus, the occurrence of known obesity susceptible genes in the prioritized list

substantiates the relevance of our approach. Again, most of the genes in the enriched network

represented their association in diseases like Rheumatoid arthritis, Pancreatic carcinoma, Alz-
heimer's disease, Diabetes Mellitus and Hypertensive disease. The biological process associated

with these genes included immune response, response to lipid, MAPK cascade, NF-kappa B sig-
naling, inflammatory response, response to nutrient levels, response to insulin, regulation of pep-
tidyl-tyrosine phosphorylation and response to glucose. Genes were also enriched in pathways

like Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, Hemostasis, NOD-like
receptor signaling, Focal adhesion, NOD-like receptor signaling, TNF signaling, NF-kappa B

Table 2. An overview of the top 10 significant genes gene pairs with the highest absolute DPCC score.

Gene pairs Pearson’s Correlation Coefficient (r)

Term 1 Term 2 Disease(r) Control(r) Abs (DPCC)

TRIAP1 MAN2B2 -0.8449 0.790618 1.63552058

DCAF8 NFATC2IP -0.81999 0.7863 1.6062919

P4HA1 PFDN4 0.800708 -0.79465 1.59535325

XRCC5 EPHX2 -0.74657 0.793173 1.53974146

PCNA RUFY3 -0.74982 0.779376 1.52919467

PSMB2 SPG20 -0.72599 0.801969 1.5279635

LRP8 THBS3 -0.80379 0.715712 1.51949733

MCM3 TOP2A 0.711379 -0.79084 1.5022185

SP3 RCC2 -0.72834 0.75025 1.4785944

CCT3 MAN2B2 -0.7553 0.708207 1.46350675

https://doi.org/10.1371/journal.pone.0214337.t002

Fig 4. Representation of gene-gene correlation plot and semantic similarity graph. The correlation plots illustrate significant variations in gene expression among the

gene-gene pairs in the control and disease samples. A). Gene-gene correlation of normal samples (control), B). Gene-gene correlation of obese samples (disease), C). The

graph depicts semantic similarity between all pairs of genes and the blue arrow represents gene pairs with higher functional similarity.

https://doi.org/10.1371/journal.pone.0214337.g004
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signaling, Glucocorticoid receptor regulatory network, Adipocytokine signaling, and Toll-like
receptor signaling. The enriched pathways, diseases, and biological process show a high correla-

tion with obesity. The list of top 20 functional annotations with the respective gene count is

depicted in Fig 7.

An attempt was made to detect all potential interactions of filtered 193 genes, inflammatory

inducers, and NF-κB protein family in both control and disease conditions to validate the anal-

ysis methods we applied in this study. This study was attempted because differentially co-

expressed genes tend to associate in several biological processes which may lead to comple-

mentary or adverse effects [49]. The prioritized genes were extracted from SPIN and co-

expressed network for control and disease conditions separately. Next, we combined the con-

trol SPIN network with control co-expression and disease SPIN network with disease co-expres-

sion to create two separate sub-networks of disease and control genes (Fig 8). The newly

generated Control Network and Disease Network, based on protein-protein interaction and co-

expression interaction, were compared to delineate the major variations between them. We

observed a significant alteration in the connectivity of genes from control to disease state. The

connectivity of the nodes in Control Network is 3408, and it has decreased to 3259 in Disease
Network, clearly indicating loss of functional partners in the overall disease network. There is

also the loss of high correlation in Disease Network. Next, we focused on genes concerning

their interaction with NFKB1, NFKB2, REL, RELA, and RELB (family of NF-κB proteins). Out

of 193 genes, we obtained 68 genes with direct interaction to the family of NF-κB proteins as

represented in Fig 9.

Tissue specific analysis

In GIANT, web interactive tool, we selected adipose tissue and queried 68 genes along with

NF-κB proteins to check the tissue level expression of these genes. The tool generated an inter-

active network for the genes with specific edge weight ranging from 0 to 1. The tissue level

expression and interaction of these genes were further filtered using a reasonable score of 0.4

and above. Thus, the dense network was decomposed to a smaller significant network with 56

candidate genes as shown in Fig 10. We further focused on fold change, change in some func-

tional partners from normal to the obese condition of 56 genes which are connected to the

NF-κB family. The most upregulated gene (FC = 5.65) is FOS (Fos Proto-Oncogene, AP-1

Transcription Factor Subunit) followed by JUN (Jun proto-oncogene, AP-1 transcription fac-

tor subunit) with an FC of 3.96. ELOVL6 (ELOVL Fatty Acid Elongase 6) is the most

Table 3. The table represents the top 10 gene pairs with the higher semantic score (SGO) with their absolute DPCC
score.

Gene pairs Score

Term 1 Term 2 Abs (DPCC) SGO

MCM3 TOP2A 1.502219 1

XRCC5 RBM17 1.451234 1

TEX10 PELP1 1.416311 1

NEDD4L PRICKLE1 1.413676 1

MCM3 HLA-C 1.412932 1

COL4A1 FZR1 1.39018 1

TOP2A BIK 1.38565 1

ESRRG RPRD1A 1.379133 1

RAB35 COG6 1.364074 1

HDAC1 RBM17 1.356559 1

https://doi.org/10.1371/journal.pone.0214337.t003

Regulatory genes connected to NF-κB family

PLOS ONE | https://doi.org/10.1371/journal.pone.0214337 April 23, 2019 13 / 26

https://doi.org/10.1371/journal.pone.0214337.t003
https://doi.org/10.1371/journal.pone.0214337


downregulated gene (FC = -3.58) followed by TNC (Tenascin C) with FC of -3.07. The gene

SP3 (Sp3 transcription factor) has the highest deviation of functional partners from normal to

obese followed by PTPN11 (protein tyrosine phosphatase, non-receptor type 11). Various

reports suggest genes described above connected to NF-κB protein family with distinct

Fig 5. Expression pattern of the filtered genes from HINNF and primary functional partners contributing to total of 193 genes. The gene expression pattern analysis

clearly depicts variation in expression in disease and control samples.

https://doi.org/10.1371/journal.pone.0214337.g005
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variations are involved in obesity or obesity related metabolic disorders [11, 50–52]. The over-

all landscape of these genes with their functional partners and fold change is depicted as a

graph as shown in Fig 11.

We performed extensive literature and database mining to pinpoint the role of 56 candidate

genes obtained from the tissue analysis. We identified an association of 40 genes with obesity

related pathways (S7 Table). The identified genes have shown strong functional association

with obesity and related metabolic disorders. The genes like VEGFA, ELOVL6, JUNB, PIK3R1,

ABCG1, CD69, PTX3, SORL1, BCL2, and VCAM1 are reported with high impact elucidating

its critical role in obesity and related metabolic syndrome. Interestingly, PTX3 is one of the

inflammatory inducers of NF-κB proteins [45]. PTX3 is released in response to inflammation,

and it regulates the immune response in association with NF-κB [46]. The genes are further

interrelated with target genes of NF-κB protein family. About 23 genes were found to be the

target genes of NF-κB protein family [53]. The identified target genes are COL1A1, PIK3R1,

VEGFA, TGM2, VCAM1, FOS, TXNIP, HSPA1A, IRF1, STAT1, GEM, PPP1R13L, IGF1R,

HSP90AA1, TNC, EGR1, JUND, CD69, BCL2, PTX3, JUNB, JUN, and MITF. Except for two

genes (GEM and PP1R13L), all other 21 target proteins were found to be strongly associated

with obesity or obesity related disorders. The genes GEM (GTP-binding protein GEM) and

PPP1R13L (Protein Phosphatase 1 Regulatory Subunit 13 Like) are interesting target genes of

NF-κB as they can act as novel targets for obesity or related syndrome. Twenty one target

genes of NF-κB have shown strong association with obesity and the occurrence of GEM and

Fig 6. Gene enrichment. The overall view of gene set enrichment analysis on filtered genes.

https://doi.org/10.1371/journal.pone.0214337.g006
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PPP1R13L with known obesity related genes provides strong evidence to pick them as poten-

tial target genes. Hence, we report 23 genes as the most promising key signatures which are

linked to NF-κB protein family and obesity or related syndrome. A pictorial representation of

the filtering criteria we implemented in this research is represented in Fig 12.

Discussion

Traditional approaches for gene expression exploration are centered on detecting single genes

which show variations among two conditions of interest. Even though it is worthwhile, they

do not identify biological processes, such as metabolic pathways, transcriptional regulations,

and stress reactions that are spread through an entire gene’s network. Network biology is

based on the concept that multifaceted or complex diseases generally do not progress due to

disturbances in a single gene, but rather from alterations in complex pathways involving sev-

eral interactions. Furthermore, biological processes inside our body are directed by the well-

defined organization of protein complexes. In disease conditions, alterations in protein

Fig 7. Top 20 terms of gene set enrichment analysis for the pathways, disease, molecular function and biological process. Genes enriched are more closed to

inflammatory diseases and pathways.

https://doi.org/10.1371/journal.pone.0214337.g007
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Fig 8. The prioritized network developed from control samples (control network) and disease samples (disease network). Control Network and Disease Network

represent significant changes with strong altered connections of network connectivity from normal to obese state. The average connectivity of nodes in the control state is

15.42, and it has decreased to 14.75 in disease state depicts the overall loss in the interaction in obese condition.

https://doi.org/10.1371/journal.pone.0214337.g008

Fig 9. PPI network of control and disease. Genes connecting to the family of NF-κB proteins where pink nodes represent the NF-κB protein family.

https://doi.org/10.1371/journal.pone.0214337.g009
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interaction network may lead to complementary effects through cascading events triggered by

the deregulated protein to other proteins in the interacting network [12]. Network biology

offers a platform to explore the biological and molecular mechanisms that could trigger the

human disease. In this study, we explored the concepts of network biology, gene correlation,

functional similarity and fold change to assess distinct variations related to the expression of

the genes in obesity. We observed substantial alterations in the expression level of each priori-

tized gene in two experimental conditions. Here, it is important to highlight, that the genes pri-

oritized in our approach are highly promising key signatures as they have following properties.

(a) they show distinct variation in gene expression from a control state to disease state, (b)

there is high functional similarity (semantic similarity) among the genes related to NF-κB pro-

tein family and obesity (d) they show distinct variation in functional partners from control to

disease state.

Implementing the computational pipeline, which is detailed in the methods section, we

have narrowed down the number of genes to 40. Out of which 21 target proteins are from the

NF-κB protein family that can act as potential biomarkers in obesity. Also, two promising

genes GEM and PPP1R13L were predicted as novel potential biomarkers of obesity or related

syndrome as they share characteristics of known obesity genes in the prioritized list. We per-

formed extensive literature and database mining to pinpoint the role of these candidate genes

obtained from the overall analysis. The genes like VEGFA, JUNB, PIK3R1, CD69, PTX3, BCL2,

IGF1R and VCAM1 are reported in the literature revealing their significant role in obesity and

related metabolic syndrome. For example, Elias et al., (2013) [54] reports the potential role of

VEGFA in the control of energy metabolism and adipose tissue function and Yu et al., (2016)

[55] describes the association of VCAM1 with obesity and inflammation markers. We devel-

oped a pathway map for the target proteins of NF-κB protein family from functional

Fig 10. The expression and interaction of genes in adipose tissue using GIANT analysis. A) The dense network formed from 68 genes and proteins of the NF-κB

family. B) The decomposed network based on the edge weight of 0.4 and above.

https://doi.org/10.1371/journal.pone.0214337.g010
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enrichment file as shown in Fig 13. The enrichment shows the pathways associated with these

molecules are closely associated with obesity and inflammation. The molecules were involved

in pathways like the NF-kappa B signaling pathway, Cytokine Signaling in Immune system,

Insulin Signaling Pathway, MAPK signaling pathway, Angiogenesis, EGF Signaling Pathway,

Glucocorticoid receptor regulatory network, Toll receptor signaling pathway, AKT Signaling

Pathway, TNF signaling pathway, Focal adhesion, Interleukins signaling pathway, Jak-STAT

signaling pathway and PI3K-Akt signaling pathway. Except for two genes (GEM and

PPP1R13L), all other 21 target proteins were found to be strongly associated with obesity.

Thus, we authenticate the genes identified through our approach are possible potential

Fig 11. Genes connected to NF-κB protein family with their characteristics. A) Genes with their number of functional partners in obese and normal conditions, B) The

fold change of these connected genes to the family of NF-κB proteins.

https://doi.org/10.1371/journal.pone.0214337.g011
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biomarkers of obesity or obesity related disorders. For example, glucocorticoid regulatory net-

work contributes a major role in obesity as they are important hormones in the regulation of

metabolic homeostasis [56]. Asensio et al., (2004) [57] reports that glucocorticoid hormones

regulates the synthesis and discharge of hypothalamic neuropeptides, by inducing autonomic

nervous system mediated processes and urge for excessive food intake. The action of the

hypothalamopituitary-adrenal axis is seemingly raised in human obesity. The NF-κB target

genes IRF1, STAT1, JUN, HSP90AA1, FOS, and EGR1, were enriched in the pathway of Gluco-

corticoid receptor regulatory network and homeostasis pointing towards their critical role in

obesity.

Inflammatory pathways play a crucial role in metabolic disease like obesity. The NF-κB tar-

get genes BCL2, STAT1, JUNB, PIK3R1, VCAM1, HSP90AA1, VEGFA, and FOS, are involved

in the pathway of signaling by interleukins. Similarly, IRF1, BCL2, STAT1, JUNB, PIK3R1,

VCAM1, HSP90AA1, VEGFA, FOS, and EGR1 are involved in cytokine signaling in the immune
system. Insulin signaling and PI3K-Akt signaling pathways are another major pathways which

influence obesity or related syndrome [58, 59]. Insulin is a critical modulator of all phases of

adipocyte biology, and adipocytes are extremely insulin-responsive cell types. Insulin pro-

motes adipocyte triglyceride stores by some mechanisms, including raising the differentiation

of preadipocytes to adipocytes, triggering glucose transport and lipogenesis. The association

among obesity and insulin resistance is seen across all racial groups and is evident across the

full range of body weights. Also, many epidemiologic studies reveal that the risk for diabetes,

and likely insulin resistance, increases as body fat content [4, 14]. The NF-κB target genes

JUN, PIK3R1, FOS, and IGF1R are enriched in the insulin signaling pathway which could con-

tribute to obesity related disorders. Similarly, NF-κB target genes enriched in pathways associ-

ated with obesity or related syndrome. The main pathways include angiogenesis [60] [61],

hypoxia [62] [63], oxidative stress [64], toll-like receptor signaling pathway [65]. The 23 filtered

Fig 12. Pictorial representation of the filtering criteria used in the approach to identify biologically relevant functional nodes connected NF-κB proteins, obesity

and related syndrome. A total of 2650 genes from PPIM was narrowed down to 21 target genes of NF-κB proteins associated with obesity using the filtering criteria

centered on biological insights.

https://doi.org/10.1371/journal.pone.0214337.g012
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genes are correlated in multiple ways like gene pattern, functional similarity, association to

NF-κB protein family and inflammatory inducers and have shown distinct deregulation from

control to a disease state. These genes are also involved in pathways that are leading to obesity

or related syndrome. This result anticipates that the potential properties of identified genes

could be a possible target or biomarker for obesity or related disorders. Further validation

using trials in the wet-lab, in vitro, and in vivo, are proposed to delineate the major impact of

these potential genes in the etiopathogenesis.

Fig 13. The pathway enrichment map. Thepotential target proteins of NF-κB protein family.

https://doi.org/10.1371/journal.pone.0214337.g013
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Conclusions

Overall, our integrative expression data analysis has revealed the molecular interaction net-

work between NF-κB protein and other obesity associated candidate genes in adipose tissues.

One of the interesting highlights of the study is two promising genes GEM, and PPP1R13L
were predicted as novel potential biomarkers of obesity or related syndrome as they share

characteristics of known obesity genes in the prioritized list. We further demonstrated that

NF-kB regulates the inflammation in adipose tissues through several molecular signaling path-

ways like NF-kappa B, PI3K-Akt, Glucocorticoid receptor regulatory network, and Cytokine

Signaling pathways. Our research can be further extended by experimentally validating the

results using in vitro and in vivo approaches which will further help to identify selective thera-

peutic agents. Through this study, we showed how simultaneous protein interaction network-

based approaches could be applied for elucidating functional protein interaction networks of

NF-kB protein in complex diseases with inflammation background.
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