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Catalytic amidation of natural and synthetic polyol
esters with sulfonamides
Hua Liu1, Yi-Ling Zhu1 & Zhi Li 1

Triacylglycerides are naturally abundant and renewable feedstock for biofuels and chemicals.

In this report, these seemingly stable compounds are shown to be reactive toward a variety of

sulfonamides under Lewis acid catalysis. In these reactions, alkyl C(sp3)–O bonds are cleaved

and C–N bonds constructed, providing functionalized value-added products directly from

renewables. Mechanistic and scope study demonstrate that the origin of the reactivity could

be the synergy of Lewis acid catalysis and neighboring group participation by the 2- or

3-acyloxy or acylamido group with respect to the reactive site. Since poly(ethylene

terephthalate) (PET), a widely available consumer polyester, also contains 1,2-diol diester

group as the repeating unit in the main chain, this chemistry can also be applied to efficient

depolymerization of PET.
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B iodiesel is an appealing source of renewable energy that
received elevated attention in the recent decades1. Biojetfuel
blends derived from plant oils reportedly reduced the

emission of pollution particles comparing with traditional jet
fuels2. Recently, gene engineering of oil-rich plants and microbes
has been studied in order to boost production of plant oils3–5.
Production of biodiesel commonly involves alkaline catalyzed
transesterification of plant, animal, and microalgae oils, i.e. nat-
ural triacylglycerides (TAGs), with methanol to fatty acid methyl
ester (FAMEs), a major component of biodiesel6. The transes-
terification process also produces an enormous amount of waste
glycerol (projected to reach about 4 million tons per year by 2024)
7, often contaminated with water, alcohol, and alkaline, as an
inevitable by-product. Containing a three-carbon chain, glycerol
has been considered a very versatile platform for industrially
meaningful chemicals8,9. Successful technology of glycerol
valorization could revolutionize the chemical industry, shifting
the production of many valuable industrial chemicals, such as
1,3-propanediol, allyl alcohol, acrylic acid, and many others, from
relying on fossils to renewables7,10–12. But waste glycerol is hardly
an ideal feedstock before costly purification13. The upcoming
booming production of TAGs as projected above will make the
situation even worse.

Since glycerol comes from TAGs, an intriguing question would
be that how can TAGs be directly used as 3-carbon platform
chemicals? Can we recover biodiesel+ value-added products
incorporated the 3-carbon motif while avoid generating waste
glycerol? One such effort destroys the glyceryl motif before
release: direct decarboxylative cracking and hydrotreatment of
TAGs to hydrocarbons using heterogeneous catalysts affords
products that can be used directly as diesel fuels14–19. These
processes were typically performed at high temperatures
(250–500 °C) and the C3 glyceryl motif was completely converted
into propane which was too diluted to receive reasonable atten-
tion. A second reasonable transformation would be direct sub-
stitution of the acyloxy groups (RCOO–) of TAGs with other
nucleophiles (NuH), constructing C–Nu functionality while
recovering RCOOH. Surprisingly, although strategies that make
use of synthetic glycerol derivatives were reported20–22, few
reports use TAGs directly as C3 building blocks for chemical
production23. The reason might be that ester is usually considered
as a rather stable functional group, especially the alkoxy C(sp3)–O
single bond24. In fact, in order to recover carboxylic acid that
protected as an ester through nucleophilic cleavage of the C–O
bond, some stringent conditions have to be met: high temperature
(>100 °C), polar aprotic solvents (DMF, DMSO, and HMPA),
stoichiometric salt of strong nucleophiles (halides, RSe–, RS–,
RO–, and CN–), and C–O bonds that are labile towards SN1 or
SN2 reactions (methyl, allyl, and benzyl. Fig. 1a)25–27. These
procedures can surely be applied to a general scope of esters, but
for glycol diesters or TAGs it would be difficult to selectively
convert one acyloxy group while keeping the other ones
unchanged.

Early works have shown alkyl esters, including TAGs, could
undergo C–O hydrogenolysis to C–H and corresponding car-
boxylic acids catalyzed by tandem metal triflate Lewis acids and
Pd hydrogenation catalyst (Fig. 1c)28–32. The C3 motif of glyceryl
could be retained, but C–O hydrogenolysis of TAGs only showed
moderate yield and selectivity toward highly valuable chemicals
such as 1,2- and 1,3-propanediol derivatives29. Although acid-
catalyzed C–O cleavage of mono-acyloxy group likely proceeds
through an elimination-hydrogenation mechanism31, the
mechanism of TAGs hydrogenolysis remains elusive29. Diesters
of 1,2- and 1,3-diols are known to undergo neighboring-group-
assisted substitution of the acyloxy group through a cationic
acyloxonium intermediate under stoichiometric Lewis acid-

mediated conditions, and so do TAGs33. Therefore, Lewis acid-
catalyzed formation of acyloxonium intermediates and their
catalytic hydrogenation could also be one of the operating
mechanisms in the hydrogenolysis of TAGs.

In fact, acyloxonium cations (also named dioxolonium) are
well-documented and can be generated from a number of ways,
for examples (Fig. 1b): (1) alkene and iodine+ silver ester salt
(Prévost reaction34 and Prévost-Woodward reaction35) or
haloalkyl ester+ silver salt33; (2) benzylidene acetal+NBS36; (3)
protonation of ketene acetals37; and (4) diester+ acid33. Breaking
down acyloxonium intermediates with nucleophiles lead to many
useful products described in the references above. Among the
above strategies, silver salt strategies require stoichiometric silver
salt and generate stoichiometric silver halides as by-products,
while benzylidene/ketene acetals strategies require steps to syn-
thesize these acetal precursors. On the other hand, the diester+
acid method is a very promising strategy to perform acyloxonium
chemistry in the regard of green chemistry, overcoming the
abovementioned drawbacks of other counterpart strategies. First,
many precursors containing a diester motif are naturally occur-
ring (such as TAGs) or easily obtained from renewable resources
(such as from sugar polyols and waste plastics). Second, car-
boxylic acid can be recovered as a by-product in this strategy. The
biggest challenge here is catalysis in that among all the above
methods, there has not been a catalytic strategy to generate and
convert acyloxonium cations.

As implied in the TAGs hydrogenolysis work, strong triflate
Lewis acids may also be able to catalyze the formation of acy-
loxonium cations, which would then participate in the selective
ring-opening reactions, accomplishing catalytic substitution
reactions of the acyloxy groups of TAGs, and even of many other
1,2- and 1,3-diol diesters. The investigation of the substitution
reaction may lead to mechanistic understanding as well as
alternative transformations of renewable feedstocks38. Herein, we
present a remarkably simple catalytic reaction which directly
substitutes the acyloxy groups of various polyol esters with
arylsulfonamides, likely undergoing the acyloxonium inter-
mediates (Fig. 1d). Such a transformation accomplishes the
conversion of an ester C(sp3)–O bond into more valuable C–N
sulfonamide functionalities in not only TAGs, but also many
other 1,2- and 1,3-diol diesters, even including esters of many
natural polyols such as sugar alcohols and synthetic polyester
polymers.

Results
The substitutive amidation reaction of ethylene glycol diacetate
(1a) with N-methyl-p-toluenesulfonamide (TsNHMe, 2a) was
chosen as a model reaction to investigate the reaction conditions.
In the presence of different metal trifluoromethanesulfonate
(triflate, OTf) catalysts M(OTf)n (2 mol %) in dichloroethane
(DCE) at 120 °C for 24 h, mono-C(sp3)-amidation product 3aa
was obtained as the only product. The yield largely depended on
the Lewis acidity of metal triflates, among which Hf(OTf)4
seemed to be the most efficient catalyst39. DCE was chosen as the
solvent for initial screening because of its good solubility of
reagents and catalysts. Note that the glycol diacetate was added in
an excess (2 equiv.) to facilitate better conversion of the sulfo-
namide nucleophile. The reaction also went much faster under
the solventless condition, giving 90% yield of 3aa after heating for
just 6 h and 95% for 24 h (Supplementary Table 1). The results of
reactions were similar when different acyl groups were investi-
gated (Table 1, entries 1–4). But triacetin and tributyrin (Table 1,
entries 5–6) could not accomplish full conversion (~60% con-
version of 2a) even with the increase of catalyst loading (5 mol%),
affording only the mono-amidation products in moderate yields.
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Note that reactions of triglycerides selectively afforded mono-
amidation products with only very small amount of 1,3-diami-
dation products (<5%), while no substitution took place at the
secondary acyloxy group.

Different sulfonamide nucleophiles were next evaluated.
TsNH2 (2b) reacts with 1a smoothly to give 85% of the mono-
amidation product in just 14 h, which further reacts with 1a once

more to afford N,N-dialkylated sulfonamide in 10% yield (Table
1, entry 7). Amides and carbamides were not reactive at all (Table
1, entries 8–10). N-methyl methanesulfonamide and N-methyl
benzenesulfonamides bearing electron-withdrawing groups or
electron-donating groups at the benzene ring all proved to be
good nucleophiles, providing the corresponding mono-amidation
product as the single product in excellent yields (Table 1,
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entries 11–15). But N-methyl-4-nitrobenzenesulfonamide and N-
methyl-4-acetamidobenzenesulfonamide gave no product at all
(Table 1, entry 16–17). Surprisingly, saccharin (2m), a sulfona-
mide that widely used as an artificial sweetener in food industry
as well as a nitrogen source in catalytic diamination reaction of
alkenes40,41, is shown to be a superior nucleophile than others.
When examined in the glycol diacetate amidation reaction,
almost quantitative yield of 3am was obtained, possibly because
the higher acidity of saccharin than TsNHMe allows higher
concentration of sulfonamidate anion, which could be the real
nucleophile (Table 1, entry 18).

Intrigued by the improved performance of saccharin, we
then investigated the reactivity between saccharin and tribu-
tyrin, a representative TAG. Mono-substituted product was
obtained in 60% yield under the same conditions as above,
while increasing the loading of Hf(OTf)4 to 5 mol % did not
significantly improve the yield (Table 1, entries 19–20). Among
several metal triflates, Sc(OTf)3 gave significantly higher yield,
76%, which could be further improved to 85% by raising the
reaction temperature to 150 °C (Table 1, entries 21–24).
Interestingly, lowering the loading of Sc(OTf)3 to 2 mol %
could afford a higher yield of the product, probably by

reducing the double amidation side-reaction (Table 1, entry
25). Indeed, when the stoichiometry of saccharin was
increased, higher yields of the double substitution product
were obtained (Table 1, entries 26–27).

These results inspired us to further explore the scope of polyol
esters (Fig. 2). A series of TAGs derived from different aliphatic
and aromatic carboxylic acids were converted to the corre-
sponding mono-sulfonamidation products (3em–3jm) in good
yields, along with recovered carboxylic acids. In particular, tri-
caprylin (1i) required stronger conditions (5 mol % catalyst, 180 °
C, 24 h) than the standard condition, giving only 72% yield. On
the other hand, tristearin (1j), major component of animal fats,
gave mono-amidation product 3jm in 79% yield after heating for
48 hours. In a gram-scale example product 3em was obtained in
80% yield. Subjecting the resulting mono-amidation products in
the reaction conditions again gave double-amidation products
3emm and 3fmm in good yields. Then a series of 1,2-diacetyloxy
alkanes were examined. They all gave good yields of the mono-
amidation products (3km–3om), although longer alkyl side
chains required longer reaction time and higher stoichiometry of
the ester to achieve high yields, likely due to the competitive
elimination of the secondary acetyloxy group along with its β-H.

Table 1 Reaction Conditions Optimization for Polyol Esters and Nucleophilesa
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neat, temp, 24 h

O

R1

O

R2

N
R4

R3 R2COOH

3

+ +

Polyol ester, 1 Nucleophile, 2 Catalyst mol % Temp /°C Yield /%

1 Glycol diacetate (1a) TsNHMe (2a) Hf(OTf)4 2 120 90
2 Glycol dipropionoate (1b) TsNHMe (2a) Hf(OTf)4 2 120 83
3 Glycol diisobutyrate (1c) TsNHMe (2a) Hf(OTf)4 2 120 84
4 Glycol dipivalate (1d) TsNHMe (2a) Hf(OTf)4 2 120 83
5 Triacetin (1e) TsNHMe (2a) Hf(OTf)4 5 120 42
6 Tributyrin (1f) TsNHMe (2a) Hf(OTf)4 5 120 48
7b Glycol diacetate (1a) TsNH2 (2b) Hf(OTf)4 2 120 85
8 Glycol diacetate (1a) AcNHMe (2c) Hf(OTf)4 2 120 0
9 Glycol diacetate (1a) BocNHMe (2d) Hf(OTf)4 2 120 0
10 Glycol diacetate (1a) Phthalimide (2e) Hf(OTf)4 2 120 0
11 Glycol diacetate (1a) CH3SO2NHMe (2f) Hf(OTf)4 2 120 92
12 Glycol diacetate (1a) PhSO2NHMe (2g) Hf(OTf)4 2 120 94
13 Glycol diacetate (1a) 4-BrPhSO2NHMe (2h) Hf(OTf)4 2 120 95
14 Glycol diacetate (1a) 4-CF3PhSO2NHMe (2i) Hf(OTf)4 2 120 98
15 Glycol diacetate (1a) 4-MeOPhSO2NHMe (2j) Hf(OTf)4 2 120 91
16 Glycol diacetate (1a) 4-NO2PhSO2NHMe (2k) Hf(OTf)4 2 120 0
17 Glycol diacetate (1a) 4-AcNHPhSO2NHMe (2l) Hf(OTf)4 2 120 0
18 Glycol diacetate (1a) Saccharin (2m) Hf(OTf)4 2 120 98
19c Tributyrin (1f) Saccharin (2m) Hf(OTf)4 2 120 60
20c Tributyrin (1f) Saccharin (2m) Hf(OTf)4 5 120 66
21c Tributyrin (1f) Saccharin (2m) Yb(OTf)3 5 120 40
22c Tributyrin (1f) Saccharin (2m) Al(OTf)3 5 120 45
23c Tributyrin (1f) Saccharin (2m) Sc(OTf)3 5 120 76
24c Tributyrin (1f) Saccharin (2m) Sc(OTf)3 5 150 85
25c,d Tributyrin (1f) Saccharin (2m) Sc(OTf)3 2 150 90
26c,e Tributyrin (1f) Saccharin (2m) Sc(OTf)3 2 150 66
27c,f Tributyrin (1f) Saccharin (2m) Sc(OTf)3 2 150 65

Tf trifluoromethanesulfonyl, Ts 4-methylbenzenesulfonyl, Ac acetyl, Boc t-butyloxycarbonyl, neat without solvent
a1 (1.0 mmol), 2 (0.5 mmol) and catalyst were stirred at 120 °C for 24 h; Yields are isolated unless otherwise noted
bReaction time: 14 h. N,N-dialkylated product 10% obtained
cNMR yield
d85% isolated yield, along with 3% double substitution
e1:1 of tributyrin and saccharin, product contains 14% double substitution product
f1:2 of tributyrin and saccharin, product contains 25% double substitution product
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We then took the challenge of molecules containing even more
ester groups than TAGs. For example, erythritol, xylitol, and
sorbitol are all well-known sugar-derived polyols, as well as tough
targets for biomass conversion42–44. Sugar-derived aminopolyols
are also potentially useful molecules in drug discovery because of
their structural resemblance to carbohydrates, and they are
extensively studied synthetic targets45–50. In our strategy, all
hydroxyl groups of erythritol, xylitol, and sorbitol were first
fully acetylated, and the resulting esters (1p, 1q, and 1r) were
subjected to the standard catalytic sulfonamidation conditions
with saccharin. Terminally mono-amidation products (3pm,
3qm, and 3rm) were obtained as mixtures of stereoisomers in
moderate yields. Note that the starting materials were all single
stereoisomers, but the stereocenters of the products were all
scrambled (See Supplementary Fig. 1 for erythritol acetate
epimerization).

Moreover, 1,3-diesters were also examined. 1,3-Propanediol
diacetate (1s) gave mono-amidation product in 73% yield,
demonstrating that acyloxy groups in 1,3- relationship were also
reactive. Tris(hydroxymethyl)methane triacylate (1t) and pen-
taerythritol tetraacylate (1u) are interesting substrates because
they both contain multiple 1,3-relationships hence might allow
multiple substitution like TAGs. However, they both gave
exclusively mono-amidation products (3tm and 3um) in low
yields and incomplete conversion of reagents, even after repeated
reactions.

The exclusive generation of mono-amidation products
strongly suggested that the neighboring group participation

mechanism is probably operating in these reactions (Fig. 3a). In
contrast to the facile reactions of 1,2- and 1,3-diesters, 1,4-
butanediol diacetate (1v) gave <5% yield of mono-amidation,
while phenylpropyl acetate (1w), an isolated ester, gave 18%
yield (Fig. 3b). These observations consolidated the neighboring
group participation effect which was more pronounced when a
five- or six-membered cyclic intermediate could be generated
by an intramolecular substitution51,52. We then synthesized and
isolated the [BF4]– salt of the cationic intermediate in stoi-
chiometric amount33. Reacting this salt with saccharin afforded
the mono-amidation product 3am in good yield, demonstrating
that the mechanism likely undergoes this proposed pathway
(Fig. 3c). Lastly, the stereochemistry scrambling phenomena of
sugar alcohol esters could also be explained by this mechanism
(Fig. 3d). Generation of the cationic intermediate may come
from either the terminal acyloxy group attacking an internal
acyloxy group (red arrows) or the opposite way (blue arrows).
Then before the nucleophile approaches, the leaving acyloxy
group may rebound to either the primary or the secondary
carbon of the five-membered ring intermediate, resulting ste-
reochemistry inversion. This process seems to be a fast equili-
brium under Lewis acid catalysis, thus it would possibly result
in a thermodynamic mixture of stereoisomers at the end (See
also the supporting information for an experiment on erythritol
tetraacetate epimerization without nucleophile). These results
implied that both the terminal/primary and internal/secondary
alkoxy C–O bonds were being activated by the Lewis acid as a
leaving group, but only the terminal/primary position of the
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cyclic cationic intermediate was susceptible for nucleophilic
attack by saccharin.

It is then conceivable that the neighboring participation group
might not have to be an ester carbonyl. Instead, an amide car-
bonyl would be more nucleophilic while less labile as a leaving
group. Hence, a molecule containing both amide and ester
functional groups in a suitable distance should produce an amide
sulfonamide, a diamine derivative, under this catalytic substitu-
tion. Investigations were performed on a series of amide esters,
which were easily prepared from amino alcohols (Fig. 4). Brief
conditions screening on 2-acetamidoethyl acetate (4a) revealed
that Hf(OTf)4 and 150 °C are effective conditions (Supplementary
Table 2). Amide sulfonamide 5am was obtained in an excellent
yield of 92% under the optimized condition, as well as those from
substrates bearing substituents at the α- and β-positions of the
acyloxy group (5bm ~ 5gm). In these cases, the acyloxy group
acts exclusively as the leaving group, while the amide acts
exclusively as the intramolecular nucleophile. Thus, stereo-
chemistry of the parent amino alcohols is retained (See Supple-
mentary Fig. 2 for high-performance liquid chromatography

results, and Supplementary Fig. 3 and Supplementary Tables 3 for
X-ray crystallography structure of (R)-5dm). When two equiva-
lent acyloxy leaving groups were present, selectivity of mono-
amidation could be achieved by using an excess of the substrate
(5hm). Compounds 5im and 5jm were observed as the rotational
isomer mixtures about the amide bond. Amide at the γ- position
of the acyloxy group is also an effective directing group (5km).
The stereochemistry outcome of the reaction of exocyclic amide
esters was quite intriguing: the same relative trans- configuration
of 5lm was always obtained, regardless of whether the reaction
started from either the cis- or trans-1-acetamido-2-indanol acet-
ate (4l and 4l’). Similar results were also observed in the reaction
from trans-2-acetamido-2-cyclopentanol acetate (4m) to the
trans- amide sulfonamide 5mm. There might be a common fused
ring cationic transition state in these reactions that gives the
trans- products while performing ring-opening.

Lastly, we expand the scope of this chemistry beyond natural
polyol esters into synthetic polyesters. Polyesters, in particular,
poly(ethylene terephthalate) (PET), are an essential class of
materials for modern society. Since PET is widely used in
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consumer products such as containers and textiles, rapid accu-
mulation of post-consumer PET wastes has been an emerging
environmental issue. Efforts for PET recycling include physical
methods such as remolding, and chemical depolymerization, such
as hydrolysis53, transesterification54,55 hydrogenation56, and cat-
alytic hydrosilation57. These chemical methods all rely on car-
bonyl chemistry. On the other hand, PET units are ethylene
glycol diesters, excellent potential precursors for the Lewis acid-
catalyzed amidation strategy described above. Indeed, upon cat-
alytic substitution by saccharin, PET pieces directly cut from an
empty plastic soda bottle were completely degraded to para-ter-
ephthalic acid (PTA) and sulfonamide products (Fig. 5a). Note
that toluene was used as solvent to facilitate the diffusion of the
catalyst and saccharin into the polymer body. Compound 8 was
precipitated from the addition of 0.5 M NaOH aqueous solution
into the product mixture in 86% yield (Fig. 5b). Basic PTA and
trace amount of mono-amidation products (such as 7) are still in
the aqueous phase. In order to recover PTA as much as possible, a
one-pot substitution-hydrolysis protocol was conducted: after the
catalytic substitution was done, 6 M NaOH aq was added to the
reaction mixture and stirred at 60 °C for 3 h. Acidification by HCl
rapidly precipitates PTA out in almost quantitative yield (97%),
while the sulfonamido alcohol 9 was extracted out from the
aqueous phase in 90% yield. The production of 9 is a decisive
evidence that the PET chain is cleaved by the catalytic substitu-
tion chemistry rather than carbonyl chemistry. A two-gram scale
demonstration was also performed, in which 95% PTA and 84%
of 9 were recovered while consuming less solvent and base per
unit mass of products obtained than that of the small-scale
reaction. This one-pot strategy for PET depolymerization showed
clear advantages over other protocols: (1) complete depolymer-
ization under mild condition; (2) easy work-up and isolation of
products; and (3) production of value-added chemicals contain-
ing sulfonamide functionality, other than the usual ethylene
glycol product.

Discussion
Some of the sulfonamide products obtained in this research are
sporadically reported in the literature and patents as a variety of
functional molecules or their synthetic precursors. For example,
some N-hydroxyethyl saccharin derivatives were reported to
exhibit biological and medical activities58–60, some 1-
aminoglycerol sulfonamides were reported to serve as compo-
nents in printing ink61. Nevertheless, deprotection of sulfona-
mides is very challenging chemistry, which usually requires
drastic conditions and stoichiometric hazardous reagents62. We
tested reported procedures for saccharin deprotection41 but none
of them gave satisfactory efficiency obtaining the free amine
product. In this regard, future direction of this research would
focus on development of catalysts and more easily cleavable or
useful nucleophiles rather than deprotection of sulfonamide
groups. Meanwhile, applications of the current sulfonamide
products are also being studied.

Methods
General catalytic procedures for polyol esters. Polyol ester (1.0 mmol), sulfo-
namide (0.5 mmol) and Hf(OTf)4 (0.01 mmol) were added to a 5 mL sample vial
equipped with a magnetic stir bar. The vial was sealed and stirred at 120 °C for 24
h. The mixture was then cooled to room temperature and purified by column
chromatography (PE: EA= 4:1).

General catalytic procedures for amide esters. Amide esters (0.6 mmol), sac-
charin (0.5 mmol) and Hf(OTf)4 (0.005 mmol) were added to a 5 ml sample vial
equipped with a magnetic stir bar. The vial was sealed and stirred at 150 °C for 24
h. The mixture was then cooled to room temperature and purified by column
chromatography (PE: EA= 1:1).

Gram scale one-pot depolymerization of PET. PET pieces (1.92 g, 10 mmol),
saccharin (1.83 g, 10 mmol) and Hf(OTf)4 (350mg, 0.5mmol) were added to a 50mL
reaction tube equipped with a magnetic stir bar, followed by the addition of toluene
(10mL). The tube was then sealed and stirred at 150 °C for 48 h. After cooling to
room temperature, a solution of NaOH (2.40 g, 60 mmol) and water (20mL) was
added to the reaction tube. The resulting mixture was further stirred at 60 °C for 12 h,
and then partitioned between water (50mL) and ethyl acetate (50mL). The aqueous
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phase was separated and acidified to pH~ 4 by dropwise addition of 12M HCl
solution to precipitate out terephthalic acid. The solid was then filtered, washed with
water (20mL), and dried under vacuum. 1.57 g of terephthalic acid was obtained as a
white solid in 95% yield. The resulting aqueous filtrate was extracted with ethyl acetate
(100mL*3). The combined organic phase was washed with saturated NaCl solution
(100mL), dried with Na2SO4 and evaporated under vacuum. 2.05 g of compound 9
was obtained as a white solid in 84% yield.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its Supplementary Information files. Extra data are available from the
corresponding author upon request. Supplementary Tables and Figures, experimental
procedures, characterization and spectra of all materials, and X-ray crystallographic
coordinates data of (R)-5dm are included in the Supporting Information. The X-ray
crystallographic coordinates for (R)-5dm have also been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers CCDC 1892474.
These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
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