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Tremor is an impairing symptom associated with several neurological diseases. Some

of such diseases are neurodegenerative, and tremor characterization may be of help

in differential diagnosis. To date, electromyography (EMG) is the gold standard for the

analysis and diagnosis of tremors. In the last decade, however, several studies have been

conducted for the validation of different techniques and new, non-invasive, portable, or

even wearable devices have been recently proposed as complementary tools to EMG for

a better characterization of tremors. Such devices have proven to be useful for monitoring

the efficacy of therapies or even aiding in differential diagnosis. The aim of this review is

to present systematically such new solutions, trying to highlight their potentialities and

limitations, with a hint to future developments.
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INTRODUCTION

Tremor is generally defined as an involuntary, rhythmic, oscillatory movement of a body part
(1). Limbs and head, when unsupported, may exhibit slight tremor, referred to as physiological
tremor. Such tremor is generally not visible or symptomatic unless it is enhanced by fatigue or
anxiety. Pathological tremor, on the other hand, is usually visible and persistent and can severely
compromise the execution of normal life tasks, like eating, dressing, writing.

Tremor symptoms may affect one body region (focal tremor), two or more adjacent parts
(segmental tremor), one side (hemitremor), or the whole body (generalized tremor). According to
activation conditions, two kinds of tremors are generally considered: rest tremor, when the affected
part is relaxed, and action tremor (kinetic, postural, or isometric), when the subject performs
voluntary movements or voluntarily maintains a certain position against gravity. Tremor features
include frequency (usually in the range of 4–8Hz) and amplitude. When two or more antagonist
muscles are involved in tremor, activation patterns are defined according to the relative timing of
tremor electromyography (EMG) bursts: synchronous pattern, when muscle bursts are in phase,
and alternating pattern, when bursts are phase-shifted (2), as shown in Figures 1A–D.

Surface EMG is the gold standard technique for the diagnosis, characterization, and monitoring
of tremor (3). Unfortunately, it suffers from uncertainty and errors due to bad positioning of
electrodes, changes in skin conductance, and cross-talking from other muscles. To avoid such
inconveniences, needle EMG (4) is the most reliable technique for a precise characterization of
tremor features, but it is invasive and costly.

Generally, EMG is unsuitable for continuous monitoring or frequent assessment of
tremor characteristics.
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FIGURE 1 | Electrophysiological and spectral characteristics of tremor patterns. Muscle bursts for (A) alternating and (B) synchronous tremor patterns; magnitude

and phase cross-spectral diagrams for (C) alternating and (D) synchronous tremor patterns. (E) Wrist-worn device, with EMG plates and mobile app for the

characterization of tremor patterns. Alternating bursts of antagonist muscles show a marked phase difference at peak tremor frequency, while synchronous bursts

have a small phase difference at peak tremor frequency. In alternating tremors, peak amplitude is usually higher and average frequency is lower than in synchronous

tremors. EMG, electromyography; CPSD, cross power spectral density.
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In the last decade, the large diffusion of mobile devices
has fostered the development of several portable and wearable
solutions for health monitoring or even for disease diagnosis.
Most of such devices are based on inertial sensors (accelerometers
and gyroscopes), while others use a combination of inertial and
electrophysiological information.Many of them can be interfaced
with smartphones or tablets through wireless communication
protocols (Bluetooth, Wi-Fi, etc.). Smartphones, smartwatches,
and tablets have sufficient computing resources for performing
complex calculations, such as digital signal processing and
artificial intelligence (AI).

Mobile devices, together with the advent of the Internet of
Things (IoT), have dramatically changed people’s lifestyles and
have found newer and newer areas of application, allowing for
continuous monitoring of disease symptoms and vital signs.
However, signal processing techniques and sensing technologies
need to be properly selected in order to provide data in agreement
with the clinical-functional assessment of tremor (5).

In this brief review, we mainly focus on novel wearable
solutions for the automated acquisition and analysis of tremor
data. For this purpose, three main classes of wearable devices
are identified: (1) devices for assessing tremor features, (2)
devices for monitoring tremor and efficacy of therapies, and (3)
devices for differential diagnosis between tremulous disorders.
Table 1 reports a synthetic view and classification of the
examined literature.

METHODS

For the purposes of this review, PubMed and Google Scholar
search engines were queried using combinations of the following
keywords: tremor, wearable, device, assessment, monitoring, and
diagnosis. The words “tremor” and “wearable” were used as fixed
keys in all searching queries. Only articles published in the last
decade were selected.

DEVICES FOR THE ASSESSMENT AND
CHARACTERIZATION OF TREMOR

Inertial sensors have proven to be of great help in clinical practice
(43), especially in the assessment, diagnosis, and treatment of
tremor in Parkinson’s disease (PD) (44–46).

The large diffusion of smartphones, tablets, and smartwatches
has fostered the development of specialized software applications
that make use of on-board sensors for inertial measurements
of tremor and other movement alterations (20–23). LeMoyne
et al. (20) used a common smartphone for estimating tremor
frequency in PD subjects. The authors used the same equipment
for assessing tremor in essential tremor (ET) subjects (21),
discriminating between on and off state during deep brain
stimulation (DBS). Araújo et al. (22) found a good agreement
between EMG measurements and accelerometer estimations
made by three different mobile apps. A similar approach was
used by Bhatti et al. (23) for the evaluation of orthostatic tremor.
However, these solutions can reliably estimate frequency only.

Along with the introduction of smartphone apps, several
dedicated devices and methods have been proposed for tremor
measurement. A summary of characteristics and specifications
required for motion sensing transducers and analysis methods
for assessing tremor severity in terms of amplitude and
occurrence is reported by Elble and McNames (6).

Heldman et al. (7) evaluated a commercial motion-sensing
device, worn on the hand or fingers of the most affected side,
in ET subjects while performing motion tasks. The results of
this study opened a way toward continuous rating of tremor
severity during routine or spontaneous activities of daily living.
Other hand- or wrist-wearable devices were introduced later for
evaluating rest and action (postural and isometric) tremor in PD
subjects using an inertial measurement unit (IMU), made of a
triaxial accelerometer and a triaxial gyroscope, both on the same
silicon chip (8), or a set of four triaxial accelerometers (9). An
IMUwas also used byHssayeni et al. (10) to assess tremor severity
in PD and by Mahadevan et al. (11) and Dai et al. (12) in order
to discriminate between bradykinesia and tremor. Sanchez-Perez
et al. (13) devised a novel algorithm based on fuzzy logic for the
evaluation of rest tremor severity. These authors achieved a good
level of agreement with Unified Parkinson Disease Rating Scale
(UPDRS) part III (10–13), thus showing the equivalence between
clinical scales and tremor assessment by wearable sensors.

A wrist-worn device with and external IMU placed on a
finger was proposed by Jeon et al. (14), together with various
AI techniques for the automatic scoring of rest tremor in PD.
Other studies (24–27) have focused on the use of commercial
smartwatches, which have become easily available in the last
years. López-Blanco et al. were able to correlate the root mean
square of angular velocity acquired from the triaxial gyroscope
of an Android-based smartwatch to the Fahn–Tolosa–Marin
(FTM) tremor rating scale (TRS) scores of ET subjects (24)
and to UPDRS-III scores of PD subjects (26). Varghese et al.
(25) used a smartwatch within an integrated analysis framework
comprising a smartphone and a tablet for the implementation of
a tremor assessment and monitoring system in a clinical setting.
Shawen et al. (27) compared the performances of a smartwatch
and a skin-mounted IMU in classifying tremor and bradykinesia
severity in PD, demonstrating that smartwatch performance was
comparable to that of a custom, specialized sensor.

By extending such localized measurement systems to a
distributed configuration, other solutions have been devised,
including more sensors displaced on several body points
or limbs. Rigas et al. (15) developed a method based on
features extracted from accelerometers mounted in different
body segments, which produce data feeding two parallel hidden
Markov models (HMM): the first one is used to quantify
tremor severity and the second one to recognize body posture
and action, thus providing a complete assessment of tremor
activity. A preliminary study (16) used three electromagnetic
motion capture sensors on different limbs of the arm. The
aim of this study was to provide a model for tremor-
suppression orthotic strategies in ET, but no progressions have
been made so far in such direction. A more complex setup
was proposed in a study by Lonini et al. (17), where PD
subjects where instrumented with six multi-modal soft sensors
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TABLE 1 | Classification of examined literature.

Assessment of tremor features Sensors on fingers/hand/wrist • Elble (6)

• Heldman (7)

• Dai (8)

• Marino (9)

• Hssayeni (10)

• Mahadevan (11)

• Dai (12)

• Sanchez-Perez (13)

• Jeon (14)

Sensors on multiple segments/whole body • Rigas (15)

• Charles (16)

• Lonini (17)

• Huo (18)

• Delrobaei (19)

Smartphone based methods • LeMoyne (20)

• LeMoyne (21)

• Araújo (22)

• Bhatti (23)

Smartwatch based methods • López-Blanco (24)

• Varghese (25)

• López-Blanco (26)

• Shawen (27)

Other devices • Zajki-Zechmeister (28)

Continuous monitoring of tremor • Cole (29)

• Jeonghee (30)

• Battista (31)

• Battista (32)

• Heijmans (33)

• San-Segundo (34)

• McNames (35)

• Kuosmanen (36)

• Erb (37)

Differential diagnosis between tremors • Vescio (38)

• Hossen (39)

• Ghassemi (40)

• Di Biase (41)

• Bove (42)

(triaxial accelerometers and gyroscopes, with two-lead skin
surface voltage), capable of acquiring accelerations, angular
velocity, and EMG while deforming with skin. This setup was
used to assess the performances of AI models in detecting
motor symptoms (tremor and bradykinesia) during normal life
activities. Huo et al. (18) introduced an even more complex
suit, based on a force sensor, three IMUs, and four custom
mechanomyography (MMG) sensors. The system was tested
in its capacity to predict Unified Parkinson’s Disease Rating
Scale (UPDRS) scores based on quantitative assessment of
bradykinesia, rigidity, and tremor in PD patients. Delrobaei et al.
(19) performed a similar task using a distributed setup with
17 wireless IMUs, hinting at possible applications in home-
monitoring settings. Another system, in the form of a pen,
has been described by Zajki-Zechmeister et al. (28) and can
provide information comparable to tremor scales, MDS-UPDRS
for PD, and Essential Tremor Rating Assessment Scale (TETRAS)
for ET. Despite the large diffusion of wearable sensors for
the assessment of tremor features and for the evaluation of
tremor severity, these technologies are still rarely used in clinical
practice. It has been demonstrated that their evaluation of
tremor severity and their test–retest variability are comparable
to those of rating scales (6). These wearable solutions can reliably
estimate only tremor frequency and amplitude and can be used
as the basis for the development of more complex devices for
the differential diagnosis of tremulous disorders and for the
monitoring of therapies.

DEVICES FOR MONITORING TREMOR
AND EFFICACY OF THERAPIES

Continuous monitoring of tremor symptoms has gained an
increasing interest in the last years due to the continuous need

for home-care solutions and smart services capable of reducing
the burden of National Health Systems. Monitoring tremors
during normal life activities can help in assessing the efficacy of
therapies. It may be useful for understanding when tremor occurs
and whether it is related to specific tasks or conditions. The main
difficulty in daily life tracking is the reliable discrimination of
tremor from other movements and artifacts. Therefore, a great
effort has been dedicated to the development of signal processing
and AI techniques.

Cole et al. (29) validated a network of eight wireless sensors
with combined 3D accelerometry and surface EMG and tested
several machine learning (ML) algorithms for the assessment
of the presence/absence and severity of tremor and dyskinesia.
They proved that their strategy achieved a small error rate
and was robust to changes in the positioning of sensors. Kim
et al. (30) used a wrist-worn device equipped with an IMU and
statistical pattern recognition algorithms to discriminate upper
limbs tremor from normal daily activities. Another watch-like
device, based on a triaxial accelerometer, was introduced and
validated by Battista and Romaniello (31, 32). Their device was
used to identify tremor events by computing statistical indexes
that were representative of motion patterns. In addition to a
wrist IMU sensor, Heijmans et al. (33) used also a second
IMU positioned on the chest, together with a questionnaire for
annotating tremor events during the day. The annotated data
were used to predict tremor severity. A wrist-worn accelerometer,
together with a smartphone annotation app, was used by San-
Segundo et al. (34). In this study, labeled data were collected
in a laboratory setting and weak-labeled data were recorded
during daily life. Several AI models were used to identify tremor
occurrence and severity from different sets of extracted features.

McNames et al. (35) use two IMUs, one for each wrist,
and a two-stage algorithm for refining tremor frequency
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estimation during the normal activity of PD subjects for seven
consecutive days. A smartphone-based solution for long-term
monitoring was introduced by Kuosmanen et al. (36), consisting
of an accelerometer-based ball game for quantifying patients’
hand tremor, a medication journal for logging medication
intake times, a daily survey for reporting the overall severity
of PD symptoms, and reminder notifications. Erb et al. (37)
introduced four different studies based on home monitoring
by means of wearable sensors and self-reporting diaries. In this
work, several sensing technologies were used: accelerometers,
gyroscopes, magnetometers, barometers, electrocardiogram
(ECG), EMG, and galvanic skin response (GSR) sensors. The
main limitation of the proposed solutions is the accuracy
in distinguishing between tremor and other movements or
artifacts, due to the high variability of signals recorded during
normal daily activity. Such monitoring devices seem to work
better in combination with self-annotations. Achieving a good
accuracy in identifying tremor and in assessing its severity
during continuous, fully automated monitoring is still an
open challenge.

DEVICES FOR DIFFERENTIAL DIAGNOSIS

Differential diagnosis between tremulous disorders is, perhaps,
one of the most intriguing and challenging research tasks that
have been carried on in recent times. A successful discrimination
between neurological diseases based on tremor data only may
avoid more complex, invasive, and expensive examinations.
Hence, the interest for simpler instruments and methods
may help even general practitioners in screening neurological
disorders that exhibit tremor symptoms. Discrimination of
ET from PD and other neurodegenerations often requires
a DAT-SPECT imaging examination. Such examination
is costly and invasive, as it employs a radioactive tracer.
Essential tremor subjects have normal DAT-SPECT; therefore,
abnormal DAT-SPECT can be considered as an exclusion
criterion for ET (47). The increasing availability of cheap,
non-invasive sensors and the development of ML and
signal processing techniques have supported the search for
alternative biomarkers in the huge amount of data that can be
easily produced.

Nisticò et al. first discovered the usefulness of phase pattern
in antagonistic muscle pairs as a powerful biomarker capable of
discriminating ET from PD (48) and drug-induced Parkinsonism
(DIP) from PD (49). Their work was based on EMG recordings
and automatic evaluation of phase lags between bursts detected
on the extensor carpi radialis (ECR) and flexor carpi ulnaris
(FCU) muscles during rest tremor occurrence. It was observed
that PD subjects exhibited an alternating activation pattern,
with a marked phase shift between bursts corresponding to
the alternating contractions of the antagonistic muscle pair.
Non-PD subjects (ET and DIP) exhibited synchronous patterns,
with no significant phase shift and muscles contracting at the
same time. These findings have led to the development and
validation of a wearable watch-like device (38), equipped with
two EMG acquisition plates (one for each muscle) and with

wireless connection to a smartphone and mobile app for real-
time processing and fully automated evaluation (Figure 1E). The
system is capable of characterizing rest tremor phase pattern
in <1min and to discriminate between PD and non-PD on an
individual basis.

Other authors (39, 40) introduced AI-based analysis
techniques for discriminating ET from PD using combined
EMG and accelerometer signals acquired in a laboratory
setting. Overall discrimination accuracies were 88.75 and 83%,
respectively. However, such methods have not been implemented
in any device yet.

Di Biase et al. (41) introduced another biomarker, called
tremor stability index (TSI), evaluated by means of a triaxial
accelerometer mounted on the wrist. Tremor stability index
is evaluated as the interquartile range of the instantaneous
frequency change. The authors tested this index on different
datasets, achieving an accuracy between 82% (on a validation
cohort) and 90% (testing cohort) in discriminating ET from
PD. Bove et al. (42) used triaxial accelerometers worn on the
proximal one-third of the metacarpals, and evaluated differences
in frequency, amplitude, coherence, and peak dispersion of
resting and action tremor between PD, ET, and dystonic tremor
(DT) subjects. They combined these parameters into three sets
of at most five discriminating criteria (one set for each disease),
achieving, respectively, the following values of sensitivity and
specificity: for DT, 85 and 87.5%; for ET, 95 and 90%; for PD,
100 and 93%. Diagnostic solutions based on inertial sensors
have achieved a good discriminating performance. Wearable
EMG devices, however, show the best accuracy in differential
diagnosis between tremulous disorders, as they can evaluate
tremor patterns.

CONCLUSION

Wearable sensors have undergone important developments in
the last decade in an increasing number of areas of application.
Healthcare is one of the most promising sectors, where new
technologies are being used for sensing, acquiring, analyzing, and
sharing data. Several wearable solutions have been implemented,
either using commercially available devices or developing custom
systems, for aiding clinical evaluation and diagnosis. In this
short review, we have focused on devices and solutions for the
assessment, continuous monitoring, and diagnosis of tremor
in neurological diseases. As a first consideration, up to date,
most wearable applications are mainly focused on tremor
assessment and quantification of tremor severity. A minor
number of solutions are dedicated to homemonitoring of tremor
symptoms in order to fully characterize their occurrence and
severity during daily life tasks and to optimize therapies. The
use of wearable technologies for differential diagnosis between
tremulous disorders is very promising. In the next future, more
efforts will be devoted to this field. Another consideration regards
sensing technologies. Inertial sensing based on Micro Electro-
Mechanical Systems (MEMS) is still the most used technology
for wearable devices measuring tremor. This is mainly due
to their physical properties: tremor is a rhythmic movement,
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and these transducers sense motion. Moreover, they are nearly
ubiquitous, as they are embedded in all mobile communication
and entertainment devices, in smartwatches and smart bands
used for sports and fitness. Last, they can be easily embedded
in any wearable solution thanks to their small dimensions and
low power requirements. However, in diagnostic applications,
the accuracy that can be achieved using MEMS sensors is still
lower than that of solutions that include EMG and tremor
pattern analysis.

FUTURE PERSPECTIVES

The pervasive diffusion of mobile devices and network services,
together with the advancement of signal processing algorithms,
will allow for a wider diffusion of wearable solutions for
diagnosing and monitoring tremors and other pathological
conditions. Skin sensors, which can be used as patches,
represent another emerging technology. They are at a very early
stage but are very likely to be used in the next future for
continuous monitoring applications. New devices will mainly

follow three development directions: (i) smaller sizes, (ii) more
complex and intelligent processing algorithms, and (iii) wireless
interconnection to other devices and to more and more complex
services on the Internet. The combination of these characteristics
will allow for the development of new sophisticated devices for
diagnostic and monitoring applications.
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