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Abstract
The use of systems-based pharmacological modeling approaches to character-
ize mode-of-action and concentration-effect relationships for drugs on specific 
hemodynamic variables has been demonstrated. Here, we (i) expand a previously 
developed hemodynamic system model through integration of cardiac output 
(CO) with contractility (CTR) using pressure-volume loop theory, and (ii) evalu-
ate the contribution of CO data for identification of system-specific parameters, 
using atenolol as proof-of-concept drug. Previously collected experimental data 
was used to develop the systems model, and included measurements for heart 
rate (HR), CO, mean arterial pressure (MAP), and CTR after administration of 
atenolol (0.3–30 mg/kg) from three in vivo telemetry studies in conscious Beagle 
dogs. The developed cardiovascular (CVS)-contractility systems model adequately 
described the effect of atenolol on HR, CO, dP/dtmax, and MAP dynamics and 
allowed identification of both system-  and drug-specific parameters with good 
precision. Model parameters were structurally identifiable, and the true mode 
of action can be identified properly. Omission of CO data did not lead to a sig-
nificant change in parameter estimates compared to a model that included CO 
data. The newly developed CVS-contractility systems model characterizes short-
term drug effects on CTR, CO, and other hemodynamic variables in an integrated 
and quantitative manner. When the baseline value of total peripheral resistance 
is predefined, CO data was not required to identify drug-  and system-specific 
parameters. Confirmation of the consistency of system-specific parameters via 
inclusion of data for additional drugs and species is warranted. Ultimately, the 
developed model has the potential to be of relevance to support translational CVS 
safety studies.
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INTRODUCTION

Cardiovascular (CVS) safety issues are among the 
major causes of safety-related attrition during drug 
development.1–3 In this context, most attention has been 
given to potentially fatal arrhythmias arising from QT-
prolongation, but non-QT drug effects on hemodynamic 
end points, such as blood pressure or cardiac contractility, 
also represent serious CVS safety issues.4–9 Preclinical in 
vivo telemetry studies are often conducted to identify both 
QT-  and non-QT effects, in which an ascending dose or 
placebo is administered to animals while measuring the 
time course of changes in heart rate (HR), blood pressure, 
cardiac output (CO), and/or contractility (CTR; e.g., dP/
dtmax).

The interpretation of preclinical data from CVS safety 
studies, designed to determine the drug mode-of-action 
and concentration-effect relationship for specific hemo-
dynamic variables, can be challenging due to underlying 
complex homeostasis and feedback inter-relationships. 
Quantitative CVS systems models to characterize the dy-
namics and pharmacokinetic/pharmacodynamic (PK/PD) 
relationships of hemodynamic variables after drug admin-
istration have previously been proposed to address this 
challenge.10,11 A hemodynamic systems model was estab-
lished for eight compounds with diverse modes-of-action 
in rats, here referred to as the “Snelder model.”12,13 This 

model characterized drug effects on the inter-relationship 
among HR, stroke volume (SV), total peripheral resis-
tance (TPR), CO, and mean arterial pressure (MAP). 
Importantly, the Snelder model allows for separation of 
both drug-  and system-specific (e.g., drug-independent) 
parameters. For identification of the system-specific pa-
rameters, invasive and challenging CO measurements 
were required, which limits the integration of this model 
into a translational modeling platform, which would be 
an ultimate goal. Alternatively, measures for CTR, such as 
left ventricular (LV) dP/dtmax, could replace CO, as it can 
be measured more easily using telemetry.14 The dP/dtmax 
is determined by myocardial CTR and the loading condi-
tions on the ventricle, and has been reported to be signifi-
cantly correlated with SV and HR.15 Based on this, and 
expanding on the work from Snelder et al., an adapted 
model was recently published using data from telemetry 
studies in dogs, which replaced CO measurements by CTR 
(dP/dtmax) measurements.16 This model can be used to 
characterize novel compounds’ effects on the CVS system 
in dogs. However, in the absence of a mechanistic basis for 
the inter-relationship among CO, SV, and CTR, the predic-
tive value for other species could be limited.

LV pressure and volume have long been studied with 
pressure-volume (PV) loop theory. A PV loop can be gen-
erated by plotting multiple measurements of LV pressure 
against LV volume in a complete cardiac cycle. In this 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Hemodynamic systems models in rat and dog have been established to character-
ize drug effects on the inter-relationship between key hemodynamic biomarkers, 
such as blood pressure, heart rate, and cardiac output (CO). However, to date, no 
models exist that integrate contractility with hemodynamic variables in a systems 
manner.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can the inter-relationship between contractility and other hemodynamic variable 
be described in a systems manner? Can contractility readouts (dP/dtmax) replace 
CO readouts to identify drug- and system-specific parameters?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A novel cardiovascular (CVS) systems model was developed based on pressure-
volume loop theory using atenolol as proof-of-concept drug. Both systems- and 
drug-specific parameters of this CVS-contractility (CTR) model could be identi-
fied without CO data. Hence, the absence of CO data does not limit the applica-
tion of this model to data from other species.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
It is expected that the incorporation of pressure-volume loop theory will provide 
the mechanistic basis to apply the developed CVS-CTR model for inter-species 
scaling. It has the potential to be integrated into a translational modeling platform 
to support CVS safety evaluations.
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theory, the changes in the end-systolic pressure-volume 
relationship reflect inotropic changes and the influence 
of vascular loading on systolic pressure and flow gener-
ation.17 This provides insight in the myocardial CTR and 
loading conditions of the heart for the hemodynamic 
modeling. As the PV loop theory captures the physiologi-
cal principles of the cardiac cycle, it is uniquely suited as 
a basis for integration of CTR in the Snelder model in a 
system-based manner.

Here, we describe the development of a novel CVS-
CTR systems model, which integrates dP/dtmax with CO, 
and other hemodynamic biomarkers (including HR and 
MAP) based on the principles from PV loop theory, using 
data from multiple dog telemetry studies for the selective 
β1-blocker atenolol as proof-of-concept. We characterized 
the model through identifiability analyses with respect to 
drug- and system-specific parameters, performed external 
validation studies, and investigated if dP/dtmax can replace 
CO for the identification of system-specific parameters.

METHODS

Experimental data

We obtained data from three in vivo telemetry studies 
conducted at or on behalf of different pharmaceutical 
companies in conscious Beagle dogs, which were 
administered increasing doses of atenolol (0.3–30  mg/kg) 
or placebo with washout periods in between treatments 
(Table 1). Each study was conducted according to company-
specific standard procedures. In each study, several CVS 
hemodynamic variables were measured over time for a 
period of 6 to 24 h. In this analysis, we only used time course 
measurements for MAP, HR, CO, and LV dP/dtmax. Data from 
studies 1 and 2 were used for model development, whereas 
data from study 3 were used for external validation. The 
data from studies 1 and 3 were obtained after administration 
of control compounds as part of earlier drug development 
programs, and have not been previously published.16 The 
animals and experimental procedures are described for each 
respective study in the Supplementary Materials.

Pharmacokinetic model

Because PK was not measured in the experimental stud-
ies, we utilized a previously published PK model to pre-
dict drug plasma concentrations over time. The model 
was a three-compartment model with first-order absorp-
tion and elimination,16,18 and the following PK parame-
ters: Ka = 1.13 h−1, CL = 3.35 L/(kg*h), V2 = 4.05 L/kg,  
Q2 = 8.85 L/(kg*h), V3 = 3.74 L/kg, Q3 = 5.73 L/(kg*h), T
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V4 = 11.9 L/kg, and F1 = 0.783. The predicted concentra-
tions in the central compartment were directly linked to 
the drug effects.

Relationship between hemodynamic  
variables

We defined relationships between the hemodynamic 
variables used in the systems modeling framework as 
follows: MAP was described as a product of CO and TPR 
based on Ohm’s law, and CO was the product of HR and 
SV (Equation 1)

SV was defined further as:

To describe the inter-relationship between SV and 
CTR, we considered the LV PV loop theory.19 There are 
two key linear relationships in PV loops (Figure 1). Line 
EA (Figure  1) represents the afterload relationship with 
the slope as arterial elastance (EA) (Equation 3)

where EA is the product of HR and TPR (Equation 4).

Line ESPVR (Figure  1) represents the end-systolic 
pressure-volume relationship, which depends on CTR,17 
and is defined as follows in relation to CTR:

Here, V0 is the x-axis intercept of ESPVR, or the 
minimum volume required to get pressure in the LV. 
Equations 3 and 5 were solved to obtain the following re-
lationship for ESV (Equation 6):

dP/dtmax is used in this study as indicator of myocardial CTR, 
which depends on end diastolic volume (EDV; preload) and 
duration of isovolumetric contraction (TIC).14,20 Therefore, 
we defined the variable CTR measurements (CTRM), which 
reflects for dP/dtmax measurements (Equation 7), as follows:

For a typical young Beagle dog (27 months) a TIC of 
0.256 s was reported.21

Model structure

The CVS system is regulated via various control mecha-
nisms, such as the baroreflex system and the renin-
angiotensin system.22 To account for these negative 
feedback mechanisms, and to allow for the inclusion of 
drug effects into the model, the dynamics of HR, EDV, TPR, 
and CTR were described by a set of four differential equa-
tions, which were linked via negative feedback through 
MAP (Equation 8), similar to the Snelder model.12,13

(1)MAP=CO ⋅TPR

CO=HR ⋅SV

(2)SV = EDV ⋅ ESV

(3)LineEA: PA = (EDV − ESV) ⋅ EA

(4)EA = HR ⋅ TPR

(5)LineESPVR: PA = (ESV − V0) ⋅ CTR

(6)ESV =
EDV ⋅ EA + V0 ⋅ CTR

EA + CTR

(7)CTRM = CTR ⋅

EDV

TIC

dHR

dt
= kinHR ⋅ (1 − FB ⋅MAP) − koutHR ⋅HR

dEDV

dt
= kinEDV − koutEDV ⋅ EDV

F I G U R E  1   Quantitative inter-relationships in left ventricle 
(LV) pressure-volume loop. (1) Red dashed line 1: the afterload 
relationship. The slope equals the arterial elastance (EA), which 
is the product of heart rate (HR) and total peripheral resistance 
(TPR). Its x-axis intercept is end diastolic volume (EDV); (2) Blue 
dashed line 2: the end-systolic pressure-volume relationship 
(ESPVR) with the slope contractility (CTR) and x-axis intercept of 
V0, which is the minimum volume needed to get pressure in left 
ventricle; PA: the pressure at the intersection point A of line 1 and 
line 2, when aortic valve closes in a single cardiac cycle; SV: stroke 
volume, the difference between EDV and end systolic volume 
(ESV)
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Here, FB is the feedback effect parameter through 
MAP to all the three primary parameters. The system was 
forced to be in steady-state, or dynamic equilibrium, be-
fore drug administration, which means HR, EDV, TPR, 
and CTR do not change over time and equal their baseline 
(BSL) values. Therefore, the production rates of HR, EDV, 
TPR, and CTR can be expressed in terms of baseline and 
kout as follows:

Circadian rhythms in hemodynamic  
variables

Three cosine functions were defined as follows to model 
the circadian rhythm in HR, TPR, and CTR (CRHR, 
CRTPR, and CRCTR) influencing kinHR, kinTPR, and kinCTR, 
respectively:

Here, amp refers to amplitude and hor is the horizontal 
displacement. We tested periods of 8, 12, and 24  h, and 
identified the optimal period for each variable. The system 
was forced to be in oscillating steady-state at the start of 
pharmacological intervention by shifting the observations 
1 week (determined empirically) in time (i.e., the system 
was initialized at 0 h and the pharmacological interven-
tions started at 168 h).

Modelling of the concentration-effect 
relationship

Concentration-effect relationships were evaluated using 
maximum effect (Emax) models.

Here, EFF represents the drug effect at concentration C, 
Emax is the maximum effect constant, and EC50 is the con-
centration constant at which half of the maximum effect is 
achieved. Based on literature values for the binding affin-
ity (KD) of atenolol to the β1-  and β2-adrenoceptors from 
Baker et al.,23 we fixed the EC50 for the effects on HR and 
CTR, which are mediated through the β1-adrenoceptors, to 
58.3 ng/ml and the EC50 for the effect on TPR, which is me-
diated through the β2-adrenoceptor, to 272.5 ng/ml.

Incorporation of drug effects in the 
systems model

The complete model consisted of a combination of 
Equations 1–11 and the following differential equations:

Structural identifiability analysis

A structural identifiability analysis was performed to 
verify whether the model parameters could be estimated 
from experimental data. Structural identifiability of the 
model was evaluated using the MATLAB toolbox GenSSI 
2.0, which is a MATLAB toolbox together with MATLAB 
(version R2020a).24 We implemented simultaneously 
two different drug effects, namely, EFFHR and EFFCTR, 
to influence the production rate kin of HR and CTR, re-
spectively. At the same time, we applied three different 
circadian rhythms (i.e., CRHR, CRTPR, CRCTR), to influence 

(8)dTPR

dt
= kinTPR ⋅ (1 − FB ⋅MAP) − koutTPR ⋅ TPR

dCTR

dt
= kinCTR ⋅ (1 − FB ⋅MAP) − koutCTR ⋅ CTR

kinHR =
koutHR ⋅ BSLHR
1 − FB ⋅ BSLMAP

kinEDV = koutEDV ⋅ BSLEDV

(9)kinTPR =
koutTPR ⋅ BSLTPR
1 − FB ⋅ BSLMAP

kinCTR =
koutCTR ⋅ BSLCTR
1 − FB ⋅ BSLMAP

CRHR(t) =ampHR ⋅cos

(

2π ⋅
t+horHR

24

)

CRCTR(t) = ampCTR ⋅ cos

(

2π ⋅
t + horCTR

24

)

(10)CRTPR(t) =ampTPR ⋅cos

(

2π ⋅
t+horTPR

8

)

(11)Emaxmodel: EFF (C) =
Emax ⋅ C

EC50 + C

dHR

dt
=kinHR ⋅ (1−FB ⋅MAP) ⋅

(

1−EFFHR
)

⋅

(

1+CRHR
)

−koutHR ⋅HR

dEDV

dt
= kinEDV − koutEDV ⋅ EDV

dTPR

dt
=kinTPR ⋅ (1−FB ⋅MAP) ⋅

(

1−EFFTPR
)

⋅ (1+CRTPR)

−koutTPR ⋅TPR

(12)

dCTR

dt
=kinCTR ⋅ (1−FB ⋅MAP) ⋅

(

1−EFFCTR
)

⋅

(

1+CRCTR
)

−koutCTR ⋅CTR



      |  645MODELING HEMODYNAMIC DRUG EFFECTS

the production rate of HR, TPR, and CTR, respectively. We 
verified the structural identifiability of the model for two 
different sets of observable outputs, namely HR, CTRM, 
CO, and MAP and HR, CTRM, and MAP.

Model estimation and development

The data from studies 1 and 2 were simultaneously 
analyzed using a nonlinear mixed-effects modeling 
approach implemented in NONMEM (version 7.4.3, Icon 
Development Solutions, Ellicott, MD) with Perl speak to 
NONMEM toolkit (PsN, version 4.8.1, Uppsala University, 
Sweden). First order linear conditional estimation 
method with interaction was used for model estimation. 
Interindividual variability (IIV) on BSLHR, BSLTPR and 
BSLCTRM were evaluated using log-normal distributions. 
Exponential, additional, proportional, and combined error 
models were evaluated for residual error variability. A 
decrease of 3.84 (corresponding to p < 0.05 in a chi-squared 
distribution with degree of freedom = 1) in the objective 
function value (OFV) by adding an additional parameter 
between nested models was considered statistically 
significant. The baseline parameters for HR, CTRM, and 
TPR were estimated together with V0, while ensuring that 
these parameters remain positive during the estimation.

Relevance of the CO data

To investigate the importance of CO data in the estimation, 
the final model was fitted to a dataset without CO readouts. 
In the absence of remaining informative data, the circadian 
rhythm (CRTPR) and IIV on BSLTPR were omitted from the 
model and BSLTPR was fixed to 0.0743  mmHg*ml/min, 
which was the estimate in the final model. Fixing this 
parameter was required to avoid over-parameterization.

Model evaluation

Visual predictive checks (VPC) with 1000 samples and 
goodness-of-fit plots (GOF) were conducted to evaluate 
the predictive performance of the final model.25 External 
validation consisted of comparing the model prediction 
(95% prediction interval using the final model) with 
hemodynamic observations from study 3.

External validation

The external validation was conducted based on the data 
from study 3. A VPC was performed to predict the effect 

of atenolol on the hemodynamic markers as detailed here 
above. All the system-specific parameters were assumed 
the same as the final estimates from study 1.

Identification of the right site of action of 
compounds given the data

Stochastic simulations and re-estimation (SSE) using PsN 
toolkit in conjunction with NONMEM were conducted 
to investigate if the model can be used to identify the 
mode of action of new drugs. We simulated three types of 
models with drug effects on HR, CTR, or TPR, defined as 
the original models in this analysis. Subsequently, we re-
estimated the parameters on the simulated datasets using 
models with drug effects on HR, CTR, or TPR and no drug 
effect, defined as the alternative models in this analysis. 
The simulation scenarios included three combinations of 
measurements at rich timepoints for (i) HR, dPdtmax, CO, 
and MAP; (ii) HR, dPdtmax, and MAP; and (iii) HR and 
MAP. The parameter values used in the simulation steps 
were fixed to the final estimates from previous model 
fitting. The difference in OFV (dOFV) between drug 
effect models and no drug effect models was calculated 
to compare the performance of the models with different 
sites of action.

Simulations to illustrate the properties  
of the CVS system

To illustrate the properties of the system for drugs with 
a primary effect on HR, CTR, or TPR, simulations were 
performed using the final model (Equations  1–11). The 
values of system-specific parameters in the simulation were 
fixed to the final estimates obtained from the final model, and 
hypotheses of both negative and positive effects (reflecting 
different mechanisms of action [MOA]) were tested.

RESULTS

Structural identifiability analysis

The structural identifiability analysis showed that the pro-
posed model is at least locally identifiable for both sets of 
observable outputs (HR, CTRM, CO, and MAP and HR, 
CTRM, and MAP), indicating the possibility of estimating 
parameter values from experimental data. The difference 
between the two sets of observable variables is that when 
CO is measured all baseline parameters (i.e., BSLCTRM, 
BSLHR, BSLTPR, and V0) are globally identifiable indicating 
that they can be uniquely determined, whereas when no 
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CO data are available BSLTPR and V0 are only locally iden-
tifiable indicating that more than one solution is possible.

Model development and evaluation

Data from studies 1 and 2 were adequately described by 
the final CVS-CTR model (Figure  2 and Equations  1–
11) as can be seen in the VPC (Figure 3) and GOF plots 
(Figures  S1–S4). All parameter could be estimated 
precisely, with relative standard errors less than 50% 
(Table  2). The concentration-effect relationships were 
best described by Emax models. The EC50 for HR and CTR 
was fixed to the reported KD of 58.3 ng/ml for binding of 
atenolol to the β1 receptor.23 Emax for the effect on HR and 
CTR was estimated to be 0.415 and 0.422, respectively. An 
Emax model was added for a positive effect on TPR with the 
EC50 fixed to 272.5 ng/ml.23 However, as the final estimate 
of Emax for TPR approached zero, and the OFV did not 
decrease significantly (3.84, p < 0.05), this additional drug 
effect was rejected. Overall, the final model was structured 
with inhibiting effects on both HR and CTR.

The rate constants KoutHR, KoutCTR, KoutTPR, and KoutEDV 
were initially estimated separately and did not differ 
significantly. As the OFV did not increase significantly 
(p < 0.05) after estimating the same Kout for all four bio-
markers, these four parameters were lumped into one pa-
rameter (Kout). Because CO was not measured in study 2, 
the typical values of BSLTPR were assumed valid for both 

studies. The other baseline parameters differed between 
the two studies, with a 3.12% higher BSLHR and 8.42% 
higher V0 for study 1 as compared to study 2, whereas 
BSLCTRM for study 1 was 55.94% higher than for study 2. 
BSLSV, BSLCO, and BSLMAP were derived from these pa-
rameters, resulting in higher BSLSV, BSLCO, and BSLMAP 
for study 1 as compared with study 2. The amplitude pa-
rameters ampHR, ampCTR, and ampTPR, could not be distin-
guished and were estimated to be 0.0931 for study 1 and 
0.168 for study 2.

The IIV was estimated on the baseline parameters 
BSLHR, V0, BSLCTRM, and BSLTPR, and covariance was es-
timated between ETA_BSLHR and ETA_V0, and between 
ETA_BSLCTRM and ETA_BSLTPR. The residual errors on 
HR and dP/dtmax were best described by exponential re-
sidual error models with lower RSEs compared to addi-
tive, proportional, and combined residual error models. 
The residual error of TPR was very small and, therefore, 
it was fixed to 0.

Evaluation of the relevance of the CO data

Fitting the CVS-CTR model to a dataset from which 
the CO data were omitted did not result in a significant 
change in parameter estimates; almost all estimates were 
within the 95% confidence interval (CI) of the parameters 
of the final model fitted to the complete dataset including 
CO data (Table  2). The only parameter outside the 95% 

F I G U R E  2   CVS-contractility model structure to characterize drug effects on the cardiovascular systems. HR, heart rate; CTR, contractility; 
CTRM, contractility measurements variable for dP/dtmax; TPR, total peripheral resistance; MAP, mean arterial pressure; CO, cardiac output; 
SV, stroke volume; ESV, end-systolic volume; EDV, end-diastolic volume; EA, arterial elastance. HR, TPR, and CTR are regulated by negative 
feedback through MAP, where FB represents the magnitude of feedback on HR, TPR, and CTR. Effects on HR, CTR, EDV, and TPR are 
described by four linked turnover equations, in which kinHR, kinEDV, kinTPR, and kinCTR represent the zero-order production rate constants, and 
koutHR, koutEDV, koutTPR, and koutCTR represent the first-order degradation rate constants of HR, EDV, TPR, and CTR, respectively. CTRM is the 
variable for dP/dtmax, which is influenced by CTR and EDV. The inter-relationships between ESV, EDV, EA, and CTR are illustrated in Figure 1. 
Potential drug effect cites are indicated in orange. Hemodynamic variables which can be observed are indicated in light blue
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CI, IIV on BSLHR, was also close to the lower boundary of 
95% CI and would not significantly influence the model 
prediction.

External validation

The external validation for study 3 (Figure  S5) showed 
that in general the validatory data were reasonably well-
predicted. However, the model slightly underpredicted 
the effect on dP/dtmax in the 3 mg/kg dose group, possibly 
reflecting interstudy variability.

Identification of the right site of action of 
compounds given the data

In the SSE analysis, the models with the “correct” MOA 
showed the highest reduction in OFV for all three 
simulation scenarios (Figure 4). With decreasing numbers 
of observations, the difference of “correct” and “incorrect” 
models in OFV gradually shrank. Especially, when re-
estimating the parameters on the HR/MAP data from 
the model with the original effect on CTR, the dOFV for 
“incorrect” and “correct” models was quite close.

Simulations to illustrate the properties  
of the CVS system

In the simulations of drug effects with different MOAs, there 
were noticeable differences between the signature profiles 
of HR, dP/dtmax, CO, TPR, and MAP. As shown in Figure 5, 
inhibition of HR, CTR, or TPR always lead to a drop in MAP 
indicating that the magnitude of negative feedback from 
MAP is lower than the primary effect. Similarly, the positive 
effects on HR, CTR, or TPR resulted in an increase in MAP, 
as shown in Figure  S6. The site of action of a compound 
with unknown MOA can be derived from the combination 
of the direction of the effects on MAP, HR, and CTR.

DISCUSSION

We describe the development of a novel CVS-CTR systems 
model to characterize drug effects on the inter-relationship 

among CTR and CO, MAP, HR, TPR, SV, ESV, and EDV. 
The proposed model was based on a previously developed 
CVS model by Snelder et al.,12,13 which captures the inter-
relationship between CO, MAP, HR, TPR, and SV. To date, 
no mechanistic models exist that integrate CTR with the 
other mentioned hemodynamic variables, except for a 
model that was recently published by Venkatasubramanian 
et al.16 This model describes SV as a function of CTR and 
HR, to account for the effect of lowering SV due to shorter 
filling time with increased HR during diastole, and was 
successfully applied to characterize drug effects on the 
hemodynamic system in dogs. Although the relationship 
between SV, CTR, and HR has a mechanistic basis, the pro-
posed model is not truly mechanistic, as it does not account 
for the effect of afterload/TPR on the ability of the ventricle 
to eject blood, altering ESV and SV. PV-loop theory does 
cover these aspects.17 Hence, we based our model on this 
theory. Better capturing the physiology of the CVS sys-
tem via PV-loop theory allows for improved separation of 
system-specific and drug-specific parameters, which is cru-
cial to understand variation between species.26 Therefore, 
the developed CVS-CTR model is the first systems model 
that integrates CTR with other key hemodynamic vari-
ables. By fitting the CVS-CTR systems model to a dataset 
that did not include CO data, we showed that CTR data 
can replace CO data. The absence of CO data does not limit 
the application of this model to data from other species, 
which facilitates the development of a translational mod-
eling platform.

The developed CVS-CTR model adequately described 
the effect of atenolol on the inter-relationship between CTR 
and the other hemodynamic variables. Atenolol was selected 
as a proof-of-concept compound because it is widely used, 
and its hemodynamic effects are well-investigated. To iden-
tify the system-specific parameters in the best possible way, 
we fixed the EC50 for the effects of atenolol on HR and CTR 
to literature (KD) values. Although the EC50 is a lumped pa-
rameter for binding to the receptor and signal transduction, 
we assumed that the EC50 could be fixed to the reported KD. 
To evaluate if these KDs were covered by the exposures in 
the dog studies we simulated the atenolol PK profiles fol-
lowing single oral doses of 0.3, 1, 3, 10, or 30 mg/kg atenolol 
(Figure S7). Simulated concentrations after doses of 0.3 and 
1 mg/kg did not reach the KD of β1-adrenoceptors, which 
is in line with the weak drug effect observed in these low-
dose groups. Moreover, at high doses of 10 and 30 mg/kg, 

F I G U R E  3   Visual predictive check for the final model. (a) Study 1 data following administration of placebo, 3 mg/kg, 10 mg/kg, and 
30 mg/kg atenolol. (b) Study 2 data following administration of placebo, 1 mg/kg, 3 mg/kg, and 10 mg/kg atenolol. The grey points and 
grey lines represent the observed data for biomarkers of HR, dP/dtmax, CO, and MAP. The black lines represent the median of the observed 
data for each biomarker. The shaded blue areas represent the 95% CI of the median of the predictions. CI, confidence interval; CO, cardiac 
output; HR, heart rate; MAP, mean arterial pressure
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only peak concentrations were above the KD for binding 
to β2-adrenoceptors, which is in line with the finding that 
adding a positive drug effect on TPR did not significantly 
improve the description of the data. Overall, our assumed 

EC50 seems justified, as the CVS effects of atenolol could be 
adequately described by a combination of primary inhibi-
tory effects on both HR and CTR, which corresponds well 
with its high affinity for β1-adrenoceptors. By comparing 

T A B L E  2   The system- and drug-specific parameter values from the CVS-contractility model fitted to a dataset including CO data (final 
model) and a dataset from which the CO data were omitted (model without CO data)

Parameter

Final model Model without 
CO data

Value (RSE) 95% CI Value (RSE)

System-specific parameters

BSLHR_1 (beats*min−1) Baseline of HR for study 1 79.4 (5.78%) 70.4–88.3 78.4 (4.69%)

V0_1 (ml) V0 for study 1 9.92 (9.81%) 8.02–11.8 10.1 (11.0%)

BSLCTRM_1 (mmHg/s) Baseline of dP/dtmax for study 1 3777 (7.59%) 3215–4338 3652 (9.04%)

BSLHR_2 (beats*min−1) Baseline of HR for study 2 77.0 (2.63%) 73.0–81.0 76.4 (2.73%)

V0_2 (ml) V0 for study 2 9.15 (9.62%) 7.42–10.9 8.55 (4.76%)

BSLCTRM_2 (mmHg/s) Baseline of dP/dtmax for study 2 2422 (7.50%) 2067–2779 2480 (7.70%)

BSLTPR (mmHg*min/ml) Baseline of TPR 0.0743 (4.55%) 0.0677–0.0810 0.0743 FIX

BSLEDV (ml) Baseline of EDV 31.13 FIX 31.13 FIX

Kout
a (h−1) Degradation rate 0.830 (21.8%) 0.475–1.18 1.07 (22.9%)

FB (mmHg−1) Feedback effect 0.00558 (12.5%) 0.00422–0.00694 0.00589 (27.9%)

Circadian Rhythm

Amp_1b Amplitude for study 1 0.0931 (41.3%) 0.0178–0.168 0.0775 (48.1%)

HorHR_1 Horizontal displacement of HR 7.86 (28.7%) 3.43–12.3 6.33 (17.8%)

HorCTR_1 Horizontal displacement of 
CTR

9.82 (18.9%) 6.19–13.5 8.57 (16.6%)

Amp_2 Amplitude for study 2 0.168 (13.6%) 0.123–0.213 0.172 (22.6%)

HorHR_2 Horizontal displacement of HR 19.4 (1.60%) 18.8–20.1 19.5 (1.99%)

HorCTR_2 Horizontal displacement of 
CTR

21.8 (1.84%) 21.0–22.6 21.8 (2.84%)

HorTPR Horizontal displacement of 
TPR

6.33 (1.96%) 6.09–6.58 0 FIX

Drug-specific parameters

EC50 HR and EC50 CTR (ng/ml) EC50 on HR and CTR 58.3 FIX FIX

EmaxHR Emax on HR 0.415 (11.6%) 0.321–0.510 0.402 (18.0%)

EmaxCTR Emax on CTR 0.422 (9.56%) 0.343–0.501 0.421 (14.8%)

Interindividual variability

BSLHR (CV%) 6.08 (24.2%) 4.41–7.39 3.89 (45.0%)

BSLCTRM (CV%) 16.58 (34.2%) 9.47–21.52 16.99 (33.5%)

BSLTPR (CV%) 6.48 (29.6%) 4.2–8.15 0 FIX

BSLCTRM X BSLTPR (CV%) 8.88 (30.9%) 5.57–11.26 0 FIX

Residual variability

Res. ErrorHR (CV%) 11.53 (12.7%) 9.98–12.9 11.37 (11.9%)

Res. ErrordPdtmax (CV%) 10.43 (13.6%) 8.93–11.74 10.26 (13.6%)

Abbreviations: CI, confidence interval; CO, cardiac output; CVS, cardiovascular; EC50, half-maximal effective concentration; EDV, end diastolic volume; Emax, 
maximum effect; HR, heart rate; RSE, relative standard error; TPR, total peripheral resistance.
aKoutHR = KoutCTR = KoutTPR = KoutEDV = Kout.
bAmpHR = AmpCTR = AmpTPR = Amp, Amp_1 and Amp_2 are the amplitudes of circadian rhythm for studies 1 and 2 respectively, and for TPR the Amp and 
Hor were assumed to be the same as in study 1.
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the value of amplitude and Emax parameters, it was found 
that the magnitude of circadian rhythm is approximately 
three to four times lower than the maximum drug effect. 
In addition, in the current analysis we have fixed KoutCTR, 
KoutTPR, and KoutEDV to the same value as KoutHR, as these 
parameters could not be estimated independently. Identical 
Kout values could be biologically plausible because all vari-
ables studied are influenced by feedback through the baro-
reflex system.27 To confirm this, our model should be fitted 
to data for additional drugs with diverse mode of action in 
the future.

In our experimental data, a drop was observed in both 
HR and CTR after administration of atenolol. Therefore, 
we assumed that the primary drug effect is on both HR 
and CTR, which is in line with the MOA of β1-blockers. 
This assumption was challenged by forward inclusion and 
backward exclusion during the model estimation. An in-
crease in HR leads to an increase in the force of contraction 
generated by the myocardial cells through the Bowditch 
effect, which indicates that CTR can be regulated by HR.28 
This phenomenon is associated with calcium ion handling 
and mishandling in cardiac cells.28 However, this path-
way was not included in our current model structure as 
it could not be distinguished from the effect atenolol on 
both HR and CTR. In future research, we will consider to 
introduce this regulation on CTR by HR in the model, if 

a similar behavior pattern of HR and CTR is observed for 
other compounds with different MOAs as well.

The developed model incorporates EDV as a key vari-
able. As the available data did not contain any information 
to estimate baseline EDV, this parameter had to be fixed to 
a reported literature value to avoid over-parameterization.29 
Importantly, although EDV does not currently impact 
model predictions, its inclusion was considered necessary 
to allow future application, for example, compounds with 
a primary drug effect on EDV. Dynamics of EDV may be 
further evaluated in future work if data for drugs with a 
known effect on SV would be available, and the necessity to 
estimate a different Kout for EDV could then be investigated.

In the MOA-identification analyses, the site of action 
of new compounds could be identified correctly with three 
combinations of observations: (1) HR, CO, dP/dtmax, and 
MAP; (2) HR, dP/dtmax, and MAP; and (3) HR and MAP. 
This implies that CO readouts are not needed for identifica-
tion of the site of action of compounds in the SSE analyses. 
In the simulations to illustrate the system properties after 
simulating drug effects on HR, CTR, and TPR, there are no-
ticeable differences in the behavior of HR, dP/dtmax, TPR, 
CO, and MAP (Figure 5 and Figure S5). This indicates that 
the site of action of new compounds can be distinguished by 
comparing the direction of effect on HR, dP/dtmax, and MAP. 
Because the negative feedback effect is always lower than the 

F I G U R E  4   Identification of the 
site of action of compounds with effects 
on HR, CTR, or TPR. The y-axis shows 
the delta objective function value of the 
re-estimated models compared to a model 
with no drug effect. The red bars are 
incorrect alternative models, which do not 
match the original model, and the green 
bars are correct alternative models, which 
match the original model. The SD bars 
represent the standard error around the 
mean value. CTR, contractility; HR, heart 
rate; MAP, mean arterial pressure; TPR, 
total peripheral resistance
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primary effect, the primary site of action is the biomarker 
with the same direction of effect as the effect on MAP. Thus, 
we anticipate that the model can be used to identify the site 
of new compounds with a single site of action, for which 
the mechanism underlying CVS effect is unclear. For more 
complex MOAs with more than one primary site of action, 
different assumptions will need to be evaluated.

CONCLUSION

We successfully developed a novel CVS-CTR model to 
characterize drug effects on the inter-relationship be-
tween CTR and other key hemodynamic variables based 
on pressure-volume loop theory. Through fitting our 
model to data from telemetry studies of experimental 
compounds, our model can support the identification and 
quantification of the mode of action on key hemodynamic 

end points. We expect that the incorporation of PV-loop 
theory will provide mechanistic basis that could be of 
relevance when applying this model for interspecies scal-
ing. Key hurdles in this extrapolation may, for instance, 
be differences in homeostatic feedback mechanisms and 
set points. Future studies may focus on applying the de-
veloped model to additional compounds in different spe-
cies to confirm consistency of system-specific parameters 
and scalability toward other species, and to potentially 
study how disease state or exercise will influence hemo-
dynamic responses.
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F I G U R E  5   Signature profiles following administration of 30 mg of a hypothetical compound with negative effect on HR (panel a), CTR 
(panel b), and TPR (panel c), respectively. The red lines represent a decrease the biomarkers after pharmacological intervention. The green 
lines represent an increase in the biomarkers after pharmacological intervention. CO, cardiac output; CTR, contractility; HR, heart rate; 
MAP, mean arterial pressure; TPR, total peripheral resistance
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