
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2010, Article ID 291874, 11 pages
doi:10.1155/2010/291874

Research Article

Truncated Total Least Squares Method with
a Practical Truncation Parameter Choice Scheme for
Bioluminescence Tomography Inverse Problem

Xiaowei He,1, 2 Jimin Liang,1 Xiaochao Qu,1 Heyu Huang,1 Yanbin Hou,1 and Jie Tian1, 3

1 Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an 710071, China
2 School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi 710069, China
3 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Jie Tian, tian@ieee.org

Received 29 September 2009; Revised 4 March 2010; Accepted 8 March 2010

Academic Editor: Guo Wei

Copyright © 2010 Xiaowei He et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In bioluminescence tomography (BLT), reconstruction of internal bioluminescent source distribution from the surface optical
signals is an ill-posed inverse problem. In real BLT experiment, apart from the measurement noise, the system errors caused
by geometry mismatch, numerical discretization, and optical modeling approximations are also inevitable, which may lead to
large errors in the reconstruction results. Most regularization techniques such as Tikhonov method only consider measurement
noise, whereas the influences of system errors have not been investigated. In this paper, the truncated total least squares method
(TTLS) is introduced into BLT reconstruction, in which both system errors and measurement noise are taken into account. Based
on the modified generalized cross validation (MGCV) criterion and residual error minimization, a practical parameter-choice
scheme referred to as improved GCV (IGCV) is proposed for TTLS. Numerical simulations with different noise levels and physical
experiments demonstrate the effectiveness and potential of TTLS combined with IGCV for solving the BLT inverse problem.

1. Introduction

In recent years, molecular imaging has emerged as a
promising tool in basic, preclinical and clinical research for
monitoring a variety of molecular and cellular processes
in living organisms [1–4]. As one of molecular imaging
modality, bioluminescence tomography (BLT) has attracted
much attention due to its exquisite sensitivity and cost
effectiveness.

The key problem of BLT is to reconstruct the biolumi-
nescent source distribution inside a biological tissue from
the optical signals detected on the body surface, which is a
highly ill-posed inverse problem. By using numerical method
such as finite element method (FEM), the inverse problem of
BLT can be formulated into a nonsquare matrix equation,
where the coefficient matrix is typically ill-conditioned [5].
Hence overcoming the ill-posedness and seeking a stable
solution of the matrix equation are the major issues of BLT
inverse problem. For this purpose, the inverse problem is

often transformed to a least squares problem incorporated
with the regularization technique. Tikhonov regularization
is the most widely-used method in BLT reconstruction [6–
8]. It is aiming to stabilize the inverse of an ill-conditioned
operator and minimize the effects of the inevitable error by
minimizing a trade-off between the loss function and the
l2-norm [8]. However, previous studies based on Tikhonov
regularization only consider noise in the measurement. In
fact, some system errors also exist in the computed coefficient
matrix of the system equation. These errors may take place in
such aspects as FEM discretization, geometrical mismatch,
optical parameters inaccuracy and model approximation,
and so forth. System errors as well as measurement noise are
inevitable in real BLT experiment, which may lead to large
errors for the reconstruction results.

The total least squares (TLS) method is a generalization
of the least squares approximation method when the data
in both sides of the matrix equation are perturbed [9,
10]. Based on the TLS method, the truncated total least
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squares (TTLS) method is proposed for regularization of ill-
conditioned linear systems [11]. It is inspired by truncated
singular value decomposition (TSVD) which aims at limiting
the contribution of noise by cutting off a certain number
of terms in the singular value decomposition of coefficient
matrix [12]. Truncation level plays the role of regularization
parameter in truncation methods, which has great influence
on the quality of the solution. As a result, determining
an appropriate truncation level for TTLS is a critical step
in the inverse procedure. Most existing parameter-choice
schemes such as L-curve, discrepancy principle, generalized
cross-validation (GCV), and zero crossing methods assume
that the coefficient matrix is exactly known, that is, it is
not contaminated by noises or errors [13–16]. In [17],
a truncation level choice criterion named modified GCV
(MGCV) is proposed for TTLS method; theoretical analysis
and simulation tests show its potential for solving ill-posed
linear system. However, it has been recognized that choice
schemes of regularization parameter are mostly problem-
dependent and practical parameter-choice scheme for BLT
reconstruction deserves further study.

In this paper, the aim of our study is to extend the BLT
reconstruction to the case including both the measurement
noise and the system errors. For this purpose, TTLS method
combined with a practical scheme termed as improved GCV
(IGCV) is proposed to solve the BLT inverse problem. In
the next section, our methodology of solving the inverse
problem in BLT is described. In Section 3, we demonstrate
the performance of the TTLS method combined with IGCV
scheme in BLT reconstruction using numerical simulation
and physical experiments in various source and noise level
settings. Finally, we draw a conclusion and discuss the
relevant issues.

2. Methodology

2.1. Diffusion Approximation and Boundary Condition. In
general, light propagation in living subjects is mainly
hindered by both tissue scattering and absorption [7, 8].
Considering that bioluminescent photons belong to the
near-infrared region where scattering predominates over
absorption [3], the propagation of photon can be well
modeled by the following steady-state diffusion equation
[18]:

−∇ · (D(x)∇Φ(x)) + μa(x)Φ(x) = S(x) (x ∈ Ω), (1)

where Ω ∈ R3 is the bounded domain, Φ(x) represents the
photon flux density, and S(x) denotes the energy density
distribution of an internal bioluminescence source, D(x) =
1/(3(μa(x) + μ′s (x))) is the optical diffusion coefficient with
μa(x) being the optical absorption coefficient and μ′s(x) the
reduced scattering coefficient, respectively.

Assuming that the BLT experiment is performed in a
totally dark environment, the equation is subject to a Robin
boundary condition [18]:

Φ(x) + 2A(x;n,n′)D(x)(v(x) · ∇Φ(x)) = 0 (x ∈ ∂Ω),
(2)

where ∂Ω denotes the boundary, v(x) represents the unit
outer normal on ∂Ω,A(x;n,n′) ≈ (1 + R(x))/(1− R(x)) and
R ≈ −1.4399n−2 +0.7099n−1 +0.6681+0.0636n, n is the ratio
of optical reflective index of the inner tissue to that outside
the boundary, and n′ is close to 1.0 when the subject is in air
[8]. In a bioluminescent imaging experiment, the measurable
photon flux density on ∂Ω can be calculated by the following
outgoing radiation [18]:

Q(x) = −D(x)(v(x) · ∇Φ(x)) = Φ(x)
2A(x;n,n′)

(x ∈ ∂Ω).

(3)

2.2. The Model of BLT Reconstruction. Based on (1), (2), and
(3), the essence of the BLT reconstruction is to estimate the
light source distribution inside the biological tissues from
the measured flux on the surface, given the corresponding
optical parameters of the tissues. In order to solve the BLT
inverse problem, FEM was introduced to solve the diffusion
equation in [8, 18–20] because of its capability to process
volume with arbitrary geometries. After the discretization
using FEM, the linear relation between the bioluminescence
source intensity S and the photon flux density Φ can be
expressed as the following matrix form:

MΦ = FS, (4)

where Φ and S are the collection of all the nodal values of the
photon flux density and source density, M = K + C + B is
a positive-definite matrix, and K, C, and B are called the
mass, stiff, and boundary matrix, respectively. The photon
density Φ can be obtained from Φ = M−1FS. In fact,
only partial photon on the boundary can be acquired in
the BLT experiment, therefore, Φ can be partitioned into
the measurable boundary data Φm and other immeasurable
values Φi, and thus the reconstruction of the bioluminescent
source is to identify the unknown vector S from the photon
flux density Φm. According to the uniqueness theorem, the
BLT solution is not unique in the general case [21]. Some
prior information or constraints such as permissible area
of source should be imposed on the unknown variables to
obtain a meaningful reconstruction result. Considering the
source permissible region, we can obtain the linear relation
between the photon flux density Φm and the source energy
density distribution Sp in the light source permissible region,
that is,

ASp = Φm, (5)

where the coefficient matrix A is ill-conditioned and can
cause severe numerical instabilities in the solution. There-
fore, it cannot be directly solved using a simple least squares
method.

2.3. Regularization. In order to obtain a stable solution,
regularization methods are typically used for solving inverse
problems [8, 22, 23]. The commonly used Tikhonov regular-
ization method approximately solves (5) by converting it into
the following minimization problem:

min‖ASp −Φm‖2 + λ‖Sp‖2, (6)
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where λ > 0 is a properly chosen regularization parameter.
As a function of the regularization parameter, the solution of
(5) is given by

Sp =
(
ATA + λI

)−1
ATΦm. (7)

However, the reconstructions with Tikhonov regularization
method assume that the coefficient matrixA is exactly known
and noises only exist in the measurement. The regularization
solutions computed by (7) do not take system errors into
account.

As mentioned in the introduction, TLS method is
designed for the case that both sides of the matrix equation
are subject to errors. BLT inverse problem can be stated with
TLS formulation as follows:

min
Ã,Φ̃m

∥∥∥(A,Φm)−
(
Ã, Φ̃m

)∥∥∥
F

subject to ÃSp = Φ̃m, (8)

where ‖ · ‖F denotes the Frobenius norm, Ã and Φ̃m are the
error versions of A and Φm, respectively, and (A,Φm) is the
augmented matrix that combines matrix A and vector Φm by
using Φm as the last column of the new matrix. Based on the
TLS method, TTLS method is proposed by Fierro in [11] for
regularization of ill-conditioned linear systems. In TTLS, the
redundant information in (A,Φm), associated with the small
singular values, is discarded and the original ill-conditioned
problem is replaced with another appropriate and more well-
conditioned problem.

The TTLS algorithm used in this paper can be summa-
rized as follows.

(1) Compute the SVD of the augmented matrix (A,Φm)

(A,Φm) = ŨΣ̃ṼT =
n+1∑

i=1

uiσivi
T , (9)

where Ũ is m×(n+1), Ṽ is (n+1)×(n+1), and Ũ
T

Ũ =
ṼTṼ = In+1, and Σ̃ is an (n + 1) × (n + 1) diagonal
matrix with the singular values σ1 > σ2 > · · · > σn+1

on the diagonal.

(2) Select a truncation parameter k ≤ min(n, rank
(A,Φm)).

(3) Partition the matrix Ṽ ∈ R(n+1)×(n+1) such that

Ṽ =
⎛
⎝ Ṽ11

Ṽ21

Ṽ12

Ṽ22

⎞
⎠, Ṽ11 ∈ Rn×k , Ṽ22 ∈ R1×(n+1−k).

(10)

(4) Then the TTLS solution is given by

S
p
TTLS = −Ṽ12Ṽ

†
22 = −

Ṽ12Ṽ
T
22∥∥∥Ṽ22

∥∥∥2

2

. (11)

In fact, the aim of TTLS regularization is to appropriately
identify an optimal truncation level, and then to construct
a truncated solution that can capture the essential features
of the unknown true solution, without explicit knowledge
about the true solution and even without a priori knowledge
about the magnitude of the noise in the data. For this
purpose, truncation level k must be carefully determined.

2.4. Choice of the Truncation Parameter. MGCV criterion
proposed by Sima in [17] makes use of the filter factor
formulation of the TTLS solution proved in [11]:

S
p
TTLS =

n∑

i=1

fi
uTi Φ

m

σi
vi, (12)

where the filter factor values

fi =
k∑

j=1

v2
n+1, j∥∥∥Vk

22

∥∥∥2

(
σ2
i

σ2
i − σ2

j

)
, i = 1, . . . ,n. (13)

The property used for choosing the truncation parameter
k is that when the parameter is greater than a certain crucial
value, the TTLS solution is very sensitive to the noise or
errors. Specifically, for small truncation level k, the filter
factors with indices i = 1, . . . , k stay close to 1 and the
filter factors with indices i = k + 1, . . . ,n stay close to 0;
when the truncation level gradually increases to a certain
critical value, the filter factors with indices nearby k increase
dramatically. It implies a way to identify the value of k where
the filter factors change their steady behavior into erratic
growth behavior.

As for the regularization problem in BLT, the choice of
regularization parameter with classical GCV is by means of
minimizing the GCV function:

G =
∥∥∥ASpreg −Φm

∥∥∥2

(trace(I − AA†))2 , (14)

where A† presents the pseudoinverse of A. With filter factors,
the denominator can be computed by means of the following
expression:

trace
(
I − AA†

)
= m− (n− p

)−
p∑

i=1

fi, (15)

where p is the rank of matrix
∑

with the singular values on
the diagonal. We denote the sum of the filter factors of TTLS
solution by enpk as the effective number of parameters:

enpk =
n∑

i=1

fi =
n∑

i=1

k∑

j=1

v2
n+1, j∥∥∥Vk

22

∥∥∥2

(
σ2
i

σ2
i − σ2

j

)
. (16)

According to the properties of filter factors mentioned
above, for a k above a certain critical value, the filter factors
for TTLS solutions with indices nearby k are larger than 1. A
fact can be derived that enpk is greater than k when k reaches
this critical value, which is used to modify the above classic
GCV function to suit the TTLS case. And then the MGCV
criterion for TTLS is obtained

G =
∥∥∥ASpTTLS −Φm

∥∥∥2

(
m− enpk

)2 . (17)

However, the regularization parameter directly iden-
tified by (17) may be not optimal for the specific BLT
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reconstruction problem. Inspired by L-curve method, we
propose a hybrid scheme that combines MGCV with the
minimization of the corresponding residual norm for regu-
larization parameter choice. The IGCV scheme for TTLS is
summarized in the following steps.

Step 1. Use the MGCV criterion to get an initial truncation
parameter k and compute kmax, where kmax ≤ n is the
maximum k such that enp1 ≤ enp2 ≤ · · · ≤ enpkmax

≤ m;
at the same time an array of GCV function values G(i) is
obtained, i = [1, kmax].

Step 2. For i : k ∼ kmax, find the local minimum points that
satisfy the conditions: G(i− 1) > G(i) and G(i + 1) > G(i).

Step 3. For all the local minimum points, compute the
residual error ‖AS′TTLS,i − Φm‖, where S′TTLS,i is an approx-
imation of the TTLS solution for a given truncation level
i, that is, only the top 70% of the nodal values are kept
for computation convenience, and then the final truncation
parameter k = argmin‖AS′TTLS,i −Φm‖.

Thus, a proper truncation parameter k for TTLS is
sought according the above IGCV scheme.

3. Experiments and Results

The experiments implemented in this section are to test the
performance of TTLS combined with IGCV for BLT inverse
problem. To demonstrate the effectiveness of the proposed
scheme, we compare the following reconstruction algo-
rithms: Tikhonov method with classical GCV (Tik-GCV),
TTLS method with MGCV (TTLS-M), and TTLS method
with the proposed IGCV (TTLS-I). The parameter-choice
scheme of Tikhonov method is different from that of TTLS
method because MGCV and IGCV are specially designed for
TTLS. A similar scheme, namely, classical GCV, is adopted in
Tikhonov method for comparison convenience. The qualities
of the reconstruction are assessed by the following quan-
titative indices: relative residual error (RRE), reconstructed
location error, and reconstructed source power. Here, RRE
is used to depict the extent of the solution fitting the
measured data and is defined as‖ASp−Φm‖/‖Φm‖. Absolute
error (AE) of the reconstructed source location is used to
describe the accuracy of the reconstruction, which is defined

by
√

(xi,r − xi)
2 + (yi,r − yi)

2 + (zi,r − zi)
2, where (xi,r , yi,r , zi,r)

is the reconstructed center of each source and (xi, yi, zi)
the actual center. Considering the ill-posedness of the BLT
inverse problem, it is difficult to discriminate the influence of
small source of high density and large one of low density [24].
So we prefer reconstructed source power compared with the
actual value to source density for evaluating the quality of the
reconstruction results. And the source power is estimated by
computing the integral

∫
S(x)dx of the source intensity over

its support [25].

3.1. Numerical Simulation Verifications. In the numerical
simulation, a 30 mm diameter and 30 mm high cylindrical

Table 1: Optical parameters of the heterogeneous phantom.

Material μa (mm−1) μ′s (mm−1)

Tissue 0.007 1.031

Lung 0.023 2.000

Heart 0.011 1.096

Bone 0.001 0.060

mouse chest phantom is designed to evaluate the per-
formance of the reconstruction method. The structure of
the phantom is shown in Figure 1(a). The phantom is
heterogeneous and the corresponding optical parameters are
set as in Table 1 [25]. Two sphere sources of 0.5 mm diameter
with 1 nW/mm3energy density are located in the left lung
and the centers are S1 = (−9 mm,−1.5 mm, 15 mm) and
S2 = (−9 mm, 1.5 mm, 15 mm), respectively. The power of
each source is 0.5236 nW. In the following single source case,
only the source centered at S1 is considered.

In order to reduce the ill-posedness of the inverse
problem, a priori information of the source permissible
region (PR) is incorporated to our method, which is shown
in Figure 1(b) as PR = {(x, y, z) : 8 < (x2 + y2)1/2 <
12, 13.5 < z < 16.5} [25], where (x, y, z) is the coordinates
of the corresponding FEM mesh vertices.

Generally speaking, simulated data used in reconstruc-
tion algorithms for inverse problems often come from
the numerical solution of the forward problem. To avoid
the typical issue of inverse crime, we use different FEM
discretization for the forward process and reconstruction
algorithms. Specifically, the forward model contains 11997
mesh vertices corresponding to 66334 tetrahedral elements,
whereas the reconstruction model is consisting of 5277
vertices and 27465 tetrahedral elements. In addition, we
employ Lagrange-Quadratic interpolation function in the
forward process owing to the observation that high-order
interpolation function can improve the numerical accuracy
of the forward solution [26, 27].

To comprehensively simulate the noise and system errors
involved in real BLT experiment, the photon flux density
Φm is added with Gaussian white noise, and the coefficient
matrix A is added with a system errors matrix. Due to the
complexity of error sources, it is difficult to have an exact
mathematic model to describe the system errors accurately.
Hence we adopted the commonly used Gaussian white noise
[28–30] and exponential noise to simulate the errors in
matrix A, respectively.

As discussed in Section 2, regularization parameter is
the crucial factor that affects the quality of regularization
solution to inverse problem. Figure 2 illustrates the determi-
nation of regularization parameters in single source case with
measurement noise level of 10% and Gaussian system error
level of 1%. Among them, Figure 2(c) shows the residual
error values of all the local minimum points described
in our improved scheme IGCV, which are used for the
selection of an optimal truncation parameter k for TTLS.
It should be noticed that the parameter k identified by
MGCV is 64, whereas the optimal parameter k obtained by
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Figure 1: (a) A cross-section through two luminescent sources (S) in the left lung of a mouse phantom consisting of bone (B), heart (H),
lungs (L), and tissue (T). (b) A 3D view of the permissible region.

IGCV is 78. It is because ‖AS′TTLS,78 − Φm‖ is 0.0038 and
‖AS′TTLS,64 − Φm‖ is 0.0046, which indicate that 64 is not
the optimal parameter value according to IGCV criterion.
The determination of regularization parameter in double
sources case is similar to that of single source case. For space
limitation, we just provide the final regularization parameter
obtained in various noise settings in Tables 2 and 3.

In single source test, we found that all the methods
under consideration can detect the source with the same
center location SR1 = (−9.20 mm,−1.62 mm, 14.12 mm) in
different noise levels, but the reconstructed source power
varies with different reconstruction methods. Although the
absolute error of the source location is 0.911 mm, the
reconstructed source center is the nearest node to the original
location in the aforementioned FEM discretization. Figure 3
only shows the reconstruction results by our proposed
method with measurement noise level of 10% and Gaussian
system error level of 1%. The detailed quantitative recon-
struction results for the single-source model in various noise
settings are listed in Table 2. The optimal results are listed in
bold. Based on the simulation results in single-source case,
it is clear that all the reconstruction methods can estimate
the source location with no matter Gaussian or exponential
noise in matrix A, but TTLS combined with IGCV performs
best in all quantitative indices under different noise or error
levels.

In the double sources case, both of the two sphere sources
located in the left lung are tested. The final reconstruction
results are listed in Table 3. Under all the noise conditions
considered in this paper, the three methods can reconstruct
the two sources at SR1 = (−9.20 mm,−1.62 mm, 14.12 mm)
and SR2 = (−9.42 mm, 1.69 mm, 14.94 mm), which are
0.911 mm and 0.467 mm away from the actual ones, respec-
tively. In fact, they are the nearest nodes to the original source
locations under the FEM mesh used in our tests. However,
with the increase of noise or error level, besides the optimal
nodes SR1 and SR2 , some artifacts appear in the reconstruction
results, which are illustrated in Figure 4. Simulation results
in double sources case further show that although there are
differences between the results of different noise pattern in

matrix A, similar conclusions can be obtained. As shown in
Table 3, the reconstruction results of TTLS combined with
MGCV are comparable to that of TTLS combined with IGCV
when noise level is low; whereas with the increase of noise
or error, TTLS combined with IGCV outperforms the other
methods in all quantitative indices.

For BLT inverse problem, permission region is an
effective way to regularize the solution by restricting the
source distribution within a proper permissible region. In
order to further test the proposed method, a ball shape
permissible region of 10 mm in diameter is utilized, which
is expressed as PR′ = {(x, y, z) | ((x + 7.5)2 + y2 +
(z − 15)2)1/2 < 5, (x, y, z) ∈ Left lung}. The sources settings
in this section are the same as the aforementioned double
sources case. The source distribution in the ball permission
region was reconstructed, and the results are summarized in
Table 4. Considering that the different system error pattern
has little effect on the reconstruction results in the foregoing
simulations, we only add Gaussian noise to the system matrix
A in this section.

It is shown in Table 4 that TTLS combined with IGCV
still performs best under all the noise levels in terms of
RRE, reconstructed power and source location. Compared
with the results in Table 3, the location accuracy for ball
shape permission region PR′ is lower. For example, the
largest deviation of the reconstructed position of S1 is up
to 1.2 mm. It is clear that all reconstruction methods under
consideration suffer from performance degradation with the
relaxation of the permission region. However; the proposed
method outperforms the other two methods and produces
acceptable reconstruction results in our tests.

3.2. Physical Experiment Verifications. A physical experiment
was carried out to further investigate the performance of
the proposed method. A cylindrical phantom of 45 mm
height and 22.5 mm radius was designed to evaluate dif-
ferent methods. The phantom shown in Figure 5(a) was
made from nylon, and one small hole of 2.95 mm radius
and 21 mm depth was drilled in the phantom to inject
luminescent mixed solution used as the light source. In
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Figure 2: Regularization parameter determination in single-source case under measurement noise level of 10% and Gaussian system error
level of 1%: (a) GCV function curve for Tikhonov, (b) MGCV function curve for TTLS, (c) illustration of the truncation parameter selection
for TTLS with IGCV.
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Figure 3: Reconstructed results under measurement noise level of 10% and Gaussian system error level of 1% with TTLS + IGCV: (a) x–y
view of at z = 15 mm plane, (b) y–z view at x =−9 mm plane; the white circle indicates the real source.

our physical experiment, the total volume of the mixed
solution injected into the hole is 0.15 mL, thus a cylin-
drical source with a 2.95 mm radius and 5.4 mm height
is centered at (9.88 mm, 1.5 mm, 26.7 mm), as shown in
Figure 5(b). The optical parameters of the phantom were
determined by a time-correlated single photon counting
(TCSPC) system specifically constructed for the optical
properties of the turbid medium [31]. The measured values
of absorption and reduced scattering coefficients at the
wavelength around 660 nm are 0.91 mm−1 and 0.0138 mm−1,
respectively.

A scientific cooled back-illuminated CCD camera (PIXIS
2048B) is used to collect the outgoing photons from the
phantom surface. The photon flux density from different
angles can be acquired by rotating the stage under the
phantom, as illustrated in Figure 5(c). Figures 6(a)–6(d)
exhibits the four views of the cylindrical phantom obtained
by the CCD camera, respectively. Because the data captured
by CCD camera is planar, mapping it onto 3D surface
of the cylindrical phantom must be accomplished before
reconstruction, which will also bring some inevitable errors
to the measured data [32]. The mapping result was shown in
Figure 6(e).

According to the photon flux density distribution on
the phantom surface, the source permissible region is set as
PR′′ = {(x, y, z) : 7 < (x2 + y2)1/2

< 13, x > −3, 19.7 <
z < 33.7}. In the reconstruction process, the phantom model
consists of 2734 vertices corresponding to13551 tetrahedral
elements. The schemes for the selection of regularization
parameters are identical to those in numerical simulations.
The final reconstruction results and the corresponding
regularization parameter are listed in Table 5. The 3D views
of the reconstructed results using different methods are
presented in Figure 7, which verified the feasibility and
effectiveness of the proposed method. As is evident from the
images in Figure 7 and the data in Table 5, TTLS combined
with IGCV successfully reconstructed the luminescent source
with the minimum distance of 1.76 mm away from the actual
source center.

4. Discussion and Conclusion

BLT reconstruction is a highly ill-posed inverse problem
where small measurement noise and system errors in the
input data can produce large changes in the results. In
addition, bioluminescence signals are generally very weak,
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Table 2: Quantitative results in single source case.

Sys. error Meas. noise Recon. method Sys. error pattern Regular. param. RRE Recons. power (nW)

Without errors

Without noises
Tik-GCV N/A 0.00946 0.0263 0.4284

TTLS-M N/A 75 0.0243 0.4661

TTLS-I N/A 78 0.0236 0.4797

10%
Tik-GCV N/A 0.01437 0.0585 0.4096

TTLS-M N/A 69 0.0517 0.4535

TTLS-I N/A 78 0.0419 0.5232

20%
Tik-GCV N/A 0.02266 0.1083 0.3825

TTLS-M N/A 65 0.0809 0.4641

TTLS-I N/A 69 0.0703 0.5214

1%

10%

Tik-GCV
Gaus. 0.01847 0.0596 0.3502

Exp. 0.02288 0.0705 0.3074

TTLS-M
Gaus. 64 0.0590 0.3982

Exp. 71 0.0562 0.3843

TTLS-I
Gaus. 78 0.0524 0.4389

Exp. 82 0.0557 0.4113

20%

Tik-GCV
Gaus. 0.02844 0.1150 0.4295

Exp. 0.02281 0.0897 0.3432

TTLS-M
Gaus. 52 0.1142 0.4410

Exp. 73 0.0599 0.4755

TTLS-I
Gaus. 64 0.0915 0.5427

Exp. 87 0.0597 0.4829

5%

10%

Tik-GCV
Gaus. 0.03771 0.0850 0.3069

Exp. 0.05016 0.1023 0.2760

TTLS-M
Gaus. 65 0.0823 0.3498

Exp. 53 0.1018 0.2960

TTLS-I
Gaus. 94 0.0749 0.3553

Exp. 85 0.0978 0.2995

20%

Tik-GCV
Gaus. 0.05414 0.1626 0.2722

Exp. 0.06586 0.1871 0.2618

TTLS-M
Gaus. 52 0.1536 0.3088

Exp. 45 0.1758 0.2927

TTLS-I
Gaus. 61 0.1444 0.3359

Exp. 109 0.1673 0.3044

thus the noise or errors will significantly affect the recon-
struction quality. Regularization technique has played an
important role in solving BLT inverse problem. And most of
the previous works assume that there is only measurement
noise, which affects the right-hand side of the system
equations. However, the computed coefficient matrix A in
the model also has some errors, which may be caused
by the calculation errors, the geometrical approximation,
optical parameter inaccuracy, as well as the assumption
of diffusion equation model itself. For example, the FEM
discretization typically adds some errors to the matrix
A. Hence, there is a need for seeking methods that can
deal with the errors in both sides of the system equation.
TTLS is a truncation regularization method that can take
account of both system errors and measurement noise in the
reconstruction process. This method depends on a parameter
called truncation level; this single parameter has a significant
influence on the regularization solutions. In this paper,

IGCV, a practical scheme for determining the truncation
parameter, is proposed to be combined with TTLS method
for solving BLT inverse problem

Simulations considering both system errors and mea-
surement noise are conducted to investigate the performance
of the proposed reconstruction method. Due to the lack
of an accurate model to describe the system errors arising
from multiple sources, commonly used Gaussian white noise
and exponential noise are adopted to simulate the errors
in matrix A, respectively. In addition, physical phantom
experiments further test the proposed method.

Both the numerical simulations and physical experi-
ments demonstrate the effectiveness of the proposed method.
Tests with different noise levels show that TTLS with com-
bined IGCV is able to produce much better reconstruction
results than Tikhonov method, and TTLS combined with
IGCV performs better than TTLS combined with MGCV,
especially when both sides of the system equation are
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Table 3: Quantitative results in double source case.

Sys. error Meas. noise Recon. method Sys. error pattern Regular. param. RRE
Recon. power (nW)

SR1 SR2

Without errors

Without noises
Tik-GCV N/A 0.00858 0.0252 0.4671 0.2677

TTLS-M N/A 76 0.0228 0.4824 0.2911

TTLS-I N/A 76 0.0228 0.4824 0.2911

10%
Tik-GCV N/A 0.01533 0.0586 0.4334 0.2148

TTLS-M N/A 75 0.0418 0.5047 0.3560

TTLS-I N/A 75 0.0418 0.5047 0.3560

20%
Tik-GCV N/A 0.03001 0.1363 0.3633 0.1787

TTLS-M N/A 59 0.1074 0.4425 0.2069

TTLS-I N/A 71 0.0739 0.5016 0.3004

1%

10%

Tik-GCV
Gaus. 0.01711 0.0560 0.4164 0.2448

Exp. 0.02148 0.0618 0.4174 0.1974

TTLS-M
Gaus. 74 0.0450 0.4581 0.3670

Exp. 71 0.0534 0.5170 0.2440

TTLS-I
Gaus. 74 0.0450 0.4581 0.3670

Exp. 71 0.0534 0.5170 0.2440

20%

Tik-GCV
Gaus. 0.03112 0.1248 0.3506 0.1891

Exp. 0.03034 0.1213 0.3688 0.1862

TTLS-M
Gaus. 59 0.1023 0.4529 0.2042

Exp. 50 0.1347 0.4085 0.2086

TTLS-I
Gaus. 72 0.0780 0.4768 0.2782

Exp. 58 0.1159 0.4209 0.2253

5%

10%

Tik-GCV
Gaus. 0.04179 0.0969 0.2613 0.2347

Exp. 0.05154 0.1151 0.3528 0.2427

TTLS-M
Gaus. 63 0.0890 0.3194 0.2647

Exp. 50 0.1192 0.3495 0.2576

TTLS-I
Gaus. 81 0.0880 0.3399 0.2660

Exp. 65 0.1141 0.3527 0.2906

20%

Tik-GCV
Gaus. 0.05077 0.1467 0.2859 0.1574

Exp. 0.06730 0.1858 0.3122 0.2480

TTLS-M
Gaus. 51 0.1376 0.3713 0.1574

Exp. 48 0.1741 0.3557 0.3304

TTLS-I
Gaus. 87 0.1339 0.3692 0.2147

Exp. 54 0.1698 0.3562 0.3306

Table 4: Quantitative results for ball shape permission region PR′ in double source case.

Sys. error Meas. noise Recon. method Regular. param. RRE
Recon. position (mm) and power (nW)

SR1 SR2

1%

10%
Tik-GCV 0.02728 0.1720 (−8.80,−3.62, 15.00) 0.2102 (−8.32, 2.81, 16.44) 0.2509

TTLS-M 19 0.1535 (−8.80,−3.62, 15.00) 0.2308 (−8.77, 3.88, 14.85) 0.2373

TTLS-I 30 0.1523 (−8.80,−3.62, 15.00) 0.2978 (−9.42, 1.69, 14.94) 0.3062

20%
Tik-GCV 0.09397 0.4383 (−10.27,−2.24, 16.42) 0.3633 (−10.97, 2.08, 16.69) 0.3501

TTLS-M 9 0.4288 (−8.80,−3.62, 15.00) 0.3782 (−8.77, 3.88, 14.85) 0.3651

TTLS-I 28 0.4226 (−9.20,−1.62, 14.12) 0.5808 (−8.32, 2.81, 16.44) 0.4632

5%

10%
Tik-GCV 0.09660 0.2350 (−10.27,−2.24, 16.42) 0.3693 (−8.77, 3.88, 14.85) 0.3784

TTLS-M 9 0.2350 (−8.80,−3.62, 15.00) 0.3752 (−8.77, 3.88, 14.85) 0.3853

TTLS-I 18 0.2171 (−8.80,−3.62, 15.00) 0.3899 (−8.32, 2.81, 16.44) 0.4234

20%
Tik-GCV 0.12804 0.4367 (−10.27,−2.24, 16.42) 0.3549 (−8.77, 3.88, 14.85) 0.3578

TTLS-M 15 0.3865 (−8.80,−3.62, 15.00) 0.3900 (−8.77, 3.88, 14.85) 0.3653

TTLS-I 19 0.3532 (−8.80,−3.62, 15.00) 0.4538 (−8.77, 3.88, 14.85) 0.3807
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Figure 4: Reconstructed results in double source case under measurement noise level of 20% and system error level of 5%. (a), (b), and (c)
separately show the x–y views at z = 15 mm plane of the results by Tikhonov + GCV, TTLS + MGCV, and TTLS + IGCV; (d), (e), and (f)
are the corresponding y–z views at x = 9.5 mm plane of the reconstruction results, respectively; the white circle indicates the real source.
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Figure 5: Physical phantom. (a) The homogeneous physical phantom; (b) The location of the single source in the phantom; (c) The cross-
section of the phantom and the four directions of the CCD camera during data acquisition.

Table 5: Reconstruction results in physical phantom experiment.

Recon.
method

Regular.
param.

RRE Recon. source
position (mm)

AE (mm)

Tik-GCV 0.00003 0.9513 (7.64,4.42,27.18) 3.71

TTLS-M 40 0.9015 (10.3,−1, 19, 25.50) 2.97

TTLS-I 45 0.8318 (9.86,1.00,28.39) 1.76

contaminated by measurement noise and system errors.
Based on the experiments in this paper, we can draw a
preliminary conclusion that TTLS combined with IGCV
criterion is a potential reconstruction method for BLT inverse
problem. Further investigation of the performance of the
proposed method on animal experiments will be conducted
in our future work.
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Figure 6: The normalized surface measurement of the homogeneous phantom. (a), (b), (c), and (d) are left view, front view, right view, and
back view of the cylindrical phantom on the CCD camera, respectively; (e) is the flux density on the surface of the cylindrical phantom after
mapping from the CCD camera.
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Figure 7: Reconstructed results in physical experiment: (a)–(c) are the x–y views at z = 28 mm plane of the reconstructed results using
Tikhonov + GCV, TTLS + MGCV, and TTLS + IGCV method, respectively; (d)–(f) are the y–z views at x = 9.5 mm plane of the
corresponding results, where the white contours indicates the real sources.
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