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Studies have shown that microbes exist widely in the human body and are closely

related to human complex diseases. Predicting potential associations between microbes

and diseases is conducive to understanding the mechanisms of complex diseases

and can also facilitate the diagnosis and prevention of human diseases. In this

paper, we put forward the Matrix Decomposition and Label Propagation for Human

Microbe-Disease Association prediction (MDLPHMDA) on the basis of the dataset

of known microbe-disease associations collected from the database of HMDAD and

the Gaussian interaction profile kernel similarity for diseases and microbes, disease

symptom similarity. Moreover, the performance of our model was evaluated by means

of leave-one-out cross validation and five-fold cross validation, and the corresponding

AUCs of 0.9034 and 0.8954 ± 0.0030 were gained, respectively. In case studies,

10, 9, 9, and 8 out of the top 10 predicted microbes for asthma, colorectal

carcinoma, liver cirrhosis, and type 1 diabetes were confirmed by literatures, respectively.

Overall, evaluation results showed that MDLPHMDA has good performance in potential

microbe-diseasepositive free parameter, which associations prediction.

Keywords: microbe, disease, association prediction, matrix decomposition, label propagation

INTRODUCTION

Microbes are microscopic organisms that may exist in single-celled form or in a colony of cells
(Madigan and Michaelt, 2015). They live in almost all the habitats from the poles to the deep
sea and also make up the microbiota in all multicellular organisms (Delong and Pace, 2001).
There are trillions of microbes in the human body. Lots of them are beneficial for human health,
while others may cause infectious diseases (Thiele et al., 2013). Human microbiota can form an
endosymbiotic relationship with their host, providing services and useful goods to humans. For
example, the gut flora can contribute to gut immunity as well as digest complex carbohydrates and
synthesize vitamins (O’hara and Shanahan, 2006). It is now accepted that most of the microbes are
not intrinsically harmful. However, the pathogenic microorganisms and the imbalance of resident
microbes are closely related to human disease.

Microorganisms are closely related to both infectious diseases and non-infectious diseases.
Infectious diseases are global problems. They have induced several feared plagues in human history
and new infections are still emerging today (Morse, 1995). Microorganisms are the causative
pathogens for many infectious diseases. The involved organisms include pathogenic bacteria such
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as Mycobacterium tuberculosis and Bacillus anthracis, which
can cause tuberculosis and anthrax, respectively (Hawn et al.,
2014; Hendricks et al., 2014); protozoan parasites such as
Plasmodium and Toxoplasma gondii, which can cause malaria
and toxoplasmosis (Torgerson and Mastroiacovo, 2013; Iburg,
2015); and also fungi such as Candida albicans and Histoplasma
capsulatum which can cause candidiasis or histoplasmosis
(Stenn, 1960; Pappas et al., 2016). Meanwhile, most new
infections appear to be caused by already discovered pathogenic
microorganisms. These pathogens obtain selective advantage by
changing conditions to infect new host populations or cause a
new disease (Morse, 1991). On the other hand, microbiota can
interact with human at multiple levels. Due to these complex
microbiota-host relationships, dysbiosis can be the cause of
the pathology (Forum on Microbial et al., 2014). Various
factors including antibiotics, radiations, stress or nutritional
changes can alter the compositions of human microbiota. This
disruption of homeostasis can induce many maladies (Tamboli
et al., 2004). For example, it is founded that the interactions
between host immunity and gut microbiota can directly result
in inflammatory bowel disease (IBD). IBD is a long-term
aggravating inflammation of the intestine (Schirbel and Fiocchi,
2010). Both commensal microbiota and individual genetic
susceptibility play key roles in the occurrence and development of
this disease (Ferreira et al., 2014). Compared to healthy control,
the composition of gut microbiota in IBD patients is distinct
with decreased Firmicutes (Walker et al., 2011). The complex
interplay between microbiota and human is also closely related
to metabolic disease such as obesity (Ley et al., 2006). In a
study about overweight and obese children, scientists found that
the lower numbers of fecal Staphylococcus aureus was further
linked with normal-weight development (Kalliomaki et al., 2008).
Besides intestinal tract, microbial communities in respiratory
tract are also closely related to various lung diseases such as
sinusitis and chronic obstructive pulmonary disease (COPD)
(Huang et al., 2017b). A study showed that sinusitis patients
experienced an increase in Corynebacterium tuberculostearicum
(Abreu et al., 2012). In COPD, increased Lactobacillus is induced
by an inflammatory modulation and results in the formation
of tertiary lymphoid (Sze et al., 2012). All the above studies
revealed the close associations between microbes and various
human diseases. Unquestionably, identifying potential microbe-
disease associations is of great significance in exploring the
pathogenesis, prevention, and treatment of diseases. As the
traditional experimental method is time-consuming, costly,
random, and blind, there is an urgent need to develop an
effective calculation approach so as to help researchers in
finding the regular pattern of microbe-disease associations and
to provide complementary and supportive evidence for the
experimental study.

Relevant research for the identification of potential microbe-
disease associations are still in its infancy, and effective
calculation models for the association prediction are even
more scarce. Ma et al. (2017) created the first database
of Human Microbe-Disease Association Database (HMDAD),
which collected confirmed microbe-disease associations from
published literatures. Based on the above work, several

computational models were established to prioritize candidate
microbes for diseases. For example, Chen et al. (2017a)
introduced the network-based model of KATZ measure for
HumanMicrobe-Disease Association prediction (KATZHMDA),
the first calculationmethod for the identification of newmicrobe-
disease associations through computing the number of walks of
connections between microbe and disease nodes in the microbe-
disease association network. Recently, the computational model
of Laplacian Regularized Least Squares for Human Microbe-
Disease Association (LRLSHMDA) was presented by Wang et al.
(2017). It is a global measure based on a semi-supervised learning
framework. In their proposed calculation model, the Laplacian
regularized least squares (LapRLS) classification was adopted to
prioritize candidate microbes for all interested diseases through
the application of known microbe-disease associations, the
Gaussian interaction profile kernel similarity for microbes and
diseases. Similarly, with the same dataset of known microbe-
disease associations, the Gaussian interaction profile kernel
similarity for microbes and diseases mentioned above, a path-
based search model of Path-Based Human Microbe-Disease
Association prediction (PBHMDA) was introduced by Huang
et al. (2017c). In themodel, the association score of eachmicrobe-
disease pair would be computed by the integration of all paths
less four between the microbe and disease with different weights.
In addition, Huang et al. (2017a) put forward a Neighbor-
and Graph-based combined Recommendationmodel for Human
Microbe-Disease Association prediction (NGRHMDA). The final
prediction scores of novel microbe-disease associations were
attained via the integration of two prediction results predicted
by neighbor-based collaborative filtering and the graph-based
scoring method. Also, Peng et al. (2018) put forward a model
of Adaptive Boosting for Human Microbe-Disease Association
prediction (ABHMDA) by enforcing a strong classifier on the
samples. Specifically, the strong classifier was constructed by the
integration of 30 weak classifiers with different weights.

In this paper, by combining known microbe-disease
associations collected from HMDAD, disease symptom
similarity and Gaussian interaction profile kernel similarity
for microbes and diseases, we introduced a computational model
of Matrix Decomposition and Label Propagation for the Human
Microbe-Disease Association prediction (MDLPHMDA). In our
proposed algorithm, a new adjacency matrix of microbe-disease
associations was first generated by employing the spare learning
method (SLM) on the original association information extracted
from HMDAD, and potential microbe-disease associations
would be further predicted under the implementation of
the label propagation algorithm (LPA). The leave-one-out
cross validation (LOOCV) and five-fold cross validation were
subsequently enforced for accuracy evaluation of MDLPHMDA.
Assessment results showed that MDLPHMDA gained the area
under the receiver operating characteristic curves (AUCs)
of 0.9034 and 0.8954 ± 0.0030 in LOOCV and five-fold
cross validation, respectively. In case studies, we carried out
MDLPHMDA to predict potential microbes for asthma and
colorectal carcinoma (CRC), respectively. Moreover, via the
implementation of our developed algorithm, we prioritized
microbes for liver cirrhosis and type 1 diabetes by removing their
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known related microbes, respectively. Finally, the results analysis
of cross validations and case studies showed that MDLPHMDA
is a suitable and effective model in potential microbe-disease
association prediction.

MATERIALS AND METHODS

Human Microbe-Disease Associations
The dataset of confirmed microbe-disease associations used in
this paper were collected from HMDAD (http://www.cuilab.cn/
hmdad) (Ma et al., 2017). According to the 16s RNA sequencing-
based microbiome research, the database collected 483 microbe-
disease associations between 39 diseases and 292 microbes from
61 previous works. Along with the deletion of the same microbe-
disease associations based on different evidences in the database,
we finally obtained a dataset of 450 associations between 39
diseases and 292 microbes. Moreover, the variables nd and nm
were defined to represent the 39 diseases and 292 microbes,
respectively. Also, adjacency matrix A of the verified microbe-
disease associations was defined as follows:

A(i, j) =

{

1, if microbe m(j) is related to disease d(i)
0, otherwise

(1)

Integrated Diseases Similarity
The integrated disease similarity was constructed by combining
the Gaussian interaction profile kernel similarity for diseases and
disease symptom similarity. First, we calculated the Gaussian
interaction profile kernel similarity for diseases by adopting the
calculation approach in the previous literature (Van Laarhoven
et al., 2011). According to the idea that similar diseases possess
similar interaction and non-interaction patterns with microbes,
the Gaussian interaction profile kernel similarity for diseases was
created in light of confirmed microbe-disease associations. We
defined the interaction profile of each disease by using a binary
vector that shows whether the disease is related to each microbe
or not. For example, for disease d(i), its interaction profile
IP(d(i)) is the ith row of the adjacency matrix A. Therefore, the
Gaussian interaction profile kernel similarity between disease d(i)
and disease d(j) can be computed as follows:

KD(d(i), d(j)) = exp(−γd
∥

∥IP(d(i))− IP(d(j))
∥

∥

2
) (2)

γd = γd
′/(

1

nd

nd
∑

k=1

∥

∥IP(d(k))
∥

∥

2
) (3)

where γd indicates the normalized kernel bandwidth in light of
the new bandwidth parameter γd

′. Second, according to the data
of diseases and their symptoms in PubMed bibliography, disease
symptom similarity DSS could be constructed (Zhou et al.,
2014). Finally, in accordance with disease symptom similarity put
forward by Zhou et al. (2014), taking into account of the Gaussian
interaction profile kernel similarity for diseases, we constructed

integrated disease similarity by using the method applied in a
previous study (Chen et al., 2017a).

DS =
KD+ DSS

2
(4)

Gaussian Interaction Profile Kernel
Similarity for Microbes
In the same way, motivated by previous literature (Van
Laarhoven et al., 2011), the Gaussian interaction profile kernel
similarity for microbes was established according to confirmed
microbe-disease associations. For microbe m(j), its interaction
profile IP(m(j)) is the jth column of the adjacency matrix A.
Therefore, the Gaussian interaction profile kernel similarity
between microbe m(i) and microbe m(j) can be computed
as follows:

KM(m(i),m(j)) = exp(−γm
∥

∥IP(m(i))− IP(m(j))
∥

∥

2
) (5)

γm = γm
′/(

1

nm

nm
∑

k=1

∥

∥IP(m(k))
∥

∥

2
) (6)

where γm indicates the normalized kernel bandwidth in light of
the new bandwidth parameter γm

′.

MDLPHMDA
In this manuscript, motivated by SLM developed by Pech
et al. (2017) and LPA introduced by Zhang et al. (2017),
we applied the calculation model of MDLPHMDA to infer
novel microbe-disease associations. Starting from the fact that
redundant formation may be present in the original dataset
of known microbe-disease associations, we employed matrix
decomposition to eliminate the noise of known microbe-disease
associations and then applied LPA for the identification of the
potential microbe-disease associations (see Figure 1). It is worth
mentioning that matrix decomposition has been widely used in
Bioinformatics research (Chen et al., 2018b,d; Zhao et al., 2018).

Since a part of microbe-disease associations in the dataset
may be incorrect or redundant, we adopted SLM to remove the
noise of the original data and search a lowest-rank matrix among
candidates to gain a novel adjacency matrix. In our introduced
model, we divided the original adjacency matrix A into two parts
by using SLM. The first part is a linear combination of the original
adjacency matrix A and a low-rank matrix, while the second part
is a spare matrix that can be regarded as the noise of the original
adjacency matrix A. Hence, the original adjacency matrix can be
decomposed as follows:

A = AX + E (7)

In order to get a low-rank matrix X and a sparse matrix E, we
could transform Equation (7) into a optimization problem by
applying the nuclear norm on X and the sparse norm on E.

min
X,E

‖X‖∗ + α‖E‖2,1 s.t. A = AX + E (8)
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FIGURE 1 | Flowchart of the calculation model of MDLPHMDA: We first enforced matrix decomposition to eliminate the noise of original known microbe-disease

associations and gained a new adjacency matrix. Then LPA was implemented based on the created new adjacency matrix for the identification of the potential

microbe-disease associations.

where

‖A‖∗ =
∑

i
σi (i.e., σi is the sigular values of A) (9)

‖E‖2,1 =
∑n

j=1

√

∑n

i=1
(Eij)

2 (10)

Here, α is a positive free parameter, which can balance the weight
between the low-rankmatrix and the sparse matrix. To transform
the original optimization problem into an augmented Lagrange
function, we rewrote the optimization problem into a constraint
and convex optimization problem of Equation (11) and enforced
an inexact augmented Lagrange multipliers (IALM) algorithm
(Meng et al., 2014) to solve it (see Table 1).

min
X,E,J

‖J‖∗ + α‖E‖2,1

s.t. A = AX+E,X = J (11)

L = ‖J‖∗ + α‖E‖2,1 + tr(YT
1 (A− AX − E))

+tr(YT
2 (X − J))+

µ

2
(‖A− AX − E‖2F + ‖X − J‖2F) (12)

where µ ≥ 0 is a penalty parameter and the detailed solution
process to gain solution X∗ and E* of Equation (12) could be
explained in previous literature (Pech et al., 2017).

As the solution of Equation (12) was solved, we gained a new
adjacency matrix A* with less noise by the linear combination

TABLE 1 | Computational procedures of the Inexact augmented Lagrange

multipliers (IALM) algorithm.

Algorithm: IALM

Input: Given a adjacency matrix A and parameter α=0.1

Output:X∗ and E∗

Initialize:X = 0, E = 0, Y1 = 0, Y2 = 0,µ = 10−4,maxµ =

1010, ρ = 1.1, ε = 10−6

while ‖A− AX− E‖∞ ≥ ε and ‖X− J‖∞ ≥ ε do

a.J = argmin 1
µ ‖J‖∗ + 1

2

∥

∥J− (X+ Y2/µ)
∥

∥

2
F

b.X = (I+ ATA)(ATA− ATE+ J+ (ATY1 − Y2)/µ)

c. E = argmin α
µ ‖E‖2,1 + 1

2

∥

∥E− (A− AX+ Y1/µ)
∥

∥

2
F

d.Y1 = Y1 + µ(A− AX− E); Y2 = Y2 + µ(X− J)

e. µ = min(ρµ,maxµ)

end while

of the original adjacency matrix A and the low-rank matrix X∗

as follows:

A∗ = AX∗ (13)

Then, based on the Gaussian interaction profile kernel similarity
for microbes and diseases, disease symptom similarity and the
newly created adjacency matrix A*, we enforced LPA to infer
novel microbe-disease associations. First, from the perspective
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of disease, we constructed an undirected graph with diseases
as nodes, and similarity scores as edge weight. To combine the
original microbe-disease associations information, we treated
the new adjacency matrix of microbe-disease associations as the
labels to propagate in the disease undirected graph and each label
is updated through the absorption of its neighborhoods’ label
information with a rate of α and going back to its original known
microbe-disease association nodes with a rate of 1−α . Referring
to previous literature (Yao et al., 2017; Zhang et al., 2017), we set α
as 0.3. The label propagation process can be described as follows:

Yd
t+1 = αDSYd

t + (1− α) A (14)

where Yd
t indicates the predicted scores between microbes and

diseases at step t. Specifically, Y0
d
refers to the newly created

adjacency matrixA*. The iteration would be stable after some
steps (the change in value between Yd

t+1 and Yd
t measured by

L1 norm is <10e-6). The final value Yd would be the predicted
scores of new microbe-disease associations from the perspective
of diseases.

Also, from the perspective of microbes, we can build another
microbe undirected graph and employ LPA to gain another
predicted scores Ym of novel microbe-disease associations.
Finally, we defined the final predicted scores Y for the potential
microbe-disease associations by the average of the two predicted
scores mentioned above.

Y =
Yd + Ym

2
(15)

RESULTS

Performance Evaluation
In order to test the prediction performance of MDLPHMDA
based on the 450 confirmed microbe-disease associations

collected from HMDAD (Ma et al., 2017), our model was
compared with two classic algorithms (LRLSHMDA and
KATZHMDA) on the basis of the evaluation method of LOOCV
and five-fold cross validation. In LOOCV, each confirmed
microbe-disease association was taken as test sample by turn
and the rest 449 identified associations were used to train. After
executing MDLPHMDA, the score of the test sample would be
ranked with the scores of candidate samples that were made
up of all unconfirmed microbe-disease pairs. In five-fold cross
validation, we first divided the 450 microbe-disease association
pairs into five equal parts and later made each part as test
sample in turn and the remaining four parts of associations as
training samples. In the same way, each test sample’s score would
be ranked with the scores of all candidate samples that were
composed of unconfirmed microbe-disease pairs. As the sample
divisions may cause bias, we enforced five-fold cross validation
100 times to gain an average value as the final result. If the
ranking of the test sample is higher than a given threshold,
our model is considered to make a successful prediction. Then,
according to varying thresholds, we plotted the receiver operating
characteristics (ROC) curve by computing the ratio of true
positive rate (TPR, sensitivity) to false positive rate (FPR, 1-
specificity). Sensitivity denotes the percentage of test samples
which obtained ranks higher than the set threshold. Meanwhile,
specificity denotes the percentage of negative microbe-disease
pairs with ranks lower than the threshold. Finally, to assess
the performance of MDLPHMDA effectively, we computed
corresponding AUCs. When AUC = 1, the model possesses
perfect forecast ability; when AUC = 0.5, the model possesses
random forecast ability. In LOOCV, assessment results showed
that MDLPHMDA, LRLSHMDA, and KATZHMDA gained the
AUCs of 0.9034, 0.8909, and 0.8382, respectively (see Figure 2).
In five-fold cross validation, MDLPHMDA, LRLSHMDA, and
KATZHMDA gained the AUCs of 0.8954 ± 0.0030, 0.8794 ±

0.0029, and 0.8301 ± 0.0033, respectively. Stated thus, it can
be seen that our model possesses good prediction ability and

FIGURE 2 | Performance comparison between MDLPHMDA and other two classical microbe-disease association prediction models (LRLSHMDA and KATZHMDA)

by means of AUCs based on LOOCV. The results showed that MDLPHMDA gained AUCs of 0.9034 in LOOCV.
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could be used to assist the identification of novel microbe-disease
associations. Moreover, we carried out a paired t-test based
on the ranking results of LOOCV to observe the statistical
significance of differences among MDLPHMDA, LRLSHMDA,
and KATZHMDA. As a result, the p-value of MDLPHMDA and
LRLSHMDA is 0.0088, whereas the p-value of MDLPHMDA
and KATZHMDA is 1.2510e-08. We can see that MDLPMDA
is significantly different from LRLSHMDA and KATZHMDA on
the basis of their ranking results of LOOCV (p < 0.05).

Case Study
Via two different types of case studies, we further assessed the
prediction ability of MDLPHMDA based on the confirmed 450
microbe-disease associations. In the first kind, we identified
potential microbes for asthma and CRC, respectively, through
the implementation of MDLPHMDA. Also, we released all
prediction scores for 10938 novel microbe-disease pair between
39 diseases and 292 microbes (see Supplementary Table 1).
In the second kind, we enforced MDLPHMDA to identify
liver cirrhosis-associated microbes by removing 62 known
liver cirrhosis-associated microbes from the dataset of known
microbe-disease associations and also predicted for another
disease of type 1 diabetes by removing its known microbes.
Based on the results of the two types of case studies, the
proposed algorithm of MDLPHMDA was proven to be an
effective algorithm in the identification of novel microbe-
disease associations.

Asthma is a long-term inflammatory disease of the
airways (Lemanske and Busse, 2010). Its common symptoms
include coughing, reversible airflow obstruction, wheezing, or
bronchospasm (Lemanske and Busse, 2010). Epidemiological
studies indicated that microbial exposures in early life might
determine microbiota composition, which can help to prevent
allergy or lead to the development of asthma (Wang et al., 2003;
Weber et al., 2015). A study in asthmatic children has found a
low abundance of Bifidobacterium in their intestinal microbiota,
which may reduce the immune function and potentially
contribute to disease chronicization (Kalliomaki et al., 2001).
Similarly, a probiotic strain Lactobacillus rhamnosus reduced
allergic responses in the airways of neonates (Martinon et al.,
2009). In this paper, via the implementation of MDLPHMDA
for the inference of novel asthma-related microbes, we could see
that the top 10 predicted microbes for asthma were all confirmed
through literature (see Table 2). Among the top 3 confirmed
associations between microbes and asthma, relevant differences
in Firmicutes were found between samples from asthmatic
and non-asthmatic subjects (Marri et al., 2013). Another study
investigated that Clostridium difficile was associated with
an increased risk for asthma (Van Nimwegen et al., 2011).
Meanwhile, in a study about early intestinal colonization of
infants, Clostridium coccoides was confirmed to be associated
with increased risk for the development of asthma before the age
of 3 years (Vael et al., 2011).

CRC is the cancer in the colon or rectum (Watson and
Collins, 2011). Common symptoms include weight loss, blood
in stool, and feeling tired all the time (Watson and Collins,
2011). It typically starts in the form of a polyp as a benign

TABLE 2 | The validation of the top 10 predicted asthma-related microbes after

implementing MDLPHMDA based on the confirmed microbe-disease associations

from HMDAD.

Disease Microbe Score Evidence

Asthma Firmicutes 0.035113958 PMID:23265859

Asthma Clostridium difficile 0.026401159 PMID:21872915

Asthma Clostridium coccoides 0.023247917 PMID:21477358

Asthma Staphylococcus aureus 0.022891159 PMID:25533526

Asthma Actinobacteria 0.022703105 PMID:23265859

Asthma Lachnospiraceae 0.022512904 PMID: 27433177

Asthma Lactobacillus 0.022019371 PMID:20592920

Asthma Enterobacteriaceae 0.018834777 PMID:21639872

Asthma Veillonella 0.018243753 PMID: 26424567

Asthma Bacteroides 0.017354957 PMID: 18822123

As a result, all of the top 10 predicted microbes were confirmed by literatures.

tumor, which becomes cancerous over time (Watson and Collins,
2011). A quantitative polymerase chain reaction (qpcr) analysis
verified that Fusobacterium nucleatum, an invasive anaerobe
previously linked to appendicitis and periodontitis but not
to cancer, was increased in a CRC tumor vs. normal tissue
(Castellarin et al., 2012). Furthermore, this overabundance is
positively associated with lymph node metastasis (Castellarin
et al., 2012). Another study also observed a significant difference
of Bacteroides and Prevotella in a CRC group, as compared
to a normal group (Sobhani et al., 2011). Moreover, we
employed the proposed algorithm to predict CRC-related
microbes and the outcomes displayed that all but one of
the top 10 microbes for CRC were verified (see Table 3).
Among the top 3 confirmed associations, according to the
taxonomic results, Proteobacteria showed a higher abundance
in CRC rats compared to control groups and constitute the
third most abundant phyla (Zhu et al., 2014). In another
analysis on CRC, the Helicobacter pylori infection was noted
in 50 CRC patients. Furthermore, an infection with H. pylori
CagA+ was associated with an increased risk for CRC (Shmuely
et al., 2001). Moreover, a statistically significant difference in
C. difficile was detected between the CRC and healthy group,
suggesting a possible role of this bacteria in CRC carcinogenesis
(Fukugaiti et al., 2015).

Liver cirrhosis is a disease induced by long-term damage. This
damage is due to the replacement of normal tissue by scar tissue
(Li et al., 1999). Typically, the disease develops slowly and there
are often no significant early symptoms. As it worsens, patients
may become tired, bruise easily, develop yellow skin, have fluid in
the abdomen, or have swelling in the lower legs (Li et al., 1999).
Liver cirrhosis is commonly caused by alcohol, non-alcoholic
fatty liver disease, hepatitis B, or hepatitis C (Li et al., 1999).
In a study on the alterations of the human microbiome in liver
cirrhosis, quantitative metagenomics reveals 66 cognate bacterial
species that differ in abundance between healthy individuals
and patients, including Alistipes finegoldii, Bacteroides eggerthii,
Eubacterium rectale, Faecalibacterium prausnitzii, Haemophilus
parainfluenzae, and so on (Qin et al., 2014). In another
study about fecal microbial communities in patients with liver
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TABLE 3 | The validation of the top 10 predicted CRC-related microbes after

implementing MDLPHMDA based on the confirmed microbe-disease associations

from HMDAD.

Disease name Microbe name Score Evidence

CRC Proteobacteria 0.046859257 PMID: 24603888

CRC Helicobacter pylori 0.023587271 PMID: 11774957

CRC Clostridium difficile 0.023311807 PMID: 26691472

CRC Actinobacteria 0.023310463 Unconfirmed

CRC Lactobacillus 0.022992627 PMID:15828052

CRC Haemophilus 0.022582968 PMID:26549775

CRC Lachnospiraceae 0.02243978 PMID:21850056

CRC Clostridium coccoides 0.021696923 PMID:18237311

CRC Enterobacteriaceae 0.021122176 PMID: 25182170

CRC Staphylococcus aureus 0.020450372 PMID:7074582

As a result, 9 out of the top 10 predicted microbes were confirmed by literatures.

cirrhosis, research has detected the prevalence of pathogenic
bacteria such as Enterobacteriaceae and Streptococcaceae as well
as the reduction of beneficial populations such as Lachnospiraceae
(Chen et al., 2011). Here, by removing 62 known liver cirrhosis-
associated microbes from the dataset of known microbe-
disease associations, we enforced MDLPHMDA to identify liver
cirrhosis-associated microbes on the basis of integrated disease
similarity, Gaussian interaction profile kernel similarity for
microbes, and the rest known microbe-disease associations. As
a result, 9 out of the top 10 microbes for liver cirrhosis were
confirmed by HMDAD and literature (see Table 4). Among the
top 3 confirmed associations, Firmicutes was found to be highly
enriched in the patients group (Chen et al., 2011). Moreover,
researchers found significantly higher H. pylori prevalence in
patients with previous hospital admissions (Siringo et al., 1997).
This high prevalence ofH. pylori is related to age and sex (Siringo
et al., 1997). An analysis on the C. difficile infection in patients
with liver cirrhosis showed that cirrhotic patients with the C.
difficile infection have increased mortality than those without the
C. difficile infection, suggesting the importance of C. difficile in
the diagnosis and therapy of liver cirrhosis (Trifan et al., 2015).

Type 1 diabetes is a type of diabetes mellitus induced by
very little or no insulin produced in the pancreas (Daneman,
2006). It results in high blood sugar levels in the human
body. The classic symptoms include increased thirst and hunger,
frequent urination and weight loss (Daneman, 2006). The cause
of type 1 diabetes is still unclear. However, it is believed
to involve both genetic and environmental factors (Chiang
et al., 2014). One theory proposes that type 1 diabetes may
be caused by an autoimmune response while the immune
system attacks virus-infected insulin-producing cells in the
pancreas (Knip et al., 2005). In a microbiome metagenomics
analysis on type 1 diabetes, researchers identified the differences
between patients and controls at the genus level. The most
significant differences were noted in the genera Prevotella and
Bacteroides (Brown et al., 2011). In another study defining
the autoimmune microbiome for type 1 diabetes, scientists
identified bacteria that correlated with the autoimmune state
including Bacteroides fragilis, Clostridia, Eubacterium eligens,

TABLE 4 | The validation of the top 10 predicted liver cirrhosis-associated

microbes after implementing MDLPHMDA by removing liver cirrhosis-related

associations from the dataset of known microbe-disease associations.

Disease name Microbe name Score Evidence

Liver cirrhosis Proteobacteria 0.037652208 HMDAD

Liver cirrhosis Bacteroidetes 0.033708121 HMDAD

Liver cirrhosis Firmicutes 0.033302216 PMID:21574172

Liver cirrhosis Prevotella 0.028842704 HMDAD

Liver cirrhosis Helicobacter pylori 0.021108828 PMID:9365129

Liver cirrhosis Clostridium difficile 0.020872569 PMID:26440041

Liver cirrhosis Actinobacteria 0.020204542 PMID:22326468

Liver cirrhosis Clostridium coccoides 0.018391455 Unconfirmed

Liver cirrhosis Staphylococcus aureus 0.01835198 PMID:22833245

Liver cirrhosis Lactobacillus 0.016449739 HMDAD

As a result, 9 out of the top 10 predicted microbes were confirmed by HMDAD

and literatures.

and so on (Giongo et al., 2011). Similarly, we employed
MDLPHMDA to identify type 1 diabetes-associated microbes
by removing 167 known type 1 diabetes-associated microbes
from the dataset of known microbe-disease associations. The
results showed that 8 out of the top 10 microbes for liver
cirrhosis were confirmed (see Table 5). In a case-control study,
scientists found a meaningful correlation between the H. pylori
infection and the duration of diabetes in type 1 diabetic children
(Bazmamoun et al., 2016). In another study, researchers found
that Staphylococcus aureus is associated with the vitamin D
receptor (VDR) polymorphisms in patients with type 1 diabetes
(Panierakis et al., 2009).

DISCUSSION

Since the application of traditional experimental methods to
prioritize disease-associated microbes is time consuming and
expensive, the calculation approach of MDLPHMDA was put
forward through the fusing of integrated disease similarity,
Gaussian interaction profile kernel similarity for microbes
and known microbe-disease associations. The performance of
MDLPHMDAwas tested using cross validations and case studies.
Results on the basis of confirmed microbe-disease associations
showed that the performance of our introduced algorithm
is significantly improved in contrast with other two classic
algorithms of LRLSHMDA and KATZHMDA. Consequently,
the introduced algorithm is a suitable and effective model in
the identification of novel microbe-disease associations. We
further expect that the identified microbe-disease associations
with high probability scores would be verified through biological
experiment in the future.

The reason why MDLPHMDA could get excellent prediction
performance is due to the following attractive properties. First,
with the application of SLM on the original information
of known microbe-disease associations, a new adjacency
matrix with more accurate association information (the linear
combination of low-rank matrix and the original adjacency
matrix) and a noise (sparse) matrix would be gained. Obviously,
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TABLE 5 | The validation of the top 10 predicted type 1 diabetes-related microbes

after implementing MDLPHMDA by removing type 1 diabetes-related associations

from the dataset of known microbe-disease associations.

Disease name Microbe name Score Evidence

Type 1 diabetes Proteobacteria 0.035314225 HMDAD

Type 1 diabetes Bacteroidetes 0.030725459 HMDAD

Type 1 diabetes Firmicutes 0.02813792 HMDAD

Type 1 diabetes Prevotella 0.026244828 HMDAD

Type 1 diabetes Clostridium difficile 0.021633674 Unconfirmed

Type 1 diabetes Helicobacter pylori 0.021284419 PMID:27497772

Type 1 diabetes Clostridium coccoides 0.019300705 Unconfirmed

Type 1 diabetes Staphylococcus aureus 0.017744364 PMID:19411183

Type 1 diabetes Lactobacillus 0.016082255 HMDAD

Type 1 diabetes Actinobacteria 0.015923043 HMDAD

As a result, 8 out of the top 10 predicted microbes were confirmed by HMDAD and

literatures.

in light of the new generated adjacency matrix, the forecast
performance of the proposed algorithm for the identification
of new microbe-disease associations could be significantly
enhanced. Second, LPA was used to predict novel microbe-
disease associations from the perspectives of microbe and disease,
respectively, which would promote the ability of MDLPHMDA
in terms of forecast accuracy. Third, in comparison with
the previous calculation algorithms that only used Gaussian
interaction profile kernel similarity for diseases as disease
similarity, MDLPHMDA could achieve superior performance
through integrating disease symptom similarity and Gaussian
interaction profile kernel similarity for diseases into the
final disease similarity. Moreover, the implementation of
MDLPHMDA does not require negative samples and the
algorithm could be applied to new diseases (microbes) without
the relevant microbes (diseases).

However, the model has some main disadvantages. For
instance, the amount of known microbe-disease associations
used in this paper is very finite and more confirmed microbe-
disease associations need to be collected. Additionally, as the

computation of Gaussian interaction profile kernel similarity
of microbes depended on known microbe-disease associations,
other features of microbe similarity should be collected and
combined to gain a more comprehensive dataset of microbe
similarity such as microbe-drug associations collected by MDAD
(Sun et al., 2018). For MDLPHMDA, it is difficult to find
the optimum value of all the parameters to ensure that
the prediction model achieves the highest accuracy. Also,
the employment of SLM for creating new adjacency matrix
may bring unnecessary and useless association information,
which would affect the prediction result of LPA. Finally,
successfully established models in the other computational fields
would inspire the development of microbe-disease association
prediction, such as microRNA-disease association prediction
(Chen and Huang, 2017; Chen et al., 2018c), long non-
coding RNA-disease association prediction (Chen and Yan,
2013; Chen et al., 2017b), drug-target interaction prediction
(Chen et al., 2016b, 2018a), and synergistic drug combinations
(Chen et al., 2016a).
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