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Abstract: This work aims at presenting an advanced simulation approach for a novel rhamnolipidic-
based bioflotation process to remove chromium from wastewater. For this purpose, the significance of
key influential operating variables including initial solution pH (2, 4, 6, 8, 10 and 12), rhamnolipid to
chromium ratio (RL:Cr = 0.010, 0.025, 0.050, 0.075 and 0.100), reductant (Fe) to chromium ratio (Fe:Cr
of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0), and air flowrate (50, 100, 150, 200 and 250 mL/min) were investigated
and evaluated using Analysis of Variance (ANOVA) method. The RL as both collector and frother
was produced using a pure strain of Pseudomonas aeruginosa MA01 under specific conditions.
The bioflotation tests were carried out within a bubbly regimed column cell with the dimensions
of 60 × 5.70 × 0.1 cm. Four optimization techniques based on Artificial Neural Network (ANN)
including Cuckoo, genetic, firefly and biogeography-based optimization algorithms were applied to
113 experiments to identify the optimum values of studied factors. The ANOVA results revealed that
all four variables influence the bioflotation performance through a non-linear trend. Their influences,
except for aeration rate, were found statistically significant (p-value < 0.05), and all parameters
followed the normal distribution according to Anderson-Darlin (AD) criterion. Maximum chromium
removal of about 98% was achieved at pH of 6, rhamnolipid to chromium ratio of 0.05, air flowrate of
150 mL/min, and Fe to Cr ratio of 1.0. Flotation kinetics study indicated that chromium bioflotation
follows the first-order kinetic model with a rate of 0.023 sec−1. According to the statistical assessment
of the model accuracy, the firefly algorithm (FFA) with a structure of 4-9-1 yielded the highest level of
reliability with the mean squared, root mean squared, percentage errors and correlation coefficient
values of test-data of 0.0038, 0.0617, 3.08% and 96.92%, respectively. These values were evidences of
the consistency of the well-structured ANN method to simulate the process.

Keywords: wastewater treatment; rhamnolipidic bioflotation; kinetics; hybrid neural network;
metaheuristic algorithms

1. Introduction

Since hexavalent chromium is highly toxic, its effluent in electroplating, tannery,
dyes and pigments, film and photography, and mining industries is severely hazardous
for the environment and creates serious damage to human and animal bodies [1]. The
highest Cr(III) and Cr (VI) amounts allowed in wastewater are 5 mg/L and 0.05 mg/L,
respectively [2]. Several treatment techniques have been developed to remove chromium
pollutants from wastewaters including chemical precipitation, coagulation-flocculation,
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electrocoagulation, membrane filtration, ion flotation, ion exchange, activated carbon
and adsorption [3–5]. Among these, merging biotechnology with conventional treatment
techniques has been of great interest in recent decades. However, there is considerable lack
of information about the biotreatment and biosurfactants on removing Cr (VI). Further,
the impact of effective operating parameters has not been adequately explored in the
literature yet.

Nowadays, these microbial products, often called bio-surfactants, have been found
as promising substitutes of petroleum-derived surfactants widely used in processing and
treatment industries. The chief advantages of such bioproducts in comparison to synthetic
surfactants are their high stability at various pHs and temperatures as well as their con-
siderable compatibility with the environment due to their appreciable biodegradability
and low toxic effects. Moreover, recent advances in their production, especially from
renewable resources, have opened up promising horizons for their large-scale applications
compared to their chemical competitors [6,7]. In this context, rhamnolipids have acted as
a surface-active agent consisting of one (mono-RL) or two (di-RL) (L)-rhamnose groups
connected to the hydrophilic group composed of one or two β-hydroxy fatty acids through
a glycoside bond [8,9]. Its surface forces and foamabilities were studied in detail by Khosh-
dast et al. [10]. They showed that rhamnolipid has strong static and dynamic frothability
indices. Moreover, rhamnolipid reveals low selectivity in three-phase flotation systems in
comparison with conventional alcoholic and etheric frothers. Renfro et al. [11] studied the
equilibrium and kinetic adsorptions of rhamnolipid in soil system and showed that the
thermodynamic characteristics of the surface of rhamnolipid molecules can significantly
control the rate of rhamnolipid transport. In addition, formation of rhamnolipid micelles
is dramatically influenced by the attractive forces between RL molecules. Investigation
of the surface tension related properties of pure rhamnolipids at natural pH in absence
or in presence of mineral additives indicated that with the use of electrolytes, some struc-
tural changes and interactions among hydrophilic and hydrophobic groups may take
place through different types of forces such as electrostatic and hydrogen interactions [12].
Zhao et al. [13] conducted comparative studies on the structural composition and sur-
face/interface activity rhamnolipids using hydrophobic or hydrophilic substrates and
interestingly showed that the type of substrate used for bacterial cultivation significantly
affects the number of homologues in RL structure and its surface activity. Rekiel et al. [14]
evaluated the adsorption properties of rhamnolipid and ethanol in water/ethanol solutions
and showed that ethanol/RL mixture had no synergetic effect on the surface tension of
the aqueous solution. Recently, Ahmad et al. [15] investigated the stability and efficiency
of RL biosurfactants under extreme conditions and indicated that mono-rhamnolipids
biosurfactant can be stable at 60 ◦C, pH 10 and 10% salinity.

Due to the high binding capacity with metal ions, some researchers have investigated
the rhamnolipid-facilitated treatment of soils and waters contaminated by chromium
ions. For example, Juwarkar et al. [16] assessed the potential of using the di-rhamnolipid
biosurfactant as an ion collector to remove cations from multi-metal contaminated soil.
They showed that within 36 hours of leaching study, di-rhamnolipid can provide Cr
removal (92%) from the contaminated soil 13-fold higher than other heavy metals. The
studied soil samples varied in pH and Cr contents from 6.4 to 7.8 and 50 to 940 ppm,
respectively. Removal and reduction of chromium by rhamnolipid were also investigated
by Ozturk et al. [17]. They showed that the removal efficiency of chromium directly
depended on the biosurfactant concentration. Moreover, the presence of RL bacterial strain
can appropriately reduce Cr(VI) to Cr(III). Abbasi-Garravand and Mulligan [18] coupled the
micellar enhanced ultrafiltration and reduction techniques to remove Cr(III) and Cr(VI) ions
from an aqueous solution. They examined initial concentration of hexavalent chromium
(10–400 ppm), pH (6–10), and rhamnolipid concentration (0.1–2 %vol.) to assess the effect
of these operating variables on the reduction of Cr(VI). They found that the maximum
Cr(VI) reduction efficiency (98.7%) could be achieved at a Cr(VI) concentration of 10 mg/L,
RL concentration of 2% (vol/vol.) and initial solution pH of 6. Chen et al. [19] employed
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rhamnolipid as the washing agent to remove chromium and some other heavy metals in
river sediment. They investigated the effects of rhamnolipid concentration (0.2–3 %wt.),
washing time (0.5–40 h), solution pH (3–11), and liquid/solid ratio (5–20). They reported
that heavy metal washing was favoured (47.85% of Cr removal) at an RL concentration of
0.8% after 12 h at pH 7.0. Shojaei and Khoshdast [20] investigated the potential treatment of
wastewater polluted by chromium using precipitate flotation in the presence of rhamnolipid
biosurfactants. They evaluated the effect of solution pH (5–8), Rl concentration (1–10 ppm),
aeration rate (50–200 ml/min) and precipitant portion (1.5–3). They showed that optimal
removal of 96.75% could be achieved at pH 8, aeration rate of 50 ml/min, and rhamnolipid
and co-precipitant to metal ratios of 0.01 and 3, respectively. It was also found that the
presence of cations and anions can reduce the process efficiency. These findings were in
good agreement with those reported by Abyaneh and Fazaelipoor [21] but with lower Cr
removal (96.1%). Recently, Yang et al. [22] studied the adsorption of some heavy metals
including Cr(VI) on some clays such as ferrihydrite and nontronite, and the impacts of RL
biosurfactant on desorption efficiency. Their results revealed that Cr(VI) was adsorbed
on ferrihydrite and goethite with better adsorption rates at pH 8.0, and its maximum
adsorption ranged from 58.8% to 90.7%. Moreover, rhamnolipids were found to be effective
for improving desorption of cationic contaminants from the surface of minerals using a
bio-washing process.

Ion flotation is a promising process, in which cationic species are removed from
aqueous solution using an appropriate collector. However, despite the relatively simple
mechanical and physical aspects, the flotation process is very complicated mechanically.
Such complexities mainly come from the interaction between different reagents and phases
involved in the system. Therefore, modelling and simulation of flotation processes has
been always a challenging issue of debate. A recent approach to simulate complicated
separation techniques is to use expert system methods such as artificial neural networks.
These networks are among the most widely used intelligent algorithms that transmit the
knowledge or the rule behind data into a network structure by processing experimental
data. ANN can be utilized to implement difficult functions in numerous areas, such as
pattern recognition, visual system, classification and controlling systems. Nowadays, prob-
lems that are difficult for humans or ordinary computers can be solved by properly training
neural networks [23]. One of the main applications of neural networks is forecasting based
on a set of input data that has also yielded excellent results. Thanks to their good perfor-
mance, ANNs have been frequently used in various scientific fields, including mining and
mineral processing [24–30].

In this work, the removal of chromium from synthetic wastewater using rhamnolipidic
flotation has been studied. The optimization, kinetics, and intelligent simulation of the
flotation process were also investigated using a set of advanced expert algorithms coupled
with experimental results. To the best of the author’s knowledge, such an advanced
simulation of similar processes has not yet been addressed in the open literature.

2. Materials and Methods
2.1. Biosurfactant Production and Reagents

The biosurfactant production was performed using a pure strain of Pseudomonas
aeruginosa MA01. The bacteria’s pre-culture was undertaken on nutrient broth over a
night at 30 ◦C and 200 rpm following inoculation into an optimum medium for batch
fermentation to produce the bacterial product. A modified culture medium was prepared
by adding 10 mL of glycerol as carbon source and appropriate amounts of nutrients to
distilled water and was incubated at 37 ◦C and 150 rpm for 24 h [31]. The ingredients
and consumption dosage of culture medium is listed in Table 1. Afterwards, the cell-free
supernatant (CFS) was prepared by centrifugation of the cell suspension at the rate of
15,000× g for 20 min at 4 ◦C. pH of the CFS was subsequently reduced to 2 with 1 M
hydrochloric acid and rested for 24 h in a cool place to precipitate the rhamnolipid product.
The precipitated RL was later separated via centrifuging at 15,000× g for 60 min. Then, the
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settled biomass was washed out by acidic solution following centrifugation at 15,000× g for
20 min. After mixing the obtained RL product with ethyl acetate of equal volume, shaking
for 10 min, and centrifuging at 15,000× g for 20 min, the acetate phase was removed by
evaporation at 40 ◦C using a vacuum rotary evaporator [10]. Finally, about 6 g of viscous
light brown RL product was obtained per liter of the medium. Detailed information
regarding the produced RL’s properties, its structure and frothability features can be found
in our previous works [10,31,32]. It is well demonstrated that RL biosurfactants have
significant foaming characteristics. Compared to frothing reagents conventionally used in
the flotation processes, such as Dowfroth (DF-250) and methyl isobutyl carbinol (MIBC),
rhamnolipid can produce foams with significantly higher elasticity and stability [10].
Therefore, in this study, no further frother was applied to the flotation process due to
the high foamability of RL. The following chemicals were purchased from Merck GmbH
(Germany) in analytical grades: sodium dichromate dihydrate (Na2Cr2O7·2H2O) as a metal
ion source and ferrous sulfate (FeSO4·7H2O) as a metal reductant. The solution pH was
also regulated using HCl and NaOH.

Table 1. The ingredients of the modified medium used for bacterial cultivation.

Chemical Component MgCl2 K2SO4 KH2PO4 Na2HPO4 NaNO3 MgSO4·H2O CaCl2·2H2O Agar

Dosage (g/L) 1.4 10 0.7 0.9 2 0.4 0.1 20

2.2. Bioflotation Variables and Experiment

To evaluate the chromium removal from the aqueous solution using bioflotation,
effects of the operating variables including the initial pH of the solution (2–12), the RL to
metal ratio (RL/Cr, 0.01–0.1), aeration rate (50–250 mL/min) and the reductant to chromium
ratio (Fe/Cr, 0.5–3) were assessed using statistical analyses. The studied operating variables
have been selected with some modifications based on those studies relevant to chromium
bio-removal as reported by references [16–22].

The bioflotation tests were carried out in an acrylic column cell with a height and
diameter of 60 cm and 5.7 cm, respectively. The bubbly regime was generated at a carefully
predetermined rate through a sintered glass frit (10–15 µm) from the bottom of the column.
Figure 1 presents a schematic diagram of the experimental set-up. For every individual
experiment, the column was first filled with 1 L of chromium contaminated solution of
50 ppm concentration. Then, a requisite amount of biosurfactant was added to the solution
and pH was adjusted to the given level. The flotation was begun by introducing air at a
predetermined flowrate from an air compressor with enough capacity to support bubble
generation during the flotation course (5 min). The pregnant foam formed over the liquid
column was drained through the froth launder (Figure 1a) into a collecting vessel. To
pursue the kinetics behaviour of the bioflotation process, the solution was slowly sampled
at appropriate sampling intervals via a thin sampling tube installed on the column. The
experimental program was implemented at ambient temperature of 26 + 1 ◦C. Each sample
was analyzed twice and an average value was reported. The concentration of Cr of each
sample was measured using an atomic absorption instrument (Varian model SperctAA
220, Mulgrave, Victoria, Australia). The bio-flotation efficiency of chromium, RCr, was
calculated as below [33]:

RCr, % =
(C0 −Ct)Vwt

C0Vw0
× 100 (1)

where C0 is the chromium concentration in the bulk solution, Ct is the incremental concen-
tration at time t (seconds), Vw0 is the volume of the bulk solution, and Vwt is the volume of
solution that remained in the column after t (seconds).
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Figure 1. Schematic illustration of the used flotation column: (a) froth column, (b) froth box, (c)
froth discharge gate, (d) sampling tube, (e) fritted glass sparger, (f) air inlet connected to rotameter,
pressure gauge and air compressor and (g) discharge outlet for liquid diffused from sparger.

2.3. ANN Simulation

Neural networks are invaluable tools used in numerous complex fields, including image
processing, observations, segregation, pattern recognition and control systems [34–37]. This
wide acceptance of ANN approaches over classical simulation techniques comes from their
rapid but also simple processing nature as well the capability to learn from historical and/or
available examples. As a biological system, they can learn from examples and can deal with
nonlinear problems.

After designing a neural network training section, finding the best weight and bias for
the neural network training using optimization algorithms is necessary. Currently, various
algorithms are available, which may suffer from many shortcomings; for example, the
conventional optimization algorithms generally converge at slow rates and may lead to
response overfitting. Moreover, such old-fashion algorithms select the initial weight vector
randomly, and thus fall into the local minimum. Metaheuristic algorithms can overcome
such disadvantages. By proper training the ANN codes, they can learn the way input and
output data interact with one another using a network of the input, hidden and output
layer(s). The input layer transfers input data to hidden layers without any processing.
Hidden layer(s) multiplies them to their corresponding weight and adding a bias using the
equation below [29,38]:

yi =
n

∑
i=1

f
(
wijxi

)
+ bj (2)

where x is the input, y is the output of the neuron, f is an activation function, which
can appear as either nonlinear or linear, and n is the number of inputs to the neuron.
In this equation, the weight of the connection between neurons (i.e., neurons i and j) is
designated by wij and the bias caused by jth neuron is thought of with bj. There are several
metaheuristic algorithms, each with its strengths and weaknesses. Generally speaking, the
following stages were carried out to develop the ANN structure and predict the removal
efficiency of chromium bioflotation in the presence of RL biosurfactant:

• Data selection and preprocessing
• Divide the samples into two sets: training and test
• Select modeling method, geometry, and optimization algorithms
• Develop appropriate ANN model and verification of results
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In this study, cuckoo, genetic, firefly and biogeography-based optimization algorithms
were used. Each of these algorithms as well as steps involved in their code development
are described briefly as follows.

2.3.1. Optimization Algorithms Applied

(a) Cuckoo optimization algorithm (COA): Cuckoo optimization algorithm developed
to solve nonlinear and/or continuous processes [39]. This algorithm is driven from
the lives of a family of birds called cuckoo and is based on the optimal lifestyle and
exciting features of this species, such as spawning and reproduction. Adult cuckoos
and cuckoo eggs make up the initial population of the cuckoo optimization algorithm.
Adult cuckoos lay their eggs in other birds’ nests. If the cuckoo eggs are not detected
and destroyed by the host birds, they will grow into adult cuckoos [40]. Adult cuckoos
migrate en masse under the influence of environmental characteristics and hope to
find an optimal environment for life and reproduction. In this algorithm, the optimal
environment will be the global optimum in the optimization problem’s objective
function. This algorithm has so far performed well in various optimization scenarios
and real-world applications [41,42]. Figure 2 illustrates the general route used for a
COA development.

Figure 2. Flowchart of optimization process using cuckoo algorithm.

(b) Genetic optimization algorithm (GA): The genetic algorithm is a subset of computa-
tional models inspired by the concept of evolution. This algorithm encodes potential
or candidate solutions for a particular problem in a chromosome-like data struc-
ture [43]. Implementation of a genetic algorithm usually begins with producing a
population of chromosomes (the initial population of chromosomes in genetic algo-
rithms is usually randomly generated and bound to the upper and lower limits of the
problem variables). Next, the generated data structures (chromosomes) are evaluated,
and chromosomes that better represent the problem’s optimal solution have a favor-
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able reproduction chance than other chromosomes. In general, the goodness of an
answer is usually measured concerning the population of obtained answers. Nowa-
days, due to this algorithm’s capabilities, especially in solving regression problems,
it has a good position among other optimization methods [44,45]. The steps used to
develop a genetic optimization code are shown in Figure 3.

Figure 3. Steps involved in development of genetic optimization algorithm.

(c) Firefly optimization algorithm (FFA): The firefly optimization algorithm is inspired
by firefly behavior—they live together in large collections—and is one of the most
efficient algorithms when solving hybrid optimization problems [46]. The firefly
algorithm is a good example of collective intelligence in which agents that do not
have very high abilities on their own can achieve great results by working together.
The main assumptions of this algorithm are as follows [47,48]: (i) Fireflies are attracted
to each other regardless of gender. (ii) The factor of attraction is proportional to their
brightness; the brighter Firefly absorbs the lighter firefly. However, as the distance
between the two fireflies increases, the attractiveness decreases. (iii) The fireflies
with the same brightness move randomly. New pathways are created arbitrarily
and generally lead to bright fireflies. Based on the flashing behavior of fireflies and
the characteristics of their biological connections, Yang modeled firefly behaviors
and developed this algorithm in 2010 [49]. Figure 4 illustrates a simple structure to
optimize problems based on FFA.
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Figure 4. General instruction for problem solving by firefly optimization algorithm.

(d) Biogeography-based optimization algorithm (BBO): The BBO algorithm, like the
genetic and the firefly algorithm, is one of the collective intelligence algorithms. It is a
nature-based method that uses the principles of biogeography to find the answer. In
general, biogeography, as a sub-branch of biological science, studies different species’
behavior in different times and places [50]. In the BBO algorithm, each biological
zone is recognized as a single member and has its habitat suitability index (HSI). In
this algorithm, the answer or biological region with higher HSI indicates a better
answer [51]. In BBO, properties are usually migrating from regions with higher HSI
to regions with lower HIS. In other words, regions with low HSI take properties
from regions with higher HSI. Each region’s variables are called suitability index
variables (SIV), which express each region’s properties and are used in migrations. The
BBO algorithm is developed by Simon to solve optimization problems and generate
responses that maximize HIS [52]. The main steps to develop a genetic optimization
code are shown in Figure 5.

2.3.2. Data Preparation and Pre-Processing

Due to the fact that the chief goal of the present reseaarch study is to simulate the
process of bioflotation using expert systems, the number and conditions of experiments
were determined such that there is no regular statistical relationship between them. For
this purpose, a specified code in Matlab® software (Mathworks R2018a v9.4, Natick, MA,
USA) was developed to adjust the test conditions to: (i) each variable must appear at
least once in the experimental design, (ii) each level of each variable must appear at least
once in the experimental design, (iii) the experiments are randomly sorted in the final
experimental design, (iv) each experiment should not be replicated more than twice and (v)
replications should not include more than half of the total of the main experiments. The last
two steps were defined in order to determine the error of statistical analysis and to prevent
overlap (bias) of the main effects of the variables with each other. Finally, 113 individual
experiments were defined and they were performed according to the experimental design
created by the developed code.
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Figure 5. Flowchart of biogeography-based optimization algorithm.

Normalizing is an essential step in data pre-processing and allows different dimen-
sions to be fairly examined by the algorithm. For this reason and before feeding the data
into the networks, they were normalized by the following equation:

Xc =
Xi − Xmin

Xmax − Xmin
(3)

where Xc and Xi are normalized and actual values, respectively. Xmin and Xmax are the
minimum and maximum value of each subset (inputs-outputs). Also, The K-fold cross-
validation method is used in this study to reduce the over-fitting problem in model [53].
There are several cross-validation methods which have similar results; for instance, Badawy
et al. [54] used the scanning test set to have a good representative training and test sample
sets in their study. In the K-fold cross-validation method, the training dataset is divided
into K sections at each level and model accuracy is calculated for K times. In this study, we
used 10-fold cross-validation (Figure 6), and the percentage of training and test data were
equal to 75% and 25% of the total data, respectively.

In this study, inputs are pH, RL/Cr ratio, air flowrate (mL/min) and Fe/Cr ratio. The
output data is chromium removal (%) and four models were developed to predict it based
on the input data. Table 2 lists the statistical levels of the data used in simulation studies.

Table 2. The statistical summary of the data used in ANN simulation.

Parameter Minimum Mean Value Maximum Standard Deviation

pH 2 4.53 12 2.9153
RL/Cr ratio 0.01 0.02 0.1 0.0137

Air flowrate (mL/min) 50 131.76 250 71.4793
Fe/Cr ratio 0.5 1.40 3 0.8414

Chromium removal (%) 45.10 77.89 99.96 11.9887
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Figure 6. General structure of 10-fold cross-validation used in this study.

3. Results and Discussions
3.1. Statistical Analysis of Experimental Results

The effect of operating variables on chromium removal was assessed by running
the one-way Analysis of Variance (ANOVA). Statistical assessments were conducted at
95% confidence level. However, the normality of process response relative to operating
variables is a prerequisite to ANOVA. In this paper, the Anderson-Darling approach was
considered as the normality analysis strategy that is commonly employed for engineering
investigations [55]. In this method, the Anderson-Darling factor (AD) is defined as the
measure of data normality as follows [56]:

AD = n
∫ ∞

−∞

(Fn(x)− F(x))2

F(x)(1− F(x))
dF(x) (4)

where n is the number of individual data, F and Fn are the hypothesis and actual distribu-
tion functions, respectively. If AD value is less than unity and the corresponding p-value
is over 0.05 (for 95% confidence interval), the data distribution follows a normal trend.
The normal plots of chromium removal versus operating variables are shown in Figure 7
where the plotted points adequately formed a straight line and they are close to the normal
distribution line. Comparing the normal plots and normality factors in Table 3 reveals that
chromium removal follows normal trend relative to all variables because the corresponding
p-values are greater than the confidence level (0.05) and AD-values are sufficiently low.
The ANOVA results are also listed in Table 3 and clearly reveal that except for aeration rate,
all other operating factors significantly influence the chromium removal as the p-value of
all responses is obviously less than the significance level, i.e., 0.05 [57].
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Figure 7. Normal probability plots of chromium removal versus (a) solution pH, (b) RL/Cr ratio, (c) aeration rate and (d)
Fe/Cr ratio.

Table 3. Results of normality test and analysis of variance of chromium removal against operating variables.

Analysis Normality Analysis ANOVA

Measures AD p-value Status SS MS F Value p-value Status

Solution pH 0.504 0.402 Normal 2315 463 3.46 0.005 Significant
RL:Cr ratio 0.459 0.437 Normal 4591 1148 9.61 0.000 Significant

Aeration rate 0.391 0.163 Normal 46 11 0.08 0.989 Insignificant
Fe:Cr ratio 0.412 0.420 Normal 1941 388 2.85 0.017 Significant

3.2. Effect of Solution pH

The effect of solution pH on bio-flotation efficiency of chromium is given in Figure 8
showing that Cr removal increases by increasing the pH from 2 to 6 and then it significantly
decreases. At pH 2 solely 74.33% of Cr can be removed from the solution while it reaches
to 84.70% by increasing the pH to 6. Effect of solution pH can be explained from both
Cr speciation in solution and the pH sensitivity of rhamnolipid activity. The pH of a
solution is an important factor in flotation of metallic cations which determines the ion
species in the solution and subsequently the way collector interacts with them. The Eh-pH
diagram for chromium is shown in Figure 9. The starting metal source for bioflotation
experiments was a hexavalent chromium compound. As solution pH decreases, HCrO4

– is
the dominant component; however, the use of iron cation reduces the chromium valency
from 6 to 3. Therefore, positively charged species of Cr(OH)2

+ and CrOH2+ can interact
with rhamnolipidic anions to improve the bioflotation performance. At intensive acidic
conditions, instead of increasing positively charged spots in the solution, rhamnolipid
biosurfactants lose their activity, which is discussed in the next paragraph. As solution pH
exceeds neutral condition towards alkaline values, the interaction between rhamnilipidic
anions and Cr species interruptions due to an attenuation of positive charge ions in the
system. Another negative effect of alkaline conditions is related to deactivation of iron ions
as hydroxide precipitates (Figure 9).
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Figure 8. Effect of solution pH on the performance of chromium bio-flotation.

The surface activity of rhamnolipids is directly affected by the pH of the solution.
The solution pH plays a key role in degree of molecular dissociation of rhamnolipids and
controls the repulsion forces among them and consequently, the compaction degree of the
monolayer of RL molecules adsorbed on the surface of air bubbles. Moreover, the elasticity
of the liquid film at bubble surface is inversely influenced by the compressibility of the RL
monolayer. It is well demonstrated that rhamnolipid biosurfactants present their maximum
activity at pH values about 6–6.5 because the electrostatic repulsion forces between oxidryl
head groups in the RL molecules increase [58]. As pH decreases down to about 4.5–5, RL
molecules form monolayers with higher degree of compaction at the bubble surface. This
phenomenon results in the formation of foam film with higher rigidity, lower elasticity and
finally, less stable foam package which disrupts easily as air flow rate increases [32]. At
highly acidic conditions, rhamnolipid molecules tend to precipitate as the carboxyl anions
and lose their charge through bonding with hydrogenated functions [59]. The alkaline
environment may increase the electrolytic effect among Na+ ion dissociated from sodium
hydroxide (as pH regulator). The anionic character of rhamnolipid molecule is related to
the presence of carboxyl group in its molecular structure. Electrolytes can force most of
this anionic functions to dissociate in the form of carboxylate groups with negative charge.
Therefore, addition of a mineral salt increases the ionic strength of the solution such that a
diffuse layer of counterions will shield carboxylate groups the formerly dissociated in the
solution [60].

3.3. Effect of Rhamnolipid Concentration

The impact of RL concentration on the efficiency of chromium bio-flotation is illus-
trated in Figure 10, indicating that as the RL dosage is increased, the efficiency of Cr
bio-flotation follows an ascending trend up to a maximum value at the RL/Cr ratio of
0.05. The key role of RL in bio-flotation is as a Cr collector rather than a frothing agent. RL
molecules adsorb on the bubble surface such that their hydrophobic hydrocarbon chains
orient toward the air phase confined in bubbles while the carboxylate anions settle at the
surface toward the aqueous solution. As the concentration of biosurfactant increases, more
anions accumulate at the bubbles’ surface that, in turn, can gather more chromium ions
outward the flotation column. From a foamability viewpoint, the excess concentration of
RL may result in the formation of liquid film with undesirably enhanced elasticity at the
surface of bubbles and finally, an over-stable foam [10].
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Figure 9. Chemical species of (a) chromium [61] and (b) iron [62] as a function of solution pH and potential.

Figure 10. The role of rhamnolipid concentration in the performance of chromium removal by the
bio-flotation process.

High froth stability lowers bubble coalescence and consequently, diminishes drop-
back of ions to the solution. As seen in Figure 10, the removal efficiency slightly decreases
at high level of rhamnolipid concentrations (RL:Cr >0.050). Mass concentration values
corresponding to the experimental levels of RL are 4 ppm for low, 24.4 ppm for mid
and 44.4 ppm for high. Rhamnolipid biosurfactant can form micelle at concentrations
around 10.1 ppm [30]. At concentrations over the critical micelle concentration (CMC),
the hydrocarbon chains of RL molecules interlink via Van der Waals forces and do not
adsorb at the air/water interfaces forming the surface of bubbles. Therefore, at RL/Cr
ratios higher than 0.05, the carrying capacity of bubbles significantly decreases with regard
to the lack of sufficient number of active, free RL molecules. Another negative consequence
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of excessive concentration of biosurfactant can be attributed to the potential competition
between free RL anions and coligand-RL complex for a free space on the surface of air
bubbles [63].

3.4. Effect of Aeration Rate

Figure 11 illustrates the effect of aeration rate on chromium bio-flotation performance.
As shown, at an aeration rate of 50 mL/min, the Cr is removed 77.93%, which decreases
with increasing aeration rate up to 150 mL/min and then increases sharply with increasing
air flowrate. The maximum efficiency of 78.96% is obtained by applying an aeration rate
of 250 mL/min. It is well established that in the flotation-related processes there is an
optimum aeration rate for reaching the maximum separation efficiency [64,65]. During the
experiments, it was observed that with increasing air flowrate, a very turbulent flow of
large bubbles was formed in the column. This large bubbly regime created an intensive
turbulent condition at the interface between the foam and the aqueous phase, causing
the foam to become unstable. The bubbles proceeded to burst due to an increase in the
coalescence rate, and finally the drain-back of the chromium loaded liquid to the column.
By increasing the aeration rate, turbulence was reduced due to the increase of gas hold-up in
the liquid phase. This led to improvement of foam stability and an increase in the removal
of chromium. Also, increasing the aeration rate increased the water recovery (containing
chromium species) and, consequently, the chromium removal efficiency. However, the
effect of aeration rate on bio-flotation efficiency is not significant (Table 3) and removal
efficiency varies by less than 2%.

Figure 11. Effect of air flowrate on the performance of removing chromium through the bio-flotation
process.

3.5. Effect of Reductant Concentration

Figure 12 exhibits the effect of reductant concentration viz. Fe on chromium removal.
As seen, the efficiency of chromium bio-flotation is initially increased as the Fe/Cr ratio
was increased from 0.5 to 1 and then significantly drops from 1.5 to 3. The decrease of
chromium removal at Fe:Cr ratios over 1.5 can be attributed to the likely competitive
adsorption of chromium and iron cations by RL anions. At the ratio of less than unity, there
is not sufficient iron cations to reduce anionic species of hexavalent chromium and thus,
the removal efficiency reduces.
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Figure 12. Effect of iron concentration on the performance of chromium bioflotation.

3.6. Interaction Effects and Process Optimization

The surface plots of the response of a process against other independent variables
can provide useful information not only on the individual effect of operating factors
but also on the potential interaction between them [66,67]. In this regard, the surface
plots for the chromium bio-flotation efficiency were developed using experimental results.
Figure 13 illustrates the surface response plots for interactions among four variables and
shows that all interactions have non-linear effects on response. It is noteworthy that the
interaction between RL/Cr and aeration rate (Figure 13e) shows that maximum removal
can be obtained at mid-levels of aeration rates, whereas a contrary result was concluded
from the individual effects. This conclusion can be directly attributed to the significant
interaction between those variables. Other than studying the interactions, the surface plots
are powerful tools for predicting optimal conditions resulting in maximum chromium
removal. According to Figure 13, maximum bio-flotation efficiency can be achieved when
all other operating variables vary close to the mid-level, i.e., pH of 6, rhamnolipid to metal
ratio of 0.05, air flowrate of 150 mL/min, and reductant to chromium ratio of 1.0. However,
to ensure the prediction accuracy, new tests were run under these conditions and chromium
removal of 97.73 ± 0.13% was obtained.

3.7. Kinetics of Chromium Bioflotation

Flotation kinetics denotes variation of concentrated proportion of an entity, which
floats as a function of time. Assessment of flotation kinetics is extremely helpful in under-
standing process mechanisms, and its outcomes can be considered a predictive indicator in
relevant technologies [68]. To model and formulate its rate, researchers typically utilized
chemical kinetics principles [69]. Various flotation kinetics modeling investigations showed
that first-order kinetics equations and specifically classical flotation kinetics models per-
fectly present the process [70,71]. Thus, it was fitted to the experimental data to estimate
the flotation rate constant and its maximum recovery (Equation (4)).

Rt = R∞

(
1− e−kt

)
(5)

where Rt (%) is the metal removal after t (s), R∞ (%) is the maximum removal achievable
in practice, t (s) is the flotation time and k (1/s) is the kinetics rate. Fitting the experimen-
tal results with the model equation (5) revealed that kinetic characteristic of chromium
bio-flotation is in a good agreement with the first-order classical flotation model with a
correlation coefficient (R2) of 98.72%. The kinetics rate constant and R∞ were found to be
0.023 sec−1 and 97.54%, respectively.



Materials 2021, 14, 2880 16 of 24

Figure 13. The interaction response plots between (a) pH and RL concentration, (b) pH and reductant concentration, (c) pH
and air flowrate, (d) RL and reductant concentrations, (e) RL concentration and air flowrate and (f) reductant concentration
and air flowrate.

4. Simulation Results
4.1. Artificial Neural Network Design

To model a dataset using ANN, underfitting and overfitting problems are common
and must be prevented. A simple structure causes underfitting, while a highly complex
one leads to overfitting. An overfitting model may be very accurate in the training phase
but does not provide good results in the testing phase [30,72]. In this paper, the optimal
structure of 4-9-1 was found for the neural networks with different optimization algorithms
based on trial-and-error processes. In fact, according to the input data, various structures



Materials 2021, 14, 2880 17 of 24

were tested for all the neural networks with the mentioned optimization algorithms, and
the 4-9-1 structure showed the highest accuracy among them. This structure with an
equal number of iterations and the sigmoid function was applied to each layer of ANNs.
Figure 14 shows the general accuracy of the various structures. In ANNs, structures
without hidden layers are required only if the data should be separated linearly. As shown
in Figure 14, the structure without the hidden layer did not have acceptable accuracy, so
the structures with the hidden layer were examined.

Figure 14. The overall accuracy of neural networks with different structures and number of neurons.

As mentioned earlier, the numbers of input and output variables in this work were 4
and 1, which are equal to the numbers of input and output neurons, respectively. Variation
of R2 score with the number of neurons in the hidden layer is represented in Figure 15,
which confirms nine neurons as a proper number of neurons in the hidden layer for all
mentioned algorithms. In fact, besides a careful parameter selection for the optimization
algorithms, to determine the appropriate structures, different structures were examined,
and their results were compared with each other.

4.2. Evaluation of ANN Prediction Results

In this study, criteria for measuring neural networks accuracy and comparing their
performance were the mean square error (MSE), root mean square error (RMSE), and
percentage error. MSE and RMSE are presented in the following equations [73,74]:

MSE =
1
n ∑n

i=1(yi − yi′)2 (6)

RMSE =

√
1
n ∑n

i=1(yi − yi′)2 (7)

where y and y’ represent the estimated and actual measured values, respectively, and n is
the number of available data.

After developing networks, the performance results of ANNs with different optimiza-
tion algorithms were achieved. According to the results given in Table 4, firefly was found
to be the best algorithm for predicting chromium removal response with 4-9-1 structure.
In terms of predictive accuracy, after the firefly algorithm, the genetic algorithm is in the
second place. The models’ prediction results are given in Table 4, fitting and regression
diagrams of both the training and test results are shown in Figures 16–19. It is important to
know that the field of meta-heuristic algorithms is very experimental, and one algorithm’s
performance depends on the type and structure of the problem. Thus, a very successful al-
gorithm in one problem may have a poor performance in another and before experimental
results, it cannot be stated with certainty that one algorithm is superior to another.
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Figure 15. R2 score versus number of neurons in the hidden layer for (a) firefly algorithm, (b) genetic algorithm,
(c) biogeography-based algorithm and (d) Cuckoo algorithm.

Table 4. Evaluating results for the prediction of chromium removal.

Algorithm Network Structure
Training Test

MSE RMSE % Error MSE RMSE % Error

FFA 4 - 9 - 1 0.0037 0.0608 3.0389 0.0038 0.0617 3.0842
GA 4 - 9 - 1 0.0079 0.0890 4.4511 0.0104 0.1018 5.0907
BBO 4 - 9 - 1 0.0069 0.0832 4.1602 0.0108 0.1040 5.1984
COA 4 - 9 - 1 0.0099 0.0995 4.9774 0.0139 0.1180 5.8980
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Figure 16. Results of training and testing data for predicting chromium removal using firefly algorithm.

Figure 17. Results of training and testing data for predicting chromium removal using genetic algorithm.
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Figure 18. Results of training and testing data for predicting chromium removal using biogeography-based algorithm.

Figure 19. Results of training and testing data for predicting chromium removal using cuckoo algorithm.
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According to Table 4 and Figures 15–18, the firefly algorithm provides the best ac-
curacy to the neural network. This better performance of simulation is due to the fact
that, to implement the algorithm and calculate the distance between two fireflies, the
firefly algorithm is not limited to using the Euclidean distance like some of the mentioned
methods, and any desired optimized equation can be used depending on the type of opti-
mization problem [75]. The superiority of the firefly algorithm over the other algorithms
studied here is that in addition to finding the global optimum, it can simultaneously find
the local optimum of the optimization problems effectively [76]. One of the advantages
that distinguishes the firefly algorithm from other conventional optimization algorithms is
that different fireflies operate almost independently [77]. Such an important feature also
makes the firefly algorithm an ideal choice for “parallel implementations” of evolution-
ary algorithms. Comparing the firefly algorithm’s performance with other optimization
algorithms shows that this algorithm can converge to the global optimization of functions
better and more efficiently. This algorithm, along with the neural network with an error
rate of 3.08 percent, had the lowest error in predicting chromium removal in our problem.
And the genetics, biogeography-based and cuckoo algorithms with error rates of 5.09, 5.20
and 5.90 percentage were the next best, respectively.

5. Conclusions

This paper examined the role of four effective factors including initial solution pH,
rhamnolipid to chromium ratio, concentration of rhamnolipid, reductant (Fe) to chromium
ratio, and air flowrate in removing chromium from an effluent. The process was optimized
through four advanced optimization techniques based on ANN including Cuckoo, genetic,
firefly and biogeography-based algorithms with a structure of 4-9-1. Rhamnolipid was
produced and then used as an environmentally friendly collector with reasonable froth
properties for the chromium ion flotation experiments.

ANOVA results confirmed that all four studied factors except aeration rate have a
statistically significant impact on the process. Anderson-Darlin analysis showed that the
variables all followed the normal distribution function with p-values higher than 0.05
and reasonably low AD-values. According to the experimental results, 84.70% of Cr
was removed at pH 6 where at acidic and alkaline ranges, the efficiency was dropped
dramatically due to a reduction of positively charged ions in the solution and instability
of biosurfactant. An RL:Cr ratio of 0.05 was chosen for the process in terms of providing
an acceptable amount of collector dosage and reasonable degree of frothability. It was
disclosed that by increasing the aeration rate from 50 to 150 mL/min, the Cr removal was
reduced from 77.93% to 77.16%, while the maximum level of 78.96% was achieved by
injecting air flow rate of 250 mL/min regarding an increase in the water recovery. The F:Cr
ratio of 1.0 was proposed for the process because at the greater values a very competitive
adsorption of Cr and Fe cations with rhamnolipid anions took place, which reduced the
process efficiency substantially. Ion flotation kinetics studies revealed that the chromium
bio-flotation follows the first-order kinetic rate with rate constant and ultimate recovery
of 0.023 sec−1 and 97.54%, respectively. Moreover, the optimization results showed that
the chromium removal by rhamnolipidic bioflotation could accurately be predicted using
the firefly algorithm (FFA) with a properly selected structure of 4-9-1. In different stages of
the ANN modeling, the acceptable correlation coefficients of 97% for both the training and
testing outputs were achieved.

Last but not least, the current study may need further investigations from an experi-
mental perspective, such as assessment of metal removal in the competitive multi-ionic
system as well as simulation viewpoint, like evaluation of other optimization algorithms.
A survey into the economic aspects of the process may also open up more horizons to its
application at larger scales. Further studies are also required to clarify the kinetics, first
principal modeling and scale up procedures in detail from different perspectives.
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