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Magnetohydrodynamic nanofluid 
radiative thermal behavior by 
means of Darcy law inside a porous 
media
Trung Nguyen-Thoi   1,2, M. Sheikholeslami3,4, Zahir Shah   5,6, Poom Kumam   6,7,8 & 
Ahmad Shafee9

Radiative nanomaterial thermal behavior within a permeable closed zone with elliptic hot source 
is simulated. Darcy law is selected for simulating permeable media in existence of magnetic forces. 
Contour plots for various buoyancy, Hartmann numbers and radiation parameter were illustrated. 
Carrier fluid is Al2O3-water with different shapes. Outputs prove that conduction mode augments with 
enhance of Ha. Nu augments with considering radiation source term.

Transport processes of nanofluid through medium with porosity have been a challenging study in recent times 
because of its immense applications in geothermal operations, thermal insulations, food processing, and other 
petrochemical applications. Modeling of nanomaterial flow with imposing Lorentz forces was scrutinized by 
Yadav et al.1 and buoyancy force was involved in governing PDEs. A survey present in the literature has shown 
that thermal properties of nanofluids are better than the usual fluids. Results available have shown that heating 
properties of solid is larger than liquid. The thermal conductivity engine oil and H2 O are thousand times lower 
than that of copper (Cu). Some preliminary experiments on Cu−water suspended nanoparticles are performed 
by Eastman et al.2. In the augmentation of heat transmission, Khanafer et al.3 obtained some interesting results 
by utilizing nanofluids. The problem studied by Qiang4 studied experimentally for copper based water nanofluid 
and obtained some interesting results. More detail on the investigation of heat transmission with nanofluids can 
be found in5–10. CuO-water based nanofluid inside absorptive medium in the actuality of magnetic force with 
Brownian motion is performed by Sheikholeslami11. MHD fluid flow was portrayed by Raju et al.12 over a cone. 
Kolsi et al.13 employed moved fin to control nanofluid migration through a channel. Different applications of 
Fe3O4-water nanofluid were categorized by Sheikholeslami and Rokni14. Haq et al.15 utilized carbon nanotubes 
with slip flow to improve convective heat transfer.

Nanomaterial flow has received considerable attention from many scientists due to its large uses in engineer-
ing16–18. Plasma studies and aerodynamics are some practical examples of such flows of radiation mechanism. 
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Radiation is often encountered in frequent engineering problems. Keeping in view its applications Sheikholeslami 
et al.19–23 presented the application of nanomaterial in various domains. Some recent publications about heat 
transfer can be found in24–32. To preserve the conduction of about fluid low, nano liquids have been recommended 
in past ages. Influence electric field on ferrofluid inside a tank with dual adaptable surfaces was demonstrated 
by Sheikholeslami et al.33. The investigation of nanofluid with magnetic forces with physical effects and applica-
tions can studied from34–36. Turbulator effect on swirling nanofluid flow was examined by Sheikholeslami et al.37. 
Utilizing such tools make the flow more complex. New model was introduced by Yadav et al.38 for thermal insta-
bility. Furthermore, instability of thermal treatment of nanomaterial within a penetrable zone was exemplified by 
Yadav et al.39. They considered variation of nanomaterial viscosity in their simulation. Viscous heating effect on 
nanomaterial radiative behavior in existence of electric field was scrutinized by Daniel et al.40. In addition, they 
considered double stratification with magnetic field. Nanomaterial free convection with double-diffusive was 
scrutinized by Yadav et al.41 involving rotation system. Permeable plate with considering radiative impact was 
modeled by Daniel et al.42. They imposed Lorentz forces and utilized HAM to solve the problem. Nanomaterial 
exergy loss with implementation of innovative approach was established by Sheikholeslami43. He is expert in this 
field and shows the approach applications in appearance of magnetic field. Entropy production during transient 
nanomaterial MHD flow was demonstrated by Daniel et al.44. They derived governing equations with considering 
electric field effect. Developments on numerical approach for simulating treatment of nanomaterial were pre-
sented in different publications45–51.

In current study, effects magnetic force and radiation on migration of nanofluid inside a porous medium was 
illustrated. CVFEM is considered as tool for showing roles of Rd, Ra, & Ha on performance.

Problem Explanation
The shape of enclosure and its boundary conditions have been demonstrated in Fig. 1. Furthermore, example 
element was demonstrated. Uniform q″ was imposed on inner wall. Unchanging magnetic field impact on nano-
material flow style is surveyed. Porous domain has been full of H2O based nanofluid.

Governing equations and CVFEM.  Free convection and radiation impacts on migration of nanofluid 
inside a penetrable media were pretend under the effect of Lorentz forces. Considering Darcy model, final for-
mulations can be written as:

Figure 1.  Current porous zone under the impact of magnetic field and sample element.

https://doi.org/10.1038/s41598-019-49269-9


3Scientific Reports |         (2019) 9:12765  | https://doi.org/10.1038/s41598-019-49269-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

μ
σ γ

γ γ
∂
∂

= − +






− + 





P
x K

u B u
v

(sin )
(sin ) (cos ) (1)

nf
nf0

2
2

∂
∂

+
∂
∂

=
v
y

u
x

0
(2)

μ
ρ β γ γ γ σ∂

∂
= − + − + −

P
y K

v T T g B u v( ) (cos )[(sin ) (cos )]
(3)

nf
c nf nf nf0

2

ρ
ρ

σ
β






∂
∂

+
∂
∂






= −
∂

∂
+





∂
∂

+
∂
∂










 ≅ − = −

∂
∂







−( )v T
y

u T
x C

q
y

T
x

T
y

C k

T T T T q T
y

1
( )

,

4 3 , 4
3 (4)

p nf

r
p nf nf

c c r
e

R

2

2

2

2
1

4 3 4
4

Characteristics of nanofluid have following formulas:
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μnf & knf are represented the Brownian motion forces functions and function of shape factor as mentioned in52:

Nuave Mesh

2.923911 51 × 151

2.927703 61 × 181

2.931546 71 × 211

2.934301 81 × 241

2.938154 91 × 271

Table 1.  Mesh study for case of Ra = 600, φ = 0.04 Rd = 0.8, Ha = 20.

Figure 2.  Verification with Khanafer et al.3 for φ = 0.1, Gr = 104 and = . −Cu WaterPr 6 2( ).
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Shape

Ha

20 0

Cylinder 2.887839 5.886044

Platelet 2.931546 5.9168

Spherical 2.800245 5.826297

Brick 2.834335 5.849228

Table 2.  Impact of “m” on Nuave when Ra = 600, φ = 0.04 Rd = 0.8.

Figure 3.  Various of flow style with changing φ when =Ra 600, = .Rd 0 8.
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Figure 4.  Outputs for various Ha at =Ra 100, = .Rd 0 8.
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To get the properties of carrier fluid, we utilized alike model used in52. To estimate temperature dependent 
properties, Rokni et al.53,54 provide new formulation.

The following non dimensional variables by using of the stream function and, can be gained:
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Thus, the last equations are:

Figure 5.  Outputs for various Ha at =Ra 200, = .Rd 0 8.
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Important variables can be introduced as:

Figure 6.  Outputs for various Ha at =Ra 600, = .Rd 0 8.
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Inner and outer surfaces have following conditions:
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Simulation technique, grid and verification.  Combine of two influential approaches has been assem-
bled in CVFEM. As explained in ref.33 and shown in Fig. 1(b), such grid is applied in CVFEM. Final equations 
have attainment to values of θ, Ψ by using of Gauss-Seidel technique. Table 1 exhibits the sample for grid man-
agement. This procedure should be done because last result should be immaterial of grid size. Verifications of 
current code for nanofluid convective flow are displayed in Fig. 2 3. These observations show nice accuracy of 
CVFEM code.

Outcome and Discussion
Radiative nanofluid heat transmission through a penetrable enclosure by means of Darcy law was displayed. 
Effects of Brownian motion and shape factor on nanomaterial behavior were examined. CVFEM was applied to 
display the variations of Rayleigh number (R a = 100 to 600), radiation (Rd = 0 → 0.08), Concentration of 
Alumina (φ = 0 to 0.04) and magnetic forces (Ha = 0 to 20). Deviations of Nu respect to m are represented in 
Table 2. Higher value of Nu is described for Platelet shape. Thus, it is designated for more simulations. Role of 
scattering Al2O3 in H2O have exemplified in Fig. 3. It is observed that ψmax  and Nu enhances by diffusing Al2O3. 
Since Lorentz force acting, the impact of φ on isotherms is not important. Impacts of substantial parameters on 
isotherms and streamlines are displayed in Figs 4, 5 and 6. ψmax  rises with increase of buoyancy effect while it 
diminishes with escalation of Ha. Simulations for higher Ra leads to complex shape of isotherm with imposing 
greater buoyancy forces and thermal plume appears. Imposing Lorentz forces make suppress the plume and iso-
therms force to being parallel to each other’s. For better description, below formula was derived and Fig. 7 was 
displayed.

= . + . + . − . + . − .

− . − .

Nu Rd Ra Ha Rd Ra Rd Ha
RaHa Ra

3 05 0 85 0 49 0 7 0 14 0 18
0 47 0 1 (15)

ave
2

Greater values of radiation parameter and Ra lead to thinner boundary layer which indicates greater Nuave. 
Slender thickness of boundary layer was seen with reduce of Hartmann number which proves reduction effect of 
Hartmann number on Nuave.

Conclusions
Imposing Lorenz forces influence on nanomaterial flow by means of Darcy law inside a porous enclosure is 
reported. Shape factor role was involved to predict nanomaterial properties as well as Brownian motion. CVFEM 
modeling was done to find the variations of Lorentz and buoyancy forces and radiation parameter on nanofluid 
thermal characteristic were demonstrated. The concluded points are given as
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•	 Outputs depict that Nu improves with improve of buoyancy force but it decrease with augment of Ha.
•	 Higher value of Nu is described for Platelet shape.
•	 Nu augments with considering radiation source term.
•	 As Ha enhances, the velocity of working fluid decreases.

Figure 7.  Changes in Nuave for various Rd, Ra, Ha.
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