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Introduction

The study of incompatibilities between the drugs and 

excipients is an important part of pre-formulation stage 

and provides important information to reach a suitable 

formulation.1 

Most excipients have no direct pharmacological action, 

but they can involve physical and chemical interactions 

with active pharmaceutical ingredients.1,2 

Methyldopa (3-Hydroxy-α-methyl-l-tyrosine 

sesquihydrate) is an alfa2 agonist used as a central anti-

hypertensive as well as an anti-Parkinson agent. 

Methyldopa is the first choice treatment in pregnancy 

induced hypertension (PIH).3 This medication has been 

listed on the World Health Organization's List of 

Essential Medicines.4 

The Maillard reaction is one of the most common 

incompatibility interactions between the amine 

containing drug molecules and reducing excipients.5 

Briefly, the reactive carbonyl group in the reducing 

carbohydrate reacts with the nucleophilic amine moiety 

of the drug moiety.  

Methyldopa has a type 1 amine functional group in this 

structure, and thus is a candidate for the nucleoiphilic 

interaction with reducing agents. Dextrose and lactose 

(anhydride & monohydrate) used in pharmaceutical 

dosage forms for various purposes were selected as 

reducing carbohydrates. In solid pharmaceutical dosage 

forms, lactose is used as a filler in conventional tablets 

and capsules, as a carrier in liquisolid formulations, and 

as a lyoprotectant in lyophilized sterile or non-sterile 

powders.6,7 Dextrose is also used as a binder in the 

granulation of the conventional dosage forms. It is also 

used as a sweetener in liquid and sugar coated solid 

dosage forms. It is worthy to mention that 5% dextrose 

large volume intravenous fluids (LVIFs) may be used to 

prepare gavage solutions of special drugs to be 

administered via gavage route (enteral tubing) mainly in 

unconscious patients and in experimental studies on 

laboratory animals by crushing the marketed tablet 

dosage forms and dissolving in LVIFs.7-10 To the best of 

our knowledge, no previous evaluation has been 

conducted in this case; therefore, the potential 

incompatibility between methyldopa and reducing 

excipients will be evaluated using physicochemical 

methods. 

 

Materials and Methods 

Methyldopa ((S)-2-amino-3-(3,4-dihydroxyphenyl)-2-

methyl-propanoic acid) was obtained from Dipharma 
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Abstract 
Purpose: Assessment of drug substance and excipients compatibility is an important issue 

during pre-formulation studies as well as the quality control of pharmaceutical dosage 

forms. In this study, potential incompatibility between methyldopa and reducing excipients 

was evaluated using physicochemical methods. 

Methods: Dextrose and lactose (anhydrous & monohydrate) were selected as reducing 

carbohydrates. The initial incompatibility was studied with DSC and FTIR on binary 

mixtures with 1:1 mass ratio. Results were confirmed using HPLC studies coupled with 

mass spectrometry.  

Results: The DSC curves indicated the elimination of the melting endotherm of methyldopa 

in the binary mixtures. A new peak at 1719 cm-1 was observed in the FTIR spectra that can 

be attributed to the loss of type one amine functionality. The m/z of the proposed compound 

was observed in the mass spectra. 

Conclusion: The potential incompatibility of Methyldopa with reducing carbohydrates was 

established using physicochemical methods.  
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Francis Pharmaceutical Co. (Baranzate, Italy). 

Monohydrate and anhydrous lactose were provided from 

DMV Chemical Co. (Veghal, Netherlands). Acetonitrile 

and formic acid were purchased from Merck (Darmstadt, 

Germany). Magnesium sulfate, heptane sulfonic acid, 

sulfuric acid, methylene chloride, dimethyl formamide, 

acetic acid and all other chemicals were obtained from 

Labscan Analytical Science (Dublin, Ireland). Generic 

preparation of Methyldopa was acquired from local 

pharmacies in Iran. TLC (Thin Layer Chromatography) 

plates (Kieselgel GF 254 plates, 20 x 20 cm, 1 mm thick) 

were purchased from Merck, Germany. 

 

Thin Layer Liquid Chromatography (TLC) 

Practical details of the TLC method was as described 

elsewhere.11,12 A mixture of ethyl acetate and methanol 

(1:3 v/v) containing 0.25% v/v glacial acetic acid was 

used as the mobile phase. Lactose with a concentration 

of (1mg mL-1) in diluent solution (methanol: water (2:3 

v/v)) was spotted as the reference standard. Twenty units 

of brand tablets were weighed, and the mean weight was 

calculated. Assuming that the entire excipient content of 

the average weight was lactose, an equivalent of 25 mg 

lactose in powdered tablets content was transferred to a 

25-mL volumetric flask and was diluted to 1 mg mL-1. 

Standard and test solutions (2µL) were spotted on a thin-

layer chromatographic plate individually. 

The spots were dried and placed in a separation chamber, 

which was previously saturated with the solvent. The 

plate was removed from the chamber before the solvent 

front reached the top of the stationary phase. It was dried 

with a stream of hot air, sprayed uniformly with staining 

solution containing 0.5g thymol in 95mL alcohol and 

5mL sulfuric acid. Later, the plate was heated at 130 °C 

for 5 min., the presence of lactose was approved when 

the main spot resulted from these brands were similar to 

the standard solution in appearance and Rf (Retention 

Factor) values.  

 

Differential Scanning Calorimeter (DSC) 

DSC curves were obtained in a differential scanning 

calorimeter (DSC-60, Shimadzu, Japan) using sealed 

aluminum pans with approximately 5mg of samples, 

including pure drug, pure excipient and their physical 

mixture in 1:1 mass ratio.13 Samples were homogenated 

thoroughly using the tumbling method. The samples 

were scanned at 15° C/min heating rate at the 

temperature range of 30- 450. TA-60 software (Version 

1.51) was used for enthalpy and peak temperature 

calculations.  

 

Fourier Transform-Infrared Spectroscopy (FT-IR) 

Methyldopa and excipients were blended in 1:1 mass 

ratios. They were mixed with 20% (v/w) water and were 

stored in closed vials at 70 °C for 24 hours. The controls 

were made using pure components and the mixture with 

no added water. 

FTIR spectra were obtained from all samples 

immediately after mixing and after incubation at elevated 

temperatures at predetermined time intervals using the 

potassium bromide disc preparation method (Bomem, 

MB-100 series, Quebec, Canada).  

 

N-Formyl Methyldopa Synthesis 

N-Formyl methyldopa was synthetized according to the 

method proposed by Mateusz et al..14 Briefly, drug 

molecule was dissolved in dimethylformamide and 

refluxed at 150 °C for 2 days. The resultant was filtered, 

and liquid –liquid extraction was performed using 

methylene chloride-water. After dehydration process by 

anhydrous magnesium sulphate, the organic layer was 

evaporated, and the resultant solid powder was named N-

formyl methyldopa. This substance was identified using 

FTIR and Mass spectroscopy. 

 

High Pressure Liquid Chromatography (HPLC) 

The HPLC analysis was performed on a cecil 100 series 

HPLC (Cambridge, UK) consisted of an on line 

degasser, CE-1100 HPLC pump and a Cecil CE-1100 

variable-wavelength UV detector. Chromatograms were 

recorded and further analyzed using a “Data Control” 

Version 5.10. Computer software. 

A C18 column (250 mm, 4.60 mm, 5 µm; Waters, USA) 

maintained at ambient temperature was used as the 

stationary phase. The main idea of separation was 

derived from Rembischevski and Gemal.15 Mobile phase 

consisted of Methanol: Buffer at 19:81 v/v ratio. Buffer 

was prepared as a 20% v/v acetic acid in deionized 

HPLC water containing 5mM of heptane sulfonic acid as 

an organic modifier. The detection was performed at 280 

nm with 1.5ml.min-1 flow rate. 

 

Mass Spectroscopy 

Mass analysis was performed on the Waters 2695 

(Milford, Massachusetts, USA) Quadrupole Mass 

system, at electron-spray ionization mode, positive 

ionization, capillary voltage 3.5 V, cone voltage 60 V, 

extractor voltage 3 V, RF lens voltage 1V, source 

temperature (80°C) desolation temperature (150 °C), 

desolation gas flow( 350 L h-1) and cone gas flow (50 L 

h-1).  

Mass spectra were obtained from mixture of methyldopa 

with dextrose and lactose blended in 1:1 mass ratio then 

mixture with 20 %(v/w) water and stored in the 90 °C for 

5 days. Each sample powder was dissolved in a mixture 

of methanol: water solvent (50:50) to the approximate 

concentration of 100 µg ml-1 and injected to mass 

detector. Mass resolution was calculated by dividing the 

peak intensity into peak width at the half of the 

maximum peak height. 

 

Statistical Analysis 

Means and standard deviations and all other calculations 

were performed using Excel 2013 software. 

 

Results and Discussion 

Although different drug to excipient ratios can be 

utilized in compatibility studies, in the case of fillers 
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such as lactose. it is common to use 1:1 drug to excipient 

ratio.16 This ratio is very common in studying possible 

interaction products regardless of the excipient type.14,16 

 

Thin Layer Chromatography (TLC) 

Figure 1 shows TLC results as a digital image. The (b) 

and (a) spots represent standard lactose and the brand 

samples (Figure 1). 

The calculated RF values for standard lactose and internal 

brand were 0.74 ± 0.03 and 0.77 ± 0.01, respectively. 

The resulted Rf values were in a good agreement with 

each other (T- Test, P-value>0.05), indicating the 

presence of lactose as an excipient in a sample brand. 

Although maillard incompatibility in pharmaceutical 

dosage forms has gained considerable attention in recent 

years, pharmaceutical industries still utilize this reducing 

excipient in the manufactured formulations.16-25  

 

Figure 1. Digital imaging of the TLC plate, a) Standard and b) 
Brand tablet formulation  

 

DSC results 

Figure 2A shows the DSC curves of pure dextrose, pure 

methyldopa and the mixture of methyldopa and dextrose. 

Pure methyldopa (Figure 2A-a) showed an endothermic 

peak at 130.46 °C corresponding to the loss of water 

from the crystalline structure. The exothermic event 

followed by an intense endothermic peak was observed 

at approximately 315.45°C, being assigned to the melting 

point of methyldopa.26 The exothermic event along with 

melting may be due to simultaneous vaporization of the 

drug molecule upon melting. 

Pure dextrose (Figure 2A-b) indicated an endothermic 

melting peak at 167.50 °C. The mixture of methyldopa 

and dextrose (Figure 2A-c) showed a new peak at 

89.91°C, and the methyldopa melting event was 

disappeared completely. Since the peak of crystalline 

water loss can be observed at approximately 130 °C, the 

new peak at 89.91°C may be attributed to the water 

elimination of methyldopa and dextrose reaction. The 

lack of drug molecule melting event is another sign of 

drug-excipient incompatibility. 

 

 
Figure 2. The DSC curves of drug with different excipients, A) 
Dextrose, B) Anhydrous Lactose and C) Monohydrated lactose, 
a) pure methyldopa, b) pure excipient and c) binary mixture of 
methyldopa and each excipient in a 1:1 w/w ratio 
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Figure 2B presents the DSC curve of binary mixture of 

methyldopa and anhydride lactose. 

Pure anhydride lactose (Figure 2B-b) showed an 

endothermic melting peak at 241.72 °C. In the drug-

excipient mixture (Figure 2B-c), the endothermic peak of 

methyldopa was eliminated and the crystalline structure 

water loss slightly shifted and appeared at 132.23 °C. 

Again, lack of drug molecule melting endotherm 

proposes an incompatibility. 

Figure 2C shows the DSC curves of binary mixture of 

methyldopa. 

Pure monohydrate lactose (Figure 2C-b) showed an 

endothermic melting peak at 218.38 °C and an 

endothermic water loss at 152.07°C corresponding to the 

water of monohydrate lactose. In the binary mixture of 

methyldopa and monohydrate lactose, the endothermic 

peak of drug melting is again missing, indicating a kind 

of possible incompatibility.  

As previously shown, the crystalline structure of 

molecules (drug and or excipient) loses the water of 

crystallization at temperatures higher than 100 °C , while 

free water which can be formed due to Maillard reaction 

can be seen at much lower temperatures. In the three 

drug-excipient mixtures, water formation signs were only 

seen in dextrose and drug mixtures. 

It should be noted that small temperature shifts toward 

lower values may be observed due to the amount of the 

materials inside a certain sample size. 

 

FT-IR Results 

Figure 3-A-a shows the IR spectrum of pure methyldopa. 

According to the literature, the main IR signals appeared 

at 1640cm-1 (carbonyl stretch in carboxylic acid with an 

adjacent amine), 1530 cm-1 and 1610 cm-1 (Primary 

amine N-H bending ), 1489 cm-1 (Aromatic C=C), 1122 

cm-1 (C-N stretch), 1286 cm-1 (R-Alkyl O-H deformation 

and C-O stretching vibration interaction), 1255 cm-1 R-

Alkyl) and1119 cm-1 )C-O of phenolic OH).  

 
Figure 3. The IR spectrums, A) Drug-Dextrose, B) Drug-Anhydrous lactose, C) Drug-Monohydrated lactose, binary mixtures a) Pure 
Drug, b) Mixture immediately after mixing and c) After incubation at 90 °C after 2 months and D) Comparison of a)incubated Drug-
Dextrose mixture with b) synthetized N-formyl of methyldopa 
 

Figure 3-A(a-c) presents the IR spectrum of pure 

methyldopa, mixture of methyldopa and dextrose )1:1 

mass ratio) with 20% (v/w) added water, immediately 

after mixing and after incubation at 90 °C after 2 months.  

Some changes in the IR absorption pattern were observed 

in the incubated physical mixture. The amine functional 

group in the chemical structure of the intact drug molecule 

was identified by N-H absorption peaks at (strong 1530 

,weak 1610 cm-1), while the carboxylic acid functionality 

absorbed the IR spectrum at approximately 1640 cm-1. 

After incubation, the sample showed 1522 cm-1 absorption 

peak, but the absorption at 1610 cm-1 was eliminated 3-A-

c, and new and strong absorptions in 1622 and 1719 cm-1 

occurred, which may be to loss of type one amine as the 

result of conversion to type 2 and carboxylic acid 

functionality, respectively.27-29 The shift observed for the 

absorption wave number of the carboxylic acid may be 

due to adjacent amine change and subsequent reduced 

bond electro negativity.  

Figures 3-B and 3-C show the IR spectrum of pure 

methyldopa, mixture of methyldopa with anhydrous 

lactose or Monohydrated lactose (1:1 mass ratio) with 
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20% (v/w) added water, immediately after mixing and 

after incubation at 90 °C after 2 months. 

Similar to dextrose-drug mixtures, in the incubated 

physical mixtures of anhydrous lactose and monohydrated 

lactose (3-B-c and 3-C-c), the absorption peaks at 1522 

cm-1 remained almost unchanged, but the peak at 1610 cm-

1 was eliminated, and new and strong absorptions at 

approximately 1624 and 1719 cm-1 occurred. The same 

conclusions made for dextrose can explain these changes.  

In the incubated binary mixture of the drug with 

monohydrated lactose, some conversions occurred in the 

peak of N-H (1530, 1610 cm-1) and carboxylic acid (1640 

cm-1). The maintenance of 1522 cm-1 and elimination of 

1610 cm-1 were seen, and a new absorption in 1622 and 

1719 cm-1 occurred, which may be to loss of type one 

amine due to conversion to type 2 (Figure 3-C-c). 

The findings indicated that the newly formed peak at 1719 

cm-1 was more intense in dextrose binary mixtures with 

methyldopa compared to lactose samples.  

Figure 3-D illustrates the chemically synthetized N-formyl 

methyldopa IR absorption spectrum along with the most 

reacted sample mixture (dextrose-Methyldopa binary 

mixture).   

The N-formylated methyldopa IR spectrum (Figure 3-D-b) 

depicts the elimination of the IR absorption bond in 1700 

cm-1, and formation of a new peak in 1655 cm-1 

corresponded to bending of C-O in N-formyl or type 2 

amide functionality. The shape of the reaction mixtures 

(Figure 3-D-a) compared to N-formyl methyldopa 

indicates that the reaction progress is intermediate and no 

N-formylated methyldopa as an end stage product is 

formed yet. 

 

HPLC results 

Figure 4 shows HPLC chromatogram of standard 

methyldopa, binary mixtures of methyldopa with 

anhydrous lactose or dextrose (1:1 mass ratio). 

 
Figure 4. The HPLC chromatogram of, a) Drug-Anhydrous 
lactose binary mixture, b) Pure drug and C) Drug-Dextrose 
binary mixture 

According to Figure 4, Peak 1 is a new peak observed in 

binary mixtures and is more intense in the case of Drug-

Dextrose binary mixture. The peak 1 was collected from 

the exit part of the column after uv detector and was 

consequently injected to the mass analyzer.  

 

Mass results 

Figure 5-a presents the mass spectrum of methyldopa as 

a reference standard powder. The m/z value at 212.4 

corresponds to the [M+H+] of the molecular ion of the 

methyldopa (Molecular weight=211.2). Figure 6 shows 

the proposed fragmentation pathway of methyldopa 

resulting in an m/z value of 164, which increases to 

187.2 by accepting a Sodium ion and leads to the base 

peak showing the highest intensity at m/z value equal to 

187.3 (Figure 4-a). 

Figure 7 shows the proposed interaction pathway of 

methyldopa with dextrose. 

Figures 7-b and 7-cpresent the mass spectrums of the 

methyldopa and dextrose mixture stored at 90 °C for 5 

day or 60 °C for 12 months, respectively. 

According to Figure 7, it is interesting to note that all the 

compounds numbered 2,5,6,7 and 8 are structural 

isomers formed by rearrangement reactions. These 

isomers are referred as intermediate products herein. 

Thus, the [M+H+] peaks of these isomeric structures 

appear similarly in m/z values of approximately 374.3, 

while the N-formyl compound referred to as end stage 

Maillard reaction product herein, may appear at m/z 

value equal to 240.2.  

Dextrose containing samples showed the intermediate 

and end stage (N-formyl) reaction products at m/z values 

equal to 374.5 and 240.4, respectively (Figures 5-b and 

5-c). It can be concluded that in drug-Dextrose binary 

mixtures, the end stage products are formed under more 

intense condition compared to the intermediate ones. 

Figure 8 presents the proposed interaction pathway of 

methyldopa with lactose. 

Figure 9 depicts the mass spectrum of Methyldopa-

Lactose binary mixture stored at 90 °C for 5 days and at 

60 °C for 12 months. 

Figure 9-a shows the mass spectrum of methyldopa-

anhydrous lactose mixture stored at 90 °C for 5 days. 

The base peak appeared at m/z value equal to 558.5, 

corresponding to the [M+H+] of compound 2 containing 

one sodium ion. Meanwhile, the m/z value of compound 

2 with no sodium is also obvious in the mass spectrum at 

536.5 (Figure 9-a). A close look at chemical structures of 

compounds 2,5,6,7 and 8 indicates that all these 

compounds are structural isomers and thus their [M+H+] 

ion peak appears similarly at approximately 536.5. In the 

5-day stored Drug-Lactose mixture, there was no sign of 

formation of end stage (N-formyl) product (Figure 9-a), 

while the long time treated sample for one year showed a 

strong peak at m/z value equal to 240.4 (Figure 9-b). 

Figure 8 shows the mass spectrum of mixture of 

methyldopa and anhydride lactose blended in 1:1 mass 

ratio and then mixed with 20% (v/w) water and stored at 

60 °C for 1 year. In this spectrum, the m/z of N-formyl 
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(240.4) is clearly observed. It can be concluded that in 

drug-lactose binary mixtures, the end stage products are 

formed under more intense condition compared to the 

intermediate ones. 

 

 
Figure 5. The mass spectrum of a) Methyldopa, b) Methyldopa-Dextrose binary mixture at 90 °C for 5 day, c) Methyldopa-Dextrose 
binary mixture at 60 °C for 12 months 
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Figure 6. Fragmentation pattern of methyldopa 

 

 
Figure 7. The proposed interaction pathway of methyldopa with dextrose 
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Figure 8. The proposed interaction pathway of methyldopa with lactose anhydride 
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Figure 9.The mass spectrum of a) Methyldopa-Lactose binary mixture stored at 90 °C for 5 days, b) Methyldopa- Lactose binary mixture 
at 60 °C for 12 months 

 

Conclusion 

The potential incompatibility of Methyldopa with 

reducing carbohydrates was successfully established using 

simple and sophisticated physicochemical methods.  

It is recommended to track the Maillard interaction in 

solid pharmaceutical dosage forms containing lactose as 

a filler (for example in tablets and capsules), or as a 

carrier in liquisolid formulations, and or as a 

lyoprotectant in lyophilized sterile or non-sterile powders 
6,7. The same is correct for Dextrose containing 

preparations used as a binder in the granulation and as a 

sweetener in liquid and sugar coated solid dosage forms. 

In the case of Dextrose-Methyldopa interaction, the 5% 

dextrose large volume intravenous fluids (LVIFs) that 

may be used as gavage solution diluents in enteral tubing 

of unconscious Parkinson patients may trigger the 

unwanted interaction, and may be simply avoided or 

tracked using the introduced physicochemical methods.7-9 
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