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White matter tract alterations have been consistently described in Alzheimer3s disease (AD). In particular, limbic
fronto-temporal connections, which are critical to episodicmemory function, may degenerate early in the course
of the disease. However the relation betweenwhitematter tract degeneration, hippocampal atrophy and episod-
ic memory impairment at the earliest stages of AD is still unclear. In this magnetic resonance imaging study,
white matter integrity and hippocampal volumes were evaluated in patients with amnestic mild cognitive im-
pairment due to AD (Albert et al., 2011) (n=22) and healthy controls (n=15). Performance in various episodic
memory taskswas also evaluated in each participant. Relative to controls, patients showed a significant reduction
of white matter fractional anisotropy (FA) and increase of radial diffusivity (RD) in the bilateral uncinate fascic-
ulus, parahippocampal cingulum and fornix.Within the patient group, significant intra-hemispheric correlations
were notably found between hippocampal greymatter volume and FA in the uncinate fasciculus, suggesting a re-
lationship between atrophy and disconnection of the hippocampus. Moreover, episodic recognition scores were
relatedwith uncinate fasciculus FA across patients. These results indicate that fronto-hippocampal connectivity is
reduced from the earliest pre-demential stages of AD. Disruption of fronto-hippocampal connections may occur
progressively, in parallel with hippocampal atrophy, andmay specifically contribute to early initial impairment in
episodic memory.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In vivo detection of the earliest physiological changes that occur
in Alzheimer3s disease (AD) is currently the focus of a large body of re-
search. To identify the earliest cerebral biomarkers, imaging results are
reported in patients with amnestic mild cognitive impairment (aMCI).
These patients present with progressive episodic memory deficit and
have a high risk to convert to AD dementia (Petersen et al., 1999). In
aMCI patients relative to age-matched controls, significant medial tem-
poral grey matter (GM) atrophy and hypometabolism at rest have been
consistently reported (De Santi et al., 2001; Du et al., 2004; Jack et al.,
1999; Pengas et al., 2010), coherentwith the earliest neurofibrillary tan-
gle deposition in the hippocampus and entorhinal cortex in AD (Braak
and Braak, 1991). Besides, reduced metabolism has been reported in
u et Cognition, UMR 5549, CNRS
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. This is an open access article under
posterior cerebral regions, most consistently in the posterior cingulate
cortex (PCC), in early AD (Chételat et al., 2003) and aMCI patients
(Herholz et al., 2002; Minoshima et al., 1997; Nestor et al., 2003). Ac-
cordingly, several authors proposed that these functional changes may
result from reduced connectivity of posterior regions with the hippo-
campus (Chételat et al., 2008, 2003; Minoshima et al., 1997; Nestor
et al., 2003; Smith, 2002). Hippocampal disconnection may occur from
very early stages of the disease, thus affecting large-scale neural net-
works critical to episodic memory, such as the limbic network (Callen
et al., 2001; Huang et al., 2012; Nestor et al., 2003; Pengas et al.,
2010). On the basis of this disconnection hypothesis (Chételat et al.,
2003; Smith, 2002), an interesting approach is to evaluate potential
changes in white matter (WM) tracts from the earliest stages of AD.
The present study aimed at measuring WM changes in aMCI pa-
tients, who responded to strict physiological criteria typical of AD
pathology, i.e. patients with aMCI due to AD (Albert et al., 2011;
Dubois et al., 2014). Our objective was to identify the earliest alter-
ations in WM connections that could contribute to the initial episodic
memory impairment.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Using magnetic resonance diffusion tensor imaging (MR-DTI)
(Basser and Jones, 2002; Le Bihan et al., 2001), WM microstructural
changes in aMCI patients have been most consistently reported in tem-
poral and parietal regions (for review see Chua et al., 2008; Sexton et al.,
2011), although frontal and occipital WM may also undergo changes
(Bosch et al., 2012; Zhuang et al., 2010). These WM alterations could
be more important as pathology evolves, as suggested in studies com-
paring aMCI and mild AD patients with controls (Bosch et al., 2012;
Fellgiebel et al., 2005; Kiuchi et al., 2009; Liu et al., 2011; Medina et al.,
2006; Mielke et al., 2009; Zhang et al., 2007). In particular, limbic WM
tracts may be altered in aMCI, and further in AD patients. To date, the
most consistentfinding has been a significant alteration of the cingulum
(Acosta-Cabronero et al., 2012; Bosch et al., 2012; Fellgiebel et al., 2005;
Kiuchi et al., 2009; Liu et al., 2011; Medina et al., 2006; Rose et al., 2006;
Stenset et al., 2011; Zhang et al., 2007; Zhuang et al., 2013), which con-
nects the hippocampal formation with the cingulate gyrus (Catani and
Thiebaut de Schotten, 2008). In AD patients, hippocampal volume has
been related with alteration of the cingulum micro-structure (Choo
et al., 2010; Xie et al., 2005), as well as with cingulum bundle volume
(Villain et al., 2008), suggesting a causal link between the hippocampus
and cingulum anatomical changes. Also, alteration of the cingulum is
consistent with early PCC hypometabolism at rest (Chételat et al.,
2003; Minoshima et al., 1997), and may in particular explain the rela-
tionship between hippocampal atrophy and PCC/temporo-parietal
hypometabolism, which has been reported in AD (Meguro et al., 2001;
Villain et al., 2008) and aMCI (Guedj et al., 2009) patients. Apart from
the cingulum, other limbic tracts may as well undergo changes in
early AD. Alterations of the fornix have been reported in aMCI patients
(Mielke et al., 2009; Zhuang et al., 2013, 2010), and these alterations
may be more important in patients with short-term progression to AD
(Douaud et al., 2013). Also, damage of the uncinate fasciculus has
been recently reported in ‘late’ aMCI (Zhuang et al., 2013) and more
consistently in mild AD patients (Bosch et al., 2012; Damoiseaux et al.,
2009; Kiuchi et al., 2009), this limbic tract connecting the temporal
pole with the lower medial and lateral inferior frontal cortices (Catani
and Thiebaut de Schotten, 2008). Notably, causal links were established
between hippocampal GM atrophy, cingulum and uncinate fasciculus
WM atrophy, and hypometabolism in the cingulate gyrus and lower
frontal cortex (Villain et al., 2010). Together with the fornix, the cingu-
lum and uncinate fasciculus are temporo-frontal limbic connections
that underlie episodic memory function in healthy subjects (Metzler-
Baddeley et al., 2011; Sepulcre et al., 2008). These WM tracts may
get altered from the earliest prodromal stage of AD, leading to hippo-
campal disconnection with posterior and anterior cortical regions.

To date, the link between limbic WM damage and episodic memory
impairment remains unclear.Whole-brainWMDTImetrics in aMCI pa-
tients have been previously related with cognitive status (Acosta-
Cabronero et al., 2012; Mielke et al., 2009; Nir et al., 2013) andmemory
scores (Bosch et al., 2012; Fellgiebel et al., 2005). Note that most of the
latter correlations were obtained across groups of subjects, pooling
aMCI and AD patients (and sometimes controls), and this may artificial-
ly increase the correlation strength. Besides, episodic recall performance
in aMCI patients has been related to DTI metrics in pre-defined regions
of interest of the retrosplenial (Walhovd et al., 2009) and temporalWM
(Goldstein et al., 2009), regions that could comprise the posterior and
parahippocampal parts of the cingulum, respectively. However, clear re-
lationships between damage of specific WM tracts and early episodic
memory deficit in aMCI patients remain to be established. In particular,
episodic recognition and recall of verbal/visual materials, which are both
impaired early in AD, could rely on separate neural networks involving
distinct hippocampal tracts. Whereas episodic recognition of previously-
encoded items could bemostly based on item familiarity and involve hip-
pocampal connections with anterior temporal and frontal regions (Gour
et al., 2011), episodic recall may additionally recruit posterior regions,
such as the PCC and temporo-parietal cortex (Wang et al., 2010), thus in-
volving the cingulum tract.
In the present study, DTI-derived parameters in whole-brain WM
tracts were measured in patients with aMCI due to AD (Albert et al.,
2011; Dubois et al., 2014), and in age-matched controls. By selecting pa-
tients according to strict inclusion criteria, we expected to measure
group differences specifically related to the earliest stages of AD patholo-
gy. It was previously reported that hippocampal connectivitywith distant
posterior and anterior brain regions could be reduced in early AD, as a
consequence of hippocampal atrophy (Villain et al., 2010). We aimed at
supporting this hypothesis using whole-brain WM DTI and hippocampal
GM volumetry. Differences inWMmicro-structure between patients and
controlswere assessed, andfibre tractographywas computed frommedi-
al temporal regions showing significant changes, allowing for clear iden-
tification of altered tracts in patients. Correlations between hippocampal
volumes and DTI metrics were then assessed in these regions. Moreover,
performance in episodic recognition and recall of verbal and visual items
was assessed in each participant. We hypothesized that initial impair-
ment in episodic memory tasks may rely on early hippocampal dis-
connection, from the pre-demential stage of AD. Disruption of tracts
connecting the hippocampus with anterior regions may mainly affect
item recognition, whereas episodic recall deficit could be related with al-
terations of hippocampal tracts projecting to posterior regions.

2. Materials & methods

2.1. Participants

Twenty-two patients diagnosed with aMCI due to AD (see inclusion
criteria below) and 15 age- and gender-matched control subjects were
recruited for the study (Table 1). The studywas approved by the region-
al Ethics committee (Comité de Protection des Personnes Sud-Ouest et
Outre-Mer I, no. AFSSAPS A90605-58) and written informed consent
was given by all participants.

2.2. Inclusion criteria

2.2.1. Patients with MCI due to AD
Pre-inclusion assessment and inclusion criteria have been extensive-

ly described in a previous report (Saint-Aubert et al., 2013). Briefly, pa-
tients over 65 years old, with a memory complaint dating from more
than 6 months and without any neurologic or psychiatric disease histo-
ry, were initially recruited (n = 34). After pre-inclusion assessment,
which included neuropsychological tests (Clinical Dementia Rating
(CDR) scale and Free and Cued Selective Reminding Test (FCSRT)),
MRI examination, 18F-FDG Positron Emission Tomography (PET) exam-
ination and cerebrospinalfluid (CSF) biomarker sampling, inclusionwas
decided according to the following criteria:

• CDR = 0.5, i.e. autonomy in daily life,
• Sum of the three free recalls ≤17/48 and/or sum of the three free and
cued recalls≤40/48on the FCSRT, i.e. significant verbal episodicmem-
ory impairment (Sarazin et al., 2007),

• One or more of the following criteria:
◦ Scheltens score for medial temporal GM atrophy N1 in at least one
hemisphere, based on visual T1-weighted MRI scan examination
(Scheltens et al., 1992).

◦ Temporo-parietal and/or PCC hypometabolism at rest suggestive of
AD, based on visual FDG-PET scan examination.

◦ Level of phospho-tau (P-tau)≥60 pg/ml and Innotest Amyloid Tau
Index (IATI)≤ 0.8. In case of ambiguous profile, i.e. P-tau b 60pg/ml
or IATI N 0.8, the Aβ42/Aβ40 level ratio was calculated and a ratio
b0.045 was considered compatible with AD diagnosis (Wiltfang
et al., 2007).
Moreover, patientswith significantwhitematter hyperintensities on
the T2-weighted MRI scan (Fazekas and Schmidt (F&S) score N 2
(Fazekas et al., 2002)) were excluded.



Table 1
Sociodemographic and neuropsychological features of patients and healthy controls.

aMCI due to AD Controls p

n 22 15
Gender (M:F) 10:12 7:8 n.s.
Age at MRI (years) 72.1 ± 4.9 (65–81) 70.5 ± 4.7 (65–80) n.s.
Education (years) 11.6 ± 2.8 (8–17) 12.2 ± 3.0 (9–17) n.s.
Disease duration (years) 3.8 ± 3.6 (1–11)
CDR 0.5 ± 0.0 0.0 ± 0.0 b0.001
MMSE (/30) 25.0 ± 2.1 (20–28) 28.4 ± 0.7 (27–29) b0.001
Verbal episodic memory — FCSRT

Immediate recall (/16) 12.9 ± 2.8 (7–16) 15.5 ± 0.7 (14–16) b0.001
Sum of the 3 free recalls (/48) 10.9 ± 6.3 (1–27) 32.1 ± 4.8 (24–39) b0.001
Sum of the 3 free and cued recalls (/48) 27.3 ± 12.3 (7–47) 46.5 ± 2.0 (42–48) b0.001
Sum of the 3 recognitions (/48) 43.7 ± 3.7 (34–48) 47.7 ± 0.8 (45–48) b0.001
Delayed free recall (/16) 3.7 ± 3.0 (0–10) 12.7 ± 2.2 (9–16) b0.001
Delayed free and cued recall (/16) 9.9 ± 5.2 (0–16) 15.7 ± 0.6 (14–16) b0.001

Visual episodic memory — DMS48
Immediate recognition (/48) 40.4 ± 5.7 (29–47) 46.3 ± 2.1 (41–48) b0.001
Delayed recognition (/48) 39.3 ± 7.1 (24–48) 45.7 ± 2.2 (41–48) b0.001

Visuo-spatial episodic memory
Rey complex figure recall (/36) 8.3 ± 5.8 (0–20) 19.8 ± 6.4 (9–30) b0.001

Composite memory scores
Episodic recognition score 0.0 ± 0.83 (−1.59–1.11)
Episodic recall score 0.0 ± 0.85 (−1.38–1.5)

Values are mean± standard deviation (range). CDR= Clinical Dementia Rating; MMSE=Mini-Mental State Examination; FCSRT= Free and Cued Selective Reminding Test; DMS48=
Delayed Matched Sample test. Composite memory scores were calculated in patients only.
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Based on the above criteria, 22 patients out of 34 were included in
the study. Among these included patients, 12 patients had positive CSF
biomarker and positive degeneration biomarkers (both medial tempo-
ral GM atrophy and temporo-parietal/PCC hypometabolism) and 6 pa-
tients had positive CSF biomarker and one positive degeneration
biomarker (2 with medial temporal GM atrophy and 4 with temporo-
parietal/PCC hypometabolism). From the remaining 4 patients, 2 did
not consent for CSF sampling: they had both medial temporal GM
atrophy and temporo-parietal/PCC hypometabolism. One patient had
negative CSF biomarker and 2 positive degeneration biomarkers. Finally,
one patient had ambiguous CSF profile and 2 positive degeneration
biomarkers.

Following their inclusion in the study, patients (n=22) underwent
a second PET scan using Florbetapir (AV-45) amyloid marker, as part of
the imaging protocol (Saint-Aubert et al., 2013). Global AV-45 uptake in
the GMwas visually rated. Eighteen patients out of 22 had a positive ce-
rebral Aβ biomarker, including the 2 patients without any CSF sampling
and the patient with negative CSF biomarker. Thus combining results of
CSF sampling and AV-45 PET imaging at the time of the study, 21 pa-
tients had at least one amyloid marker typical of AD pathology (with
at least one positive degenerationmarker), increasing confidence for di-
agnosis of aMCI due to AD (Albert et al., 2011; Dubois et al., 2014). The
remaining patient showed low AV-45 uptake and ambiguous CSF pro-
file. Following the study, all patients were evaluated every 6 months
over a period of 2 years, as part of their clinical follow-up. During this
2-year period, 17 out of the 22 patients included in the study met the
NIA–AA diagnostic criteria for dementia due to AD (McKhann et al.,
2011). Note that the patient with ambiguous amyloid profile at the
time of the study has been diagnosed with dementia due to AD during
the 2-year follow-up.

2.2.2. Control subjects
Control subjects (n = 25) without any memory complaint, any

neurologic or psychiatric disease history and any first-degree relative
with AD, underwent identical pre-inclusion assessment as the patients
(except for CSF sampling). Subjects with significant white matter
hyperintensities on the T2-weighted MRI scan (F&S score N 2) or any
impairment on the neuropsychological assessment were excluded. Fol-
lowing assessment, 15 control subjects satisfied inclusion criteria and
completed their participation in the study. Three out of the 15 controls
had not any positive degeneration biomarker, 9 controls had temporo-
parietal/PCC hypometabolism, 1 control had medial temporal GM atro-
phy and 2 controls had both atrophy and hypometabolism. Following
cerebral Aβ assessment using AV-45 PET imaging, 4 control subjects
were positively rated, with all of them also showing hypometabolism.

2.3. Neuropsychological assessment

To complement the pre-inclusion neuropsychological assessment,
global cognitive state was evaluated using theMini-Mental State Exam-
ination (MMSE) (Folstein et al., 1975). Furthermore, visuo-spatial epi-
sodic memory was assessed with delayed recall of the Rey–Osterrieth
Complex Figure Test (RCFT) (Strauss et al., 2006). The DelayedMatched
Sample (DMS48) test (Barbeau et al., 2004)was used to evaluate imme-
diate and delayed visual object recognition. Other cognitive functions
were also assessed, such as semantic memory, verbal workingmemory,
language and attention. Details on these assessments have been previ-
ously reported (Saint-Aubert et al., 2013).

For the purpose of correlations with DTI metrics, two composite ep-
isodic memory scores were generated in each patient. A first composite
recognition score was computed as the mean of 3 standardized scores:
the sum of the 3 recognitions in the FCSRT, the immediate recognition
and the delayed recognition in the DMS48. A second composite recall
score was computed as themean of 6 standardized scores: the immedi-
ate recall, the sum of the 3 free recalls, the sum of the 3 free and cued
recalls, the delayed free recall, the delayed free and cued recall in the
FCSRT, and the Rey figure recall.

2.4. MR imaging protocol

Scanning was performed on a Philips 3 T system (Achieva, Philips,
Best, The Netherlands), using a dedicated 8-channel phased-array
headcoil. T1-weighted and DTI images were acquired in a single scan-
ning session for each participant.

Diffusion-weighted imaging was performed using a spin-echo
single-shot echo-planar imaging sequence, with TR/TE = 11,031/
55 ms, number of excitations (NEX) = 1 and an isotropic voxel size of
2 × 2 × 2 mm. Fifty-six contiguous axial slices were positioned to
cover thewhole brain. Imageswere acquired for 32 non-collinear direc-
tions of the diffusion gradients (with b = 1000 s/mm2, using a Philips
default diffusion vector scheme) and one image was acquired with no
diffusion weighting (b = 0, b0 image), allowing for computation of



Table 2
Normalized hippocampal volumes (in mm3) for patients and healthy controls.

aMCI due to AD Controls p

Right 6115 ± 905 (4217–7943) 6881 ± 711 (5644–7878) 0.007
Left 5821 ± 948 (4122–7298) 6676 ± 714 (5494–7910) 0.004
Total 11,936 ± 1682 (9116–15,156) 13,557 ± 1270 (11,184–15,705) 0.002

Values are mean ± standard deviation (range).
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thediffusion tensor. Parallel acquisition (SENSE factor=1.5) and partial
k-space sampling (factor = 0.68) were used. The total scanning time
was 7′33″.

In addition, a high-resolution high-contrast anatomical T1-weighted
scan was acquired for hippocampal GM volumetry purposes. A 3D TFE
gradient-echo sequence was used, with TR/TE = 8.3/3.8 ms, NEX = 1
and an isotropic voxel size of 1 × 1 × 1mm. One hundred and sixty cor-
onal slices were acquired, covering the whole brain.

2.5. Hippocampal GM volumetry

The procedure for hippocampal GM volumetry has been previously
described in detail (Cherubini et al., 2010). Briefly, individual T1-
weighted images were segmented using the FIRST tool in FSL and vol-
umes of the left and right hippocampi were determined by voxel
count from the GM images. Hippocampal volumes were then corrected
for individual whole-brain size. To this aim, volumes for each subject
were multiplied by a scaling factor, which was determined based on
the whole-brain volume expansion or contraction needed to register
the individual T1-weighted image to the MNI template (Cherubini
et al., 2010). The resulting normalized volumes were compared be-
tween groups using two-factor ANOVA (with between-subject ‘group’
factor and within-subject ‘hemisphere’ factor), and were further used
to correlate DTI parameters with hippocampal atrophy (see below).

2.6. Diffusion imaging analysis

All analyses were performed using the Functional MRI of the Brain
(FMRIB) software library (FSL v5.0.2.1, http://www.fmrib.ox.ac.uk/fsl)
(Smith et al., 2004). For each participant, the 32 diffusion-weighted
images were all re-aligned (using affine registration) to the b0 image,
in order to correct for eddy current distortion and head movements. A
brain mask was created from the b0 image (‘BET’ procedure in FSL)
and the mask was applied to all images to remove non-brain tissue.
Fitting of the diffusion tensor model in each voxel was performed
using the DTIFIT procedure. Images of fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AxD) and radial diffusivity
(RD) were then derived from eigenvalues of the diffusion tensor, in
each participant.

2.6.1. Patients with aMCI due to AD vs. controls
DTI-derived variables were compared between groups with a

whole-brain approach, using the tract-based spatial statistics (TBSS
v1.2) method (Smith et al., 2006). Following slight erosion, FA images
of each subject were all non-linearly registered to a 1-mm isotropic FA
standard-space image (‘FMRIB58_FA’) (Rueckert et al., 1999). The
resulting FA images from all participants were then averaged, and a
mean white-matter tract skeleton was calculated from the mean FA
image (threshold at 0.2). This skeleton represents the centre of major
tracts that would be common to all subjects. For every participant, the
nearest tract centre (as determined from the individual spatially-
normalized FA image) was projected onto the mean FA skeleton.
Voxel-wise statistics were computed using permutation-based (non
parametric) tests, as implemented in the ‘randomize’ program of FSL.
All tests were performed with 5000 random permutations of the data.
In all analyses, a cluster-based approach was used with the threshold-
free cluster enhancement (TFCE) procedure (Smith and Nichols, 2009).
Two-sample unpaired t-testswere used to compareDTI-derived variables
between patients and controls, covarying out the effect of age, sex and
years of education. Clusters significant at p b 0.05, family-wise error
(FWE) corrected, are reported. In clusters of interest, i.e. most probably
belonging to limbic hippocampo-frontal connections, average FA and dif-
fusivity valueswere calculated for every subject, and effect sizeswere de-
rived (with 95% confidence interval). Moreover, these clusters of interest
were back-projected to the centre of the nearest tract on the individual FA
images in standard space, in order to ensure that the skeleton cluster was
derived from the correct tract-centre points in all subjects (Smith et al.,
2006). Finally, for each control subject, WM tracts passing through these
clusters were determined individually. To this aim, clusters were trans-
formed back to the subject3s native space using an inverse non-linear reg-
istration to the one originally applied for the subject. These clusters in
native space were then used as seed masks for probabilistic tractography
using the FSL algorithm ‘probtrackx’, after Bayesian estimationof diffusion
parameters from the individual realigned diffusion images (‘bedpostx’
function in FSL) (Behrens et al., 2007).
2.6.2. Correlations with hippocampal volumes and memory scores across
patients

In the patient group (n = 22), correlations between average DTI-
derived variables in clusters of interest (as determined from the group
comparison analysis, see above) and (i) normalized left and right hippo-
campal GM volumes, and (ii) composite episodic memory scores were
assessed in a linear regression model, including age, MMSE, sex and
years of education as nuisance covariates. Significant correlations with-
in the patient group at a threshold of p b 0.05 (Bonferroni-corrected for
the number of comparisons) are reported, alongwith determination co-
efficients (R squared).

In addition, whole-brain correlations between DTI variables and
(i) hippocampal volumes, and (ii) composite memory scores were ex-
amined using TBSS. Positive and negative correlations were investigat-
ed. Age, MMSE, sex and years of educations were entered into the
analyses as covariates. Clusters significant at p b 0.05 (FWE-corrected)
using the TFCE procedure are reported.
3. Results

3.1. Neuropsychological data

In all aspects of episodic memory that were tested, i.e. verbal, visual
and visuo-spatial, patients were significantly impaired relative to con-
trols (Table 1). Across the patient sample, ranges of episodic memory
scoreswere rather large, allowing for optimal investigation of correlations
between WM DTI-metrics and performance. Regarding other cognitive
functions, semantic memory (based on Wechsler Adult Intelligence
Scale (WAIS) information subtest and TOP 12 faces scores) and ex-
ecutive functions (based on semantic verbal fluency, Trail Making Test
(TMT), SymbolDigitModalities Test andStroop Test scores)were also sig-
nificantly impaired in patients vs. controls (for more detailed results, see
Saint-Aubert et al., 2013).
3.2. Hippocampal GM volumes

Total hippocampal volumes were significantly reduced in patients
relative to controls (p b 0.002, Table 2).Moreover, hippocampal atrophy
in patients was significant in both the left and right hemispheres
(p b 0.004 and p b 0.007 respectively) and was equivalent for both
hemispheres (F(1,35) = 0.13, p = 0.72, repeated-measures ANOVA).
The large range of hippocampal volumes across patients allowed for op-
timal investigation of correlations between DTI-metrics and GM
atrophy.

http://www.fmrib.ox.ac.uk/fsl


Fig. 1. Significant differences in DTI metrics between patients and controls. Regions of decreased fractional anisotropy and increased radial, axial andmean diffusivities in patients vs. con-
trols are displayed.Medial temporal clusters showing significant FA decreases in patients are highlighted (orange circles). These clusters were further used as seedmasks for tractography
and as ROIs for correlation analyses within patients (see the Materials and methods section). All clusters shown are significant at p b 0.05 FWE-corrected for multiple comparisons using
threshold-free cluster enhancement. DTI metrics and skeleton are superimposed on a standard T1 template. MNI x coordinates are indicated at the bottom of each slice.
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3.3. Whole-brain DTI metrics

3.3.1. Patients vs. controls comparison

In patients vs. controls, the FAwas reduced and the diffusivity index-
es were increased inwidespreadWM regions (Fig. 1). Conversely, there
was not any significant increase in FA or decrease in diffusivity in pa-
tients vs. controls (p b 0.05 corrected). Reduced FA values in patients
relative to controls were found inWM tracts of the lateral temporal, pa-
rietal, frontal and occipital lobes, most probably corresponding to the
anterior thalamic radiations, the temporal part of the superior longitu-
dinal fasciculus bilaterally, the occipital and temporal parts of the inferi-
or longitudinal fasciculus bilaterally, and the inferior fronto-occipital
fasciculus bilaterally. Moreover, patients3 FA was lower in the fornix
(local peak at (0, 7, 2)), in the medial temporal region bilaterally (bilat-
eral anterior temporal lobe: local peaks at (−41, 2, −27) and (40, 9,
−30), respectively clusters 1 and 2 on Fig. 1, and hippocampal regions:
local peaks at (−24, −12, −31) and (26, −8, −32), respectively clus-
ters 3 and 4 on Fig. 1) and in the cortico-spinal tract (superior corona
radiata and at the level of the brainstem). In highly similarWM regions,
the RD and MD were greater in patients relative to controls (Fig. 1). A
significant increase in MD was also found in the splenium and genu
of the corpus callosum. In patients vs. controls, increases in AxD were
confined to the right temporal and frontal WM, and the fornix.

Since the 4 medial temporal clusters found in the group comparison
analysis (clusters 1–4 on Fig. 1) were close to sites of cortical atrophy in
early AD, i.e. the hippocampus and anterior parahippocampal gyrus,
these medial temporal skeleton voxels were back-projected to the cen-
tre of the nearestWM tract in each individual FA image. Supplementary
Fig. 1 displays the result of back-projection of skeleton voxels for each
patient, showing that accurate WM points were considered in the
group comparison analysis for each of the 4 clusters. Finally, fibre
tractography was conducted in each of the control subjects using the 4
clusters as seed masks, in order to precisely determineWM tracts pass-
ing through these clusters. When taking the left and right anterior tem-
poral clusters as seed masks (respectively clusters 1 and 2 on Fig. 1),
left- and right-sided U-shaped tracts starting from the temporal pole
and projecting to the inferior medial frontal cortex, i.e. the left and
right uncinate fasciculi (Catani and Thiebaut de Schotten, 2008), were
evidenced in each control (Supplementary Fig. 1). For the 2 other clus-
ters in the left and right hippocampal regions (respectively clusters 3
and 4 on Fig. 1), tractography revealed 2 symmetrical medial tracts
connecting the anterior part of themedial temporal lobe to the posterior



Table 3
DTI metrics in WM tracts of interest.

aMCI due to
AD

Controls Effect size

Fractional anisotropy
Uncinate fasciculus L 0.264 ± 0.052 0.315 ± 0.044 −0.051 (−0.083,

−0.019)
R 0.229 ± 0.043 0.278 ± 0.045 −0.049 (−0.080,

−0.019)
Parahippocampal
cingulum

L 0.301 ± 0.026 0.340 ± 0.031 −0.039 (−0.058,
−0.018)

R 0.264 ± 0.042 0.299 ± 0.025 −0.035 (−0.057,
−0.012)

Fornix 0.452 ± 0.080 0.520 ± 0.038 −0.068 (−0.108,
−0.028)

Radial diffusivity
Uncinate fasciculus L 0.687 ± 0.070 0.633 ± 0.075 0.054 (0.004, 0.104)

R 0.770 ± 0.100 0.715 ± 0.049 0.055 (0.005, 0.106)
Parahippocampal
cingulum

L 0.683 ± 0.043 0.647 ± 0.049 0.036 (0.004, 0.068)

R 0.712 ± 0.041 0.656 ± 0.040 0.056 (0.029, 0.083)
Fornix 0.997 ± 0.141 0.858 ± 0.130 0.139 (0.047, 0.230)

Axial diffusivity
Fornix 2.046 ± 0.107 1.928 ± 0.111 0.118 (0.043, 0.193)

Mean diffusivity
Uncinate fasciculus R 0.899 ± 0.075 0.847 ± 0.051 0.052 (0.010, 0.094)
Parahippocampal
cingulum

L 0.817 ± 0.042 0.785 ± 0.048 0.032 (0.001, 0.064)

R 0.833 ± 0.048 0.796 ± 0.044 0.037 (0.006, 0.068)
Fornix 1.257 ± 0.157 1.099 ± 0.131 0.158 (0.061, 0.255)

Values are mean ± standard deviation. Effect sizes are difference in means between
groups (95% confidence interval). Effect sizes are overestimated, asmetricswere extracted
from most significant voxels in the group comparison.
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cingulate cortex, i.e. the parahippocampal part of the cingulum (Catani
and Thiebaut de Schotten, 2008) (Supplementary Fig. 1).

In all limbic clusters found in the group comparison analysis (clus-
ters 1–4 and fornix), average DTI metrics were computed in each sub-
ject and effect sizes were derived in each region (Table 3).

3.3.2. Correlations with hippocampal volume within the patient group
In each limbic cluster (clusters 1–4 and fornix), correlations between

average DTI metrics and left and right hippocampal volumes (HVs)
were investigated. Regarding diffusivity metrics, there was not any sig-
nificant correlation with HV, in any of the clusters (corrected p b 0.05).
However positive correlations were found between FA and HV (Fig. 2).
In the fornix, the FA was significantly correlated with the right HV
(R2 = 0.337, corrected p = 0.025). The correlation between fornix FA
and left HVwas not significant (p=0.62). In the right parahippocampal
cingulum (cluster 4 on Fig. 1), the FA was correlated with the right HV
(R2 = 0.307, corrected p = 0.04) but not with the left HV (p = 0.31).
In the left parahippocampal cingulum (cluster 3 on Fig. 1), the FA was
correlated with the left HV (R2 = 0.431, corrected p = 0.005) and
with the right HV (R2 = 0.34, corrected p = 0.02). Finally, the FA in
the right uncinate fasciculus (cluster 2 on Fig. 1) was significantly corre-
latedwith the right HV (R2= 0.33, corrected p=0.03) but not with the
left HV (p=0.3). Conversely, the FA in the left uncinate fasciculus (clus-
ter 1 on Fig. 1) was correlated with the left HV (R2 = 0.376, corrected
p = 0.015) but not with the right HV (p = 0.88).

The whole-brain correlation analyses on FA values were consis-
tent with the above ROI results in the limbic regions (p b 0.05 FWE-
corrected, Fig. 2). Left HVs were correlated with predominantly left-
sided temporal and parietal FA measures. In particular, significant
correlations with the left anterior temporal FA (local peak at (−41,
9, −29)) and the left hippocampal FA (local peak at (−24, −31,
−17)) were found. Besides, right HVs were correlated with FA
values in the corpus callosum, and the lateral occipital, parietal, tempo-
ral and right frontal regions. Regarding limbic regions, FA measures in
the right anterior temporal region (local peak at (40, 0, −28)), the
bilateral hippocampal region (right hemisphere: local peak at (26,
−34, −12); left hemisphere: local peak at (−20, −37, −10), not
shown on Fig. 2) and the fornix (local peak at (4, −20, 18)) were
correlated with volumes of the right hippocampus. Other whole-
brain analyses on diffusivity measures did not show any significant
correlations with HVs.

3.3.3. Correlations with episodic performance within the patient group
In each limbic cluster (clusters 1–4 and fornix), correlations between

average DTI metrics and composite episodic memory scores (Table 1)
were investigated. There was not any significant correlation between
diffusivity metrics and composite memory scores, in any of the limbic
clusters (corrected p b 0.05). Regarding the FA metric, only one signifi-
cant positive correlation with composite recognition scores was found
in the left uncinate fasciculus (cluster 1 on Fig. 1, R2 = 0.359, corrected
p = 0.022, Fig. 3). Other correlations between FA in limbic tracts and
composite recognition and recall scores did not reach significance
(corrected p N 0.2).

Whole-brain TBSS analyses did not evidence any significant correla-
tion between diffusivity measures and memory scores (p b 0.05 FWE-
corrected). The correlation between FA and composite recognition
scores was significant in the left anterior temporal region (local peak
at (−38, 6, −32), Fig. 3), in agreement with the above ROI result.
Therewas not any significant correlation between FA and composite re-
call scores (p b 0.05 FWE-corrected).

4. Discussion

In the present study, WM tract integrity was evaluated in patients
with aMCI due to AD (Albert et al., 2011; Dubois et al., 2014) and age-
matched controls, usingMRI diffusion tensor imaging. Our results clear-
ly evidenced disease-related WM changes in limbic tracts, suggesting
disruption of hippocampal connections with remote cortical regions
early in the course of AD. TheseWMchangeswere relatedwith patients3
performance in some aspects of episodic memory, showing that hippo-
campal disconnectionmay partly explain initial memory impairment at
the pre-demential stage of the disease.

In patients relative to controls, the FA was reduced and the RD was
increased in limbic and long association tracts. Widespread changes in
DTImetrics have been consistently reported in bilateral limbic and asso-
ciation tracts at different stages of the disease, from presymptomatic
(Molinuevo et al., 2014) to aMCI (Acosta-Cabronero et al., 2012; Bosch
et al., 2012) and mild AD stages (Acosta-Cabronero et al., 2010). At the
prodromal stage, axonal loss and demyelination (Bartzokis, 2004)
would contribute to reduce the FA and increase the RD within WM
tracts, as a result of enlarged extra-cellular diffusion space between
axonal membranes (Beaulieu, 2006). Conversely, recent studies in pre-
symptomatic AD patients have reported either increases in FA together
with decreases in diffusivity relative to controls (Racine et al., 2014;
Ryan et al., 2013) or no changes in FA but increases in AxD (Molinuevo
et al., 2014). It was proposed that pathological changes such as swelling
of neurons, microgliosis or amyloid deposits may underlie changes
in DTI metrics before symptom onset (Racine et al., 2014; Ryan et al.,
2013). In our study, there was not any WM region showing increased
FA and/or reduced diffusivity in patients. This indicates that changes in
DTImetrics critically dependondisease stage andmost probably on selec-
tion criteria for patients, underlining the need for full exploration of the
tensor behaviour in AD studies (Acosta-Cabronero et al., 2010). Regarding
the prodromal stage of AD, our results suggest that FA changes may cap-
ture the result of ongoing neurodegenerative process better than other
DTImetrics. The FAmay therefore be themost pertinent parameter to in-
vestigateWMalterations in relationwith initial cognitive decline (Acosta-
Cabronero et al., 2012).

Our imaging data evidenced WM tract alterations in the limbic sys-
tem, in patients relative to controls. These alterations were found in
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Fig. 3. Significant correlation between composite episodic recognition score and left uncinate fasciculus FA in the patient group (p b 0.05 Bonferroni-corrected for multiple comparisons).
The right side of the figure shows the result of the whole-brain correlation between FA values and composite recognition scores. Significant clusters are superimposed on a standard T1
template. MNI x coordinate is indicated at the bottom of the sagittal slice.
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the parahippocampal cingulum, the uncinate fasciculus and in the for-
nix, i.e. in fronto-temporal connections critical to episodic memory
(Metzler-Baddeley et al., 2011). Moreover, FA values in these 3 limbic
tracts were found to correlate with hippocampal volume across pa-
tients. In agreement, correlations between GM volume and cingulum
FA have been previously reported in AD patients (Firbank et al., 2007;
Xie et al., 2005) or combining aMCI and AD patients (Choo et al.,
2010). Using voxel-based morphometry in aMCI patients, the atrophy
rate of the cingulum and uncinate fasciculus (measured over an 18-
month period) was found to correlate with baseline hippocampal GM
atrophy (Villain et al., 2010). The authors proposed that disruption of
both these limbic tracts, occurring in early AD, may be a consequence
of neuronal loss in the hippocampus. Our correlation results in pre-
demential AD patients fully support this hypothesis. In our study,
the correlation between uncinate fasciculus FA and hippocampal GM
volume was observed separately within each hemisphere. Intra-
hemispheric correlations support the idea that axonal loss due to
Wallerian degeneration may be the primary cause of FA decreases
in these limbic tracts, although this causal link needs to be further
confirmed using a longitudinal design (Villain et al., 2010). The tem-
poral segment of the uncinate fasciculus connects the entorhinal
and perirhinal cortices with the temporal pole (Von Der Heide
et al., 2013), and the entorhinal cortex is the very first site of neuro-
nal death in AD (Braak and Braak, 1991). Therefore damage in the
uncinate fasciculus could be tightly related with anterior medial
temporal GM atrophy (Damoiseaux et al., 2009; Villain et al.,
2010) and could begin from the earliest stages of the disease. Re-
garding the cingulum, its parahippocampal part connects the hippo-
campus with the PCC (Vann et al., 2009). The FA decrease and RD
increase in this tract may be a consequence of hippocampal neuro-
nal loss, as previously proposed (Choo et al., 2010; Villain et al.,
2010). Hypometabolism at rest in the PCC has been consistently
shown in aMCI patients (Ewers et al., 2011). Moreover, PCC activity
during episodicmemory tasks has been correlatedwith hippocampal GM
volume (Garrido et al., 2002; Rémy et al., 2005). De-afferentation of the
PCC (Chetelat et al., 2003; Smith, 2002) may therefore contribute to its
dysfunction from the aMCI stage (Minoshima et al., 1997; Nestor et al.,
2003; Villain et al., 2010). It should be noted however that GM atrophy
in this latter region has been observed in aMCI (Choo et al., 2010) and in-
cipient AD (Pengas et al., 2010), suggesting that PCC hypometabolism
could also partly result from local pathology.
Fig. 2. Significant positive correlations between hippocampal volumes (HV) and FAmeasures i
values in limbic tracts of interest and left and right hippocampal volumes. p-Values are Bonfe
correlations between FA values and left HV (upper part) and right HV (bottom part) as a resu
a standard T1 template. MNI x coordinates are indicated at the bottom of each sagittal plane.
Although the strength of hippocampal connectionswith other limbic
structures cannot be simply derived from our anatomical data (Jones
et al., 2013), it is important to note that our results are coherent with
functional connectivity studies in AD (Allen et al., 2007; Bai et al.,
2009; Greicius et al., 2004; Sorg et al., 2009; Wang et al., 2007). Using
resting-state functional MRI, these studies have shown decreased hip-
pocampal functional connectivity with the PCC and the lower medial
prefrontal cortex. Therefore damage in the cingulum and uncinate fas-
ciculus could contribute to altered hippocampal functional connectivity
with posterior and anterior medial areas of the default-mode network
in AD patients. Rate of decline of cingulate and inferior frontal glucose
metabolism (measured over an 18-month period) was shown to cor-
relate with cingulum and uncinate WM atrophy, respectively (Villain
et al., 2010). This suggests that hypometabolism in limbic regions
would be a consequence of damage in hippocampal connections. Specif-
ic alteration of the cingulum and uncinate tracts in pre-demential AD is
clearly confirmed in our study, using a different methodological ap-
proach assessing WMmicro-structure. Moreover, it has been observed
that aMCI patients show distinctive patterns of metabolic decrease ac-
cording to clinical outcome (Fouquet et al., 2009). Whereas all patients
showed metabolic decreases in the PCC and medial frontal cortex, AD
converters evidenced specific metabolic decreases in the ventral pre-
frontal cortex, most probably resulting from disconnection between
medial temporal and lower frontal regions. This result clearly argues
in favour of an alteration of the uncinate fasciculus at the prodromal
stage of AD, in total agreementwith our findings. In further support, an-
terior temporal WM atrophy, most probably corresponding to the tem-
poral part of the uncinate fasciculus, was found in aMCI patients who
converted to AD within an average of 15 months, relative to non-
converters (ADNI study (Misra et al., 2009)). This underlines again the
specificity of this tract disruption at an early stage of the pathology.

Significant correlations between uncinate fasciculus FA values and
composite episodic recognition scores across patients were observed
in our study. These composite scores were representative of immediate
and delayed recognition performance of verbal or visual materials. In
the monkey, temporo-prefrontal disconnection by section of the unci-
nate fasciculus leads to impairment in delayed matching-to-sample
tasks (Gaffan andWilson, 2008). In humans, FA in the uncinate fascicu-
lus has been correlated with performance in associative visual object–
location memory (Metzler-Baddeley et al., 2011; Von Der Heide et al.,
2013). The uncinate fasciculus is part of an ‘anterior temporal network’,
n the patient group. The left part of the figure displays significant correlations between FA
rroni-corrected for multiple comparisons. The right part of the figure shows whole-brain
lt of the TBSS analysis (p b 0.05 FWE-corrected). Significant clusters are superimposed on
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as previously described (Gour et al., 2011; Kahn et al., 2008). This net-
work, which includes the anterior hippocampus and sub-hippocampal
structures, the lateral temporal cortex and the temporal pole, and
which receives input from the visual ventral stream, could be involved
in familiarity-based recognition of single items (Gour et al., 2011). Con-
sistently, we found that performance in recognition of verbal and visual
items, whichmay strongly rely on familiarity-based processing, was re-
latedwith uncinate fasciculus integrity in our group of patients. Besides,
it should be noted that the uncinate fasciculus has been given a role in
social and emotional processing of stimuli (Von Der Heide et al., 2013)
and its role in the emergence of mood disorders in early AD has been
proposed (Fouquet et al., 2009). Our correlation analysis did not evi-
dence any link between FA in limbic tracts and episodic recall deficit
across patients. Episodic recall may rely on both direct and indirect
fronto-temporal connections, due to the use of specific memory strate-
gies, thus involving both anterior and posterior networks (Kahn et al.,
2008). Therefore alteration in the uncinate and cingulum tracts, as
well as in the fornix (Metzler-Baddeley et al., 2011), together would
contribute to impairment in recall. This latter hypothesis would not be
captured using whole-brain single correlation analysis between recall
scores and FA, as performed in our study.

In summary, our results support the hypothesis that limbic tracts
connecting temporal and frontal lobes are likely disrupted from the ear-
liest stage of AD. This degeneration seems to be closely relatedwith, and
possibly a consequence of, medial temporal GM atrophy (Villain et al.,
2010). In addition to cingulum micro-structure alteration largely re-
ported in aMCI, we found progressive alteration of the uncinate fascicu-
lus in prodromal AD patients, further supporting previous observations
in demented patients. Degeneration of the uncinate fasciculus may im-
pact episodic recognition performance very early in the disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.01.014.
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