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Abstract

The amplitude of activation in brain resting state networks (RSNs), measured with

resting-state functional magnetic resonance imaging, is heritable and genetically cor-

related across RSNs, indicating pleiotropy. Recent univariate genome-wide associa-

tion studies (GWASs) explored the genetic underpinnings of individual variation in

RSN activity. Yet univariate genomic analyses do not describe the pleiotropic nature

of RSNs. In this study, we used a novel multivariate method called genomic structural

equation modeling to model latent factors that capture the shared genomic influence

on RSNs and to identify single nucleotide polymorphisms (SNPs) and genes driving

this pleiotropy. Using summary statistics from GWAS of 21 RSNs reported in UK Bio-

bank (N = 31,688), the genomic latent factor analysis was first conducted in a discov-

ery sample (N = 21,081), and then tested in an independent sample from the same

cohort (N = 10,607). In the discovery sample, we show that the genetic organization

of RSNs can be best explained by two distinct but correlated genetic factors that

divide multimodal association networks and sensory networks. Eleven of the 17 fac-

tor loadings were replicated in the independent sample. With the multivariate GWAS,

we found and replicated nine independent SNPs associated with the joint architec-

ture of RSNs. Further, by combining the discovery and replication samples, we dis-

covered additional SNP and gene associations with the two factors of RSN

amplitude. We conclude that modeling the genetic effects on brain function in a mul-

tivariate way is a powerful approach to learn more about the biological mechanisms

involved in brain function.

K E YWORD S

genetic correlation analysis, genomic SEM, multivariate GWAS, pleiotropy, resting-state
networks

1 | INTRODUCTION

The human brain is a complex system comprised of networks of

regions that are interconnected in terms of their function (Beckmann,

DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 2006; Fox

et al., 2005; Greicius, Krasnow, Reiss, & Menon, 2003). At rest, brain

function can be assessed using resting-state functional magnetic reso-

nance imaging (rfMRI), which uses a blood oxygenation level
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dependent (BOLD) signal to indirectly measure synchronicity in the

metabolic activity of brain regions (Biswal, Yetkin, Haughton, &

Hyde, 1995; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001).

Studies investigating rfMRI show that sets of brain regions are highly

synchronized in their spontaneous BOLD activity, forming so-called

resting-state networks (RSNs) (Beckmann et al., 2005; Fox et al., 2005;

Greicius et al., 2003). An extensive body of literature shows that

activity in RSNs is phenotypically associated with the incidence of neu-

ropsychiatric disorders (Badhwar et al., 2017; Cortese, Aoki, Itahashi,

Castellanos, & Eickhoff, 2021; Lau, Leung, & Lau, 2019; Mulders, van

Eijndhoven, Schene, Beckmann, & Tendolkar, 2015; Wojtalik, Smith,

Keshavan, & Eack, 2017). More recently, RSNs were also linked to

physical factors portrayed by anthropometric, cardiac, and bone density

traits (Miller et al., 2016).

RSN activation is heritable (Elliott et al., 2018; Glahn et al., 2010),

as demonstrated by twin and pedigree studies (i.e., broad-sense

heritability; 0:23< h2 < 0:97) (Ge, Holmes, Buckner, Smoller, &

Sabuncu, 2017; Glahn et al., 2010; Reineberg, Hatoum, Hewitt,

Banich, & Friedman, 2020; Teeuw et al., 2019; Yang et al., 2016) as

well as based on the effect of single nucleotide polymorphisms

(SNPs) in unrelated individuals, that is, SNP-based heritability

(0:05< h2SNP < 0:28) (Elliott et al., 2018; Feng et al., 2020). Most of

these studies measured the heritability of functional connectivity

based on correlations of BOLD timeseries within and between RSNs.

However, RSN activity can also be captured by the amplitude of

BOLD fluctuations (Bijsterbosch et al., 2017; Zhang et al., 2011),

a measure representative of signal changes in the activity of individual

RSNs. Previous studies have shown that variations of BOLD

amplitude over time in a given brain region are associated with

changes over time in its functional connectivity with other regions

(Bijsterbosch et al., 2017; Cole, Yang, Murray, Repovš, & Anticevic,

2016). BOLD amplitude-based measures are relevant for explaining

human behavior, as demonstrated by their association with cognitive

performance (Bijsterbosch et al., 2017; Mennes et al., 2011; Xu

et al., 2014; Zou et al., 2013) and life-risk behaviors (Bijsterbosch

et al., 2017). More recently, BOLD amplitudes in individual RSNs of

the UK Biobank were shown to be (SNP-based) heritable (Elliott

et al., 2018), with estimates on average higher than those scored by

(partial) correlation-based measures in the same sample (0:14< h2SNP

< 0:36). The genome-wide association study (GWAS) of BOLD ampli-

tude conducted by Elliott et al., 2018 led to the discovery of the first

genomic loci associated with individual RSNs: seven RSNs covering

prefrontal, parietal and temporal cortices were associated with SNPs

in the gene PLCE1; four RSNs mainly covering prefrontal regions were

associated with the same three intergenic variants (rs7080018,

rs11596664, rs67221163) in chromosome 10; one genome-wide

association with a single sensorimotor RSN involved the intronic

variant rs60873293.

Next to an overlap in single genetic variants involved in multiple

RSNs, significant genetic correlations between different RSNs have

been reported using bivariate GWAS analysis (Elliott et al., 2018) and

twin models (Reineberg et al., 2020; Teeuw et al., 2019), with

observed correlations between .37 and .79. These results suggest that

RSNs are driven by shared genetic variation, indicating the potential

for pleiotropy, that is, the same genetic variants being involved in the

etiology of different RSNs. One twin study conducted by Reineberg

et al., 2020 showed that the heritability of brain connectivity within

and across RSNs is represented by three clusters, of which one was

defined by low-heritability connections, and two clusters of heritable

connections. The latter two can be described as one cluster comprising

connections with high heritability in the visual cortex (i.e., “sensory”
regions) and a second cluster comprising associations among default

mode, frontoparietal, salience, dorsal, and ventral attention regions

(i.e., “multimodal association” regions, which integrate inputs from

multiple sensory modalities). This broad division of the connectome

into sensory networks and multimodal association networks is in line

with what was previously found on the basis of clustering of BOLD

amplitude across RSNs as well (Bijsterbosch et al., 2017; Zhang

et al., 2011). Based on these results, we hypothesize that RSNs

genetically diverge according to their “sensory” or “multimodal asso-

ciation” functions.
To identify the SNPs and genes driving this observed pleiotropy

multivariate methods can be applied (Grotzinger et al., 2019; Turley

et al., 2018; Zhu et al., 2015). Grotzinger et al. (2019) used a novel

technique called genomic structural equation modeling (genomic

SEM) to model a single genetic factor capturing GWAS associations

across multiple psychiatric diagnoses. This multivariate GWAS

approach led to the discovery of SNPs that were not observed by any

of the separate univariate GWASs of any of the disorders (Grotzinger

et al., 2019). In this way, multivariate GWAS provides a new, statisti-

cally powerful opportunity to directly characterize the genomic influ-

ence on multiple phenotypes simultaneously. Given the observed

pleiotropy between brain activation in RSNs, the same approach can

be applied to discover the SNPs most associated with shared genetic

effects on brain function.

In the current study, we investigated shared genetic etiologies of

multiple RSNs within the brain. We used GWAS summary statistics

for the amplitude of 21 RSNs throughout the brain made available by

the UK Biobank (Bycroft et al., 2018; Elliott et al., 2018; Miller

et al., 2016; Sudlow et al., 2015). Our approach was conducted on the

GWASs reported for the discovery sample (N = 21,081; Smith

et al., 2021), with a replication being carried out on an independent

sample from the same cohort (replication sample: N = 10,607; Smith

et al., 2021). The same approach was then repeated on the GWASs of

all the available individuals in both the discovery and replication sam-

ples, that is, BIG40 sample (N = 31,688; Smith et al., 2021). First, we

estimated the SNP-heritability of the selected RSNs, and for heritable

RSNs we modeled their shared genetic structure using genomic SEM

(Grotzinger et al., 2019). Next, we performed multivariate GWASs to

characterize the SNPs associated with these pleiotropic factors. The

multivariate GWAS findings obtained with the BIG40 sample were

further interpreted via functional annotation of top GWAS loci and

gene-mapping with the functional mapping and annotation (FUMA)

tool (Watanabe, Taskesen, van Bochoven, & Posthuma, 2017) and

gene-wide and gene-set analysis in MAGMA (de Leeuw, Mooij,

Heskes, & Posthuma, 2015). Finally, we also tested whether the newly

found genomic factors were genetically correlated with neuropsychi-

atric and physical traits.
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2 | RESULTS

2.1 | SNP-based heritability of RSNs

We obtained GWAS summary statistics of BOLD amplitudes of

10 multimodal association and 11 sensory RSNs (Figures 1 and S1,

and Tables S1 and S2) measured both in the discovery and the BIG40

samples (Smith et al., 2021), with 21,081 and 31,688 adult individuals,

respectively (see Section 4.1). With the BIG40 sample, the h2SNP of

amplitude in all the 21 RSNs was false discovery rate (FDR)-corrected

significant (adjusted p [FDR]≤ .05; Figure S1 and Table S1). Therefore,

we kept all 21 RSNs for subsequent analyses on the BIG40 sample.

The heritability estimates ranged between 0.05 and 0.17, with multi-

modal association networks showing on average higher h2SNP than sen-

sory networks (average h2SNP =0.11 and 0.07, respectively).

Within the discovery sample, 19 of the 21 RSN amplitudes

showed a significant SNP-based heritability, while two sensory net-

works involved in secondary visual processing (SN2–3) had nonsignifi-

cant h2SNP estimates (h2SNP =0.036 and 0.038; Figure S1 and Table S2).

The two networks were thus excluded from subsequent analyses of

the discovery and replication samples.

2.2 | Genetic correlations between RSNs

To test the existence of shared genetic etiologies between the herita-

ble RSN amplitudes, we calculated genetic correlations using Linkage

Disequilibrium Regression Analysis (Bulik-Sullivan et al., 2015) avail-

able within the genomic SEM package (Grotzinger et al., 2019).

Figure 2 displays the 210 pairwise genetic correlations between the

21 heritable RSNs in the BIG40 sample, of which 57 are Bonferroni-

level significant (p[Bonferroni] ≤ .05/210 = 2E�4), and 67 reached

“nominal” significance not accounting for multiple comparisons

(p < .05). The Bonferroni and the “nominally” significant genetic corre-
lations were predominantly positive (121 out of 124, from .19 to .90).

For more details on the genetic correlation values and respective stan-

dard errors and p values, see Table S3. For the genetic correlation

results obtained with the discovery sample, consult Table S4.

2.3 | Genomic structural equation modeling

To characterize the common underlying genetic etiologies between

heritable RSNs, we derived latent genomic factors using genomic SEM

(Grotzinger et al., 2019). We chose the most optimal model on the

basis of exploratory factor analysis (EFA) in the discovery sample. The

EFA results are summarized in Figure 3, showing that the two-factor

model explained 55% variance, 16% more variance than the one-

factor model, while the addition of a third factor did not explain sub-

stantially more variance (Karlsson Linnér et al., 2019; Levey

et al., 2020). These results indicate that the most optimal model in

representing the pleiotropy among these RSNs consists of two fac-

tors. The factor loadings retrieved by this EFA are available in

Table S5.

We used confirmatory factor analysis (CFA) to test the model fit

of the two-factor model in the discovery sample, and retested the

same model in the replication sample (N = 10,607; Smith et al., 2021).

The model fit estimates are reported in Table 1 for the two samples.

F IGURE 1 SNP-based heritability results obtained for multimodal association and sensory networks. Cortical surface maps displayed show
the multimodal association and sensory networks measured in the BIG40 sample. Multimodal association networks are displayed at the top and
the sensory networks at the bottom. Both the medial and lateral views of RSNs in the left and right hemispheres are displayed from left to right.
RSNs are color-coded according to their SNP-based heritability—proportion of variance in the trait explained by SNP effects—whose scales are
displayed on the right. RSN, resting state network; SNP, single nucleotide polymorphism
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For the discovery sample, the results are organized in two sets: (a) fit

estimates reported for the model retrieved by EFA (see top row in

Table 1); and (b) fit estimates for the corrected model after excluding

nonsignificant factor loadings (p[Bonferroni] ≤ .05/19 = .0026; see

bottom row in Table 1). By comparing, in the discovery sample, the

chi-square and Akaike information criterion (AIC) statistics between

the two sets, we observed that excluding non-significant factor

loadings from the model led to lower values retrieved by both statis-

tics, and thus an improved model fit. Further, by testing this model

on our replication sample, we observed that the replication sample

had an even better model fit compared to the discovery sample. The

factor loading results retrieved across the discovery and replication

CFA (Tables S6–S8) showed that 11 out of the 17 RSN amplitude

associations with the two factors were replicated based on the nom-

inal significance (p < .05) reported with the replication sample

(of which five also significant upon Bonferroni correction; p

[Bonferroni] ≤ .05/17 = .0029).

The genomic SEM approach conducted on the discovery sample

was then repeated on the BIG40 sample. Despite including two addi-

tional RSNs compared to the discovery sample (SN2-3), the EFA on

the BIG40 sample led to the same optimal number of factors (see

Figure 3), where the two-factor model explained 53% variance, 14%

more variance than the one-factor model. Results of the subsequent

CFA are shown in Table 2, with the model corrected by excluding

nonsignificant factor loadings (p[Bonferroni] ≤ .05/22 = .0022) lead-

ing also to improved model fit estimates. In Figure 4, we show the

path diagram of the corrected two-factor model, in which the pleiot-

ropy among the amplitude of the 18 RSNs kept in the model is repre-

sented by two distinct but correlated factors (r = .47, p = 1.14E�8),

where the first factor (F1) comprises all 10 multimodal association

networks (MA1–10) and two sensory networks (SN4 and SN10);

whereas the second factor (F2) consists of six sensory networks (SN2,

SN5–9). These results resemble highly the genomic SEM outcome

obtained with the 17 RSN amplitudes included in the discovery sam-

ple (Tables S6–S8), which did not include SN2 due to nonsignificant

SNP-based heritability. In Tables S9–S11, we include the nominal and

Bonferroni-corrected p values of the factor loadings leading to the

results in Figure 4. For completeness, we also report results of the

one-factor model, which also had a reasonable fit, for each step in the

Tables S12–S18.

2.4 | Multivariate GWAS results

We estimated the SNP effects driving the pleiotropy of RSNs using

multivariate GWASs of the two latent genetic factors. Both F1 and F2

showed significant SNP-based heritability in the discovery sample (F1:

h2SNP =0.20, SE = 0.028, p = 3.98E�13; F2: h2SNP =0.11, SE = 0.020,

F IGURE 2 Genetic correlation matrix
of the heritable RSN amplitudes. Genetic
correlations results are reported for the
BIG40 samples. Multimodal association
(MA) and sensory (SN) network
amplitudes are represented according to
the color bar displayed below. Genetic
correlations scoring nominal and
Bonferroni-corrected significance are

respectively labeled with * and **. RSN,
resting state network
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p = 6.87E�8) and the BIG40 sample (F1: h2SNP =0.18, SE = 0.022,

p = 4.46E�17; F2: h2SNP =0.09, SE = 0.014, p = 1.11E�11). For the

discovery sample, 142 SNPs, encompassing three genomic loci,

showed genome-wide significant associations with F1 (p<5E�8).

Table 3 shows the results obtained for the nine independent genome-

wide significant SNPs of the 142 SNP associations (for GWAS plot,

see Figure S2). We found that all nine SNP associations were repli-

cated with their nominal significance p< .05 in the multivariate GWAS

on the replication sample (see Table 3). All nine SNP associations

would remain replicated if we adopted a more stringent Bonferroni

correction accounting for the number of independent genome-wide

significant SNPs (p[Bonferroni] = .05/9 = .0056). For F2, no SNP

F IGURE 3 Summary of exploratory factor analysis. Plot displaying the percentage of cumulative explained variance (r2) from up to six-factor
models tested using exploratory factor analysis (EFA) on the discovery (left) and BIG40 samples (right) (a); Cumulative explained variance by the
one-, two-, and three-factor models tested using EFA on the discovery (left) and BIG40 samples (right) (b); the added explained variance
corresponding to an additional factor in the model is shown in parenthesis

TABLE 1 Summary of the two-factor confirmatory factor analysis in the discovery and replication samples

Sample Model

Number of

factors

Included

RSNs

Chi-square

statistic

Degrees of

freedom AIC CFI SRMR

Discovery

sample

EFA-based model 2 18 897 133 973 0.81 0.12

Model for multivariate GWAS 2 17 575 118 645 0.84 0.12

Replication

sample

Model for multivariate GWAS of the discovery

sample

2 17 295 118 365 0.76 0.19

Note: For each sample listed in the first column, the second column distinguishes the stages composing the CFA approach. For the discovery sample, CFA

consisted of two stages: the first stage, that is, EFA-based model, tested the model design for the two-factor model indicated by our EFA approach; the

second stage, that is, modeling for multivariate GWAS, only kept RSNs that showed Bonferroni-corrected factor loadings. The CFA conducted for the

replication sample consisted of a single stage, which used the model employed in the multivariate GWAS of the discovery sample. In each stage, a model

with a given number of factors was tested (third column), with a given number of RSNs (fourth column). For each model, we display the chi-square statistic,

degrees of freedom, AIC, CFI, and SRMR, from the fifth to the ninth columns.

Abbreviations: AIC, Akaike information criterion; CFA, confirmatory factor analysis; CFI, comparative fit index; EFA, exploratory factor analysis; GWAS,

genome-wide association study; RSN, resting state network; SRMR, standardized root mean square residual.
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reached genome-wide significance in the discovery sample

(Figure S2),

The multivariate GWAS of F1 in the BIG40 sample reported, in

addition to the SNPs found with the discovery sample, an additional

amount of 357 SNPs, making a total of 498 SNPs circumscribing

seven genomic loci (see Table 4 and Figure S3). Of these SNPs,

128 located in three of the seven loci had genome-wide significant

QSNP statistics (p < 5E�8), indicating that some SNP effects in these

loci are driven by specific RSN, rather than by the multiple RSNs asso-

ciated with F1. The analysis on the BIG40 sample also revealed that

F2 is associated with 21 SNPs with genome-wide significance in a loci

with the lead SNP being rs6737318 in chromosome 2 (p = 2.15E�9;

nearest gene PAX8; Figure S3). However, all these 21 SNPs reported

genome-wide significant QSNP statistics (p < 5E�8), and appeared

specifically driven by the SNP effects on four sensorimotor networks

(SN5–8).

All the genomic loci reported for both factors were also found to

be associated (p < 5E�8) in at least one of the 18 previous original

univariate GWASs (open.win.ox.ac.uk/ukbiobank/big40/pheweb33k/

). However, the first and fifth loci in F1 encompass SNPs with

corrected genome-wide significance accounting for the number of

RSNs (p[Bonferroni] ≤ 5E�8/18 = 2.77E�9), while the p values

reached by these SNPs in the univariate GWAS do not reach this

threshold.

2.5 | Functional characterization of top GWAS loci

We interpreted our multivariate GWAS results by conducting func-

tional annotation and gene-mapping of genomic loci using FUMA

(Watanabe et al., 2017). In addition to the 489 genome-wide signifi-

cant SNPs reported for F1 with the BIG40 sample, FUMA analysis

identified 159 other SNPs in linkage disequilibrium (LD) with these

genome-wide significant SNPs, making a total 648 candidate SNPs

distributed among seven genomic loci (see Table 4). With the func-

tional annotation of these candidate SNPs, we mapped a total of

109 genes using positional, expression quantitative trait loci (eQTL)

(adjusted p [FDR] ≤ .05), and chromatin interaction mapping (adjusted

p [FDR] ≤ 1E�6), as reported in Tables S19–S21. For F2, FUMA iden-

tified three other SNPs in LD with the 21 genome-wide significant

SNPs, making a total of 24 SNPs that were used in the mapping of

13 genes (Tables S22 and S23). Tables S24 and S25 contains a list of

studies from the GWAS Catalog reporting genome-wide significant

SNPs that map to these genomic loci.

2.6 | Gene-wide and gene-set results

To investigate whether our multivariate SNP-associations aggregated

in a biologically meaningful way, we performed gene-wide and gene-

set association analyses for F1 and F2 using MAGMA (de Leeuw

et al., 2015). Within the BIG40 sample, we found 14 genome-wide

significant genes associated with F1 (Figure 5): FHL5, UFL1, PLCE1,

NOC3L, IFITM3, ANO1, EPN2, B9D1, MAPK7, AC007952.5, GRAP,

GRAPL, APOE, and APOC1. No gene-sets were significantly associated

with F1 (Table S26). For F2, we discovered one gene-wide association

for ANO1, but no significant gene-sets (Table S27). Additionally, we

investigated via MAGMA tissue expression profile analysis whether

the genes associated with F1 and F2 were enriched in 30 general

human tissue types and 53 more specific tissue types. No significant

enrichment was found for F1 or F2 genes (Figures S4 and 5).

2.7 | Genetic correlations with neuropsychiatric
and physical traits

To examine shared genetic effects between the two multivariate RSN

factors, estimated using the BIG40 sample, and 10 preselected neuro-

psychiatric and physical traits, we performed genetic correlation ana-

lyses with GWAS summary statistics. The genetic correlation results

are reported in Figure 6. No genetic correlation reached significance

after multiple comparison correction (adjusted p [FDR] ≤ .05). Yet, we

found six genetic correlations showing nominal significance (p ≤ .05):

F1 with major depressive disorder and Alzheimer's disease; whereas

TABLE 2 Summary of the two-factor
confirmatory factor analysis in the BIG40
sampleModel

Number
of factors

Included
RSNs

Chi-
square
statistic

Degrees
of freedom AIC CFI SRMR

EFA-based

model

2 20 1.40E+7 167 1.40E+7 0.74 0.12

Model for

multivariate

GWAS

2 18 1,412 134 1,486 0.89 0.12

Note: For the BIG40 sample, the first column distinguishes the two stages composing the CFA approach,

respectively: the first stage, that is, EFA-based model, tested the model design for the two-factor model

indicated by our EFA approach; the second stage, that is, modeling for multivariate GWAS, only kept RSNs

that showed Bonferroni-corrected factor loadings. In each stage, a model with a given number of factors

was tested (second column), with a given number of RSNs (third column). For each model, we display the

chi-square statistic, degrees of freedom, AIC, CFI, and SRMR, from the fourth to the eighth columns.

Abbreviations: AIC, Akaike information criterion; CFA, confirmatory factor analysis; CFI, comparative fit

index; EFA, exploratory factor analysis; GWAS, genome-wide association study; RSN, resting state

network; SRMR, standardized root mean square residual.
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F2 was nominally significantly correlated with genetic factors driving

autism spectrum disorder, Alzheimer's disease, body-mass index

(BMI), and bone density. For more details on the genetic correlation

values and respective standard errors and p values, see Table S28.

3 | DISCUSSION

We investigated the genomic basis of pleiotropy of brain function in

21 RSNs across the brain. We discovered that two latent genetic fac-

tors best captured the genomic influence on the amplitude of RSNs

throughout the brain, with 11 RSN amplitude associations replicated

in an independent sample. The first factor was associated with multi-

modal association networks and two sensory networks; the second

factor represented only sensory networks. Further, we found that the

first factor was associated with SNPs and genes with implications for

our understanding of the molecular basis of brain function.

Our genomic factor analyses point to a genetic divergence of mul-

timodal association and sensory functions. This distinction is in line

with previous studies using functional connectivity measures

(Reineberg et al., 2020) and phenotypic analyses of RSN amplitudes

(Bijsterbosch et al., 2017; Zhang et al., 2011). Brain regions involved

in sensory and multimodal association functions have also been found

to differ in cytoarchitectonic properties (Mesulam, 1998). For exam-

ple, sensory cortical areas contain higher concentrations of myelin

compared to higher order association areas (Glasser, Goyal, Preuss,

Raichle, & Van Essen, 2014; Marques, Khabipova, & Gruetter, 2017;

Van Essen & Glasser, 2014). Furthermore, sensory and multimodal

association areas exhibit distinct patterns of gene expression

(Hawrylycz et al., 2012). Together with our findings, the extensive evi-

dence of genetic and brain differences between these two factors

may potentially reflect the known differences in the period of matura-

tion between their respective brain regions (Fuhrmann, Knoll, &

Blakemore, 2015). In addition, in evolution humans show more pro-

nounced cortical expansion in multimodal association networks than

they do in sensory networks compared to other primate species

(Ardesch et al., 2019; Buckner & Krienen, 2013; Wei et al., 2019).

Thus, differences between sensory and multimodal brain networks

have been consistently indicated across biological disciplines from

neurodevelopment, to neurophysiology, to evolution. With our find-

ings, we suggest that this divergence between the sensory and multi-

modal association systems may also be represented by partly distinct

effects of common genetic variation in the BOLD amplitude of RSNs.

As more, bigger, and more deeply phenotyped resources looking at

genome, brain and their intermediate biology (e.g., epigenome or

transcriptome) become available, future studies may test with

increased power whether this genomic divergence extends to other

levels of biology.

Our first factor is mainly marked by the influence of all the multi-

modal association RSNs included in the model, covering also the

effects coming from two sensory RSNs (SN4 and SN10; Figure 4).

Although SN4 was determined to belong to the sensory system based

on the classification carried out by Bijsterbosch et al., 2017, SN4

covers a wide range of brain regions involved in language, that is, lan-

guage network, and was a priori expected to belong to the multimodal

association cluster at the phenotypical level. Therefore, it is not sur-

prising that our first factor is driven by the genetic effects coming

from SN4. Less expected was the inclusion of SN10, which is con-

sisted of the supplementary motor area and the striatum. We specu-

late that the striatum, being closely linked to the frontal cortex and

important for executive functions such as working memory

(Chudasama & Robbins, 2006; Monchi, Hyun Ko, & Strafella, 2006),

explains the high genetic overlap of SN10 with other multimodal asso-

ciation networks, and thus its inclusion in the first factor.

F IGURE 4 Path diagram of two-factor models reported for the
BIG40 sample. Orange circles represent the two latent genetic factors
of the two-factor confirmatory factor analysis (CFA). Factor 1 (F1) and
2 (F2) are connected by a double-headed arrow, which represents the
correlation between the two factors. F1 and F2 are associated with
RSNs represented by blue rectangles, with loadings represented by a
blue arrow. Factor correlation and loadings reaching nominal and
Bonferroni-corrected significance (p[Bonferroni] ≤ .05/22 = .0022)
are indicated respectively by * and **. RSN, resting state network
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TABLE 3 LD-independent significant SNPs for latent factor F1 in the discovery and replication samples

Genomic locus rsID Chromosome Position p (discovery) p (replication) Variant type Nearest gene

1 rs7069316 10 96,000,282 9.83E�09 .0013 Intronic PLCE1

rs10786156 10 96,014,622 1.93E�11 1.75E�05 Intronic PLCE1

rs11187842 10 96,052,511 2.46E�08 .0015 Intronic PLCE1

2 rs11596664 10 134,280,157 3.89E�09 .00012 Intergenic C10orf91

rs7907962 10 134,287,486 1.92E�09 .00067 Intergenic C10orf91

rs4880380 10 134,288,177 3.04E�09 .0016 Intergenic C10orf91

rs7080018 10 134,301,505 8.69E�11 .00039 Intergenic RP11-432J24.5

rs34102287 10 134,331,173 2.21E�10 .00010 Intronic RP11-432J24.5

3 rs1969161 17 19,194,812 8.84E�09 .00042 Intronic EPN2

Note: For each genomic locus, the respective independent genome-wide significant SNPs are displayed. The table also provides information regarding the

chromosome, position, genome-wide p-values reported with the discovery and the replication samples, variant type, and nearest gene to each SNP.

Abbreviations: LD, linkage disequilibrium; SNP, single nucleotide polymorphism.

TABLE 4 LD-independent significant SNPs for latent factor F1 in the BIG40 sample

Genomic locus rsID Chromosome Position p (BIG40) p (Qsnp [BIG40]) Variant type Nearest gene

1 rs2472884 6 96,863,965 8.46E�10 .543 Intronic UFL1-AS1

2 rs17109869 10 96,000,162 2.33E�09 7.55E�11 Intronic PLCE1

rs7069316 10 96,000,282 5.23E�12 1.26E�12 Intronic PLCE1

rs3891783 10 96,015,793 8.52E�18 6.08E�06 Intronic PLCE1

rs17109875 10 96,026,575 9.88E�12 .31 Intronic PLCE1

rs11187844 10 96,056,629 1.04E�09 1.14E�02 Intronic PLCE1

rs2077218 10 96,071,561 3.50E�08 .72 Intronic PLCE1

3 rs10747058 10 134,276,427 1.07E�11 .18 Intergenic C10orf91

rs10781575 10 134,280,542 1.36E�10 .69 Intergenic C10orf91

rs10747059 10 134,283,787 4.19E�08 1 Intergenic C10orf91

rs7083220 10 134,284,485 3.57E�14 4.50E�04 Intergenic C10orf91

rs7907962 10 134,287,486 2.15E�13 .38 Intergenic C10orf91

rs4880380 10 134,288,177 1.13E�12 4.04E�06 Intergenic C10orf91

rs12360525 10 134,289,214 1.72E�11 6.78E�02 Intergenic C10orf91

rs4880389 10 134,296,598 6.94E�09 1 Intergenic RP11-432J24.5

rs71503745 10 134,304,757 3.42E�15 1 Intergenic RP11-432J24.5

rs7076422 10 134,309,970 6.45E�10 7.69E�02 Intergenic RP11-432J24.5

rs35263482 10 134,313,046 3.84E�15 9.53E�02 Intergenic RP11-432J24.5

rs201873436 10 134,319,073 6.96E�10 1.87E�04 Intergenic RP11-432J24.5

rs75348655 10 134,319,093 5.96E�09 .91 Intergenic RP11-432J24.5

rs375824681 10 134,319,172 3.99E�08 1 Intergenic RP11-432J24.5

rs12357355 10 134,335,986 3.10E�09 1 Upstream LINC01165

4 rs34094842 11 69,983,047 1.44E�08 9.67E�06 Intronic ANO1RP11-805J14.3

5 rs10895201 11 101,688,535 2.95E�10 5.71E�10 — TRPC6

rs12222606 11 101,708,903 2.06E�09 4.09E�09 — TRPC6

6 rs1624825 17 18,923,818 2.12E�09 6.86E�10 Untranslated region SLC5A10

rs199660087 17 19,015,683 2.67E�08 1.44E�06 Exonic SNORD3D

rs1969161 17 19,194,812 1.37E�12 3.83E�11 Intronic EPN2

7 rs429358 19 45,411,941 3.70E�08 2.56E�07 Exonic APOE

Note: For each genomic locus, the respective independent genome-wide significant SNPs are displayed. The table also provides information regarding the

chromosome, position, genome-wide p values and the QSNP p values reported with the BIG40 sample, variant type, and nearest gene to each SNP.

Abbreviations: LD, linkage disequilibrium; SNP, single nucleotide polymorphism.
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F IGURE 5 Manhattan plot of MAGMA gene analysis findings of latent factors F1 and F2 reported with the BIG40 sample. Gene-wide
p values of associations in F1 (top), which comprises genetic effects shared among all 10 multimodal association networks (MA1–10) and two
sensory networks (SN4 and SN10); and F2 (bottom), consisted of six sensory networks (SN2 and SN5–9). In each plot, genes located across the
22 autosomes labeled along the x-axis are represented by blue dots, whose position along the y-axis represents the log p value scored by their
gene-wide association with each latent factor. The red-dashed horizontal line marks the Bonferroni-corrected significance for the number of
genes being tested (p[Bonferroni] ≤ 2.64E�6)

F IGURE 6 Genetic correlation matrix comparing the two factors of general brain function with neuropsychiatric and physical health traits.
Genetic correlations of two genetic factors (F1 and F2), estimated using the BIG40 sample, with 10 neuropsychiatric and physical traits: attention
deficit/hyperactivity disorder (ADHD), autistic spectrum disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), schizophrenia,
Alzheimer's disease (AD), height, body-mass index (BMI), diastolic blood pressure (DBP), and bone density. Genetic correlations at nominal and
false discovey rate (FDR)-corrected significance are respectively labeled with * and **
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The first factor of general brain function was associated with a

total of 648 candidate SNPs distributed among seven genomic loci.

We also detected 15 gene-wide associations, six of which were not

previously detected by the univariate GWAS, and we were able to

functionally map 96 additional genes relevant to the study of brain

physiology. We thus demonstrate that a multivariate genomic

approach has additional value in the search for genetic underpinnings

of brain function.

Our gene-wide analysis showed that the first factor was associ-

ated with APOE, an important risk-gene for Alzheimer's disease as

demonstrated by GWASs (Jansen et al., 2019; Kunkle et al., 2019;

Lambert et al., 2013), so as by studies focused on the association

between Alzheimer's disease and APOE genotype (Corder et al., 1993;

Farrer et al., 1997; Liu, Kanekiyo, Xu, & Bu, 2013). This finding points

thus to a possible role of neurodegenerative processes in the first fac-

tor. This hypothesis is also supported by other gene-wide associations

reported in previous GWASs of Alzheimer's disease, such as MAPK7

(Nazarian, Yashin, & Kulminski, 2019) and APOC1 (Lo et al., 2019;

Nazarian et al., 2019), and the functional mapping of LGI1, which was

previously reported in relation to beta-amyloid measurement in cere-

brospinal fluid (Chung et al., 2018; Li et al., 2015), a biomarker for

Alzheimer's disease (Blennow & Hampel, 2003; Frank et al., 2003;

Sunderland et al., 2003). An eventual link between this factor and

aging-effects potentially reflective of Alzheimer's disease was also

suggested by a nominally significant genetic correlation analysis with

Alzheimer's disease, opening the possibility that this link is reflected

by association patterns at the genome-wide scale.

Interesting significant gene-wide associations also included FHL5,

a gene previously associated with migraine (Adewuyi et al., 2020;

Gormley et al., 2016), spatial memory (Greenwood et al., 2019), and

cerebral blood flow (Ikram et al., 2018), and EPN2, which encodes a

protein involved in notch signaling endocytosis pathways, and has

previously been associated with educational attainment (Kichaev

et al., 2019; Lee et al., 2018) and schizophrenia (Goes et al., 2015);

this indicates that notch signaling, known for its role in neuro-

development and the onset of psychiatric disorders (Hoseth

et al., 2018; Lasky & Wu, 2005), may also have an influence on gen-

eral brain function in adulthood. However, the genes retrieved by our

gene-wide analyses were not all related to traits exclusively relevant

to the brain, but also to cardiovascular (Ehret et al., 2011; German,

Sinsheimer, Klimentidis, Zhou, & Zhou, 2020; Giri et al., 2019;

Hoffmann et al., 2017), metabolic (Hübel et al., 2019; Krumsiek

et al., 2012; Rask-Andersen, Karlsson, Ek, & Johansson, 2019; Shin

et al., 2014), and drug response traits (Cha et al., 2010; Ji et al., 2014;

Pardiñas et al., 2019; Takeuchi et al., 2009). BOLD amplitude, being a

blood-based measure, may also be susceptible to genetic effects

affecting blood-related traits that are not necessarily specific to the

brain. The gene-wide result for PLCE1 is an example of such an obser-

vation, since it was previously reported for 38 other phenotypes, cov-

ering brain (e.g., migraine), cardiovascular (e.g., hypertension, blood

pressure), and more general metabolic traits (e.g., BMI). The associa-

tion of PLCE1 was previously reported with seven individual RSNs in

Elliott et al., 2018. The gene encodes a phospholipase enzyme

involved in cell growth, cell differentiation, and regulation of gene

expression.

Despite known associations of the above rfMRI-associated genes

with neuropsychiatric and physical traits and previously reported phe-

notypic associations between these traits and rfMRI-derived imaging

phenotypes (Badhwar et al., 2017; Cortese et al., 2021; Lau

et al., 2019; Miller et al., 2016; Mulders et al., 2015; Wojtalik

et al., 2017), we did not detect genetic correlations between our two

genetic factors for brain function and those other neuropsychiatric

and physical traits that remained significant after correcting for multi-

ple comparisons. However, the nominal significance reported in six

genetic correlations involving neuropsychiatric disorders (major

depressive disorder, autistic spectrum disorder, and Alzheimer's dis-

ease) and physical traits (BMI and bone density) still suggests that

eventual links between general brain function and these phenotypes

may be explained by additive effects of common variants across the

whole genome.

The discovery of SNPs and genes mainly associated with traits

not specific to the brain suggests that other potential sources of

genetic signals may drive our multivariate GWAS results of BOLD

amplitude. There is a chance that these sources may include typical

MRI confounders previously shown to be associated with BOLD

amplitude-based measures, such as head motion (Bijsterbosch

et al., 2017) and physiological fluctuations associated with respiration

or heart functions (Golestani, Wei, & Chen, 2016; Kannurpatti &

Biswal, 2008). The association between BOLD amplitude and head

motion was particularly noted in sensory RSNs, and it was influenced

by the (decreasing) arousal of participants during the MRI scanning

(Bijsterbosch et al., 2017), for example, participants tend to become

increasingly sleepy as scanning duration increases. The arousal of par-

ticipants reflects their daily sleep duration and quality, which are also

associated with changes in physiological fluctuations measured in

cardiac and breathing rate (Snyder, Hobson, Morrison, & Goldfrank,

1964). Taking into account the quality control (QC) implemented in

the imaging data leading to the GWAS summary statistics included in

our analysis (Alfaro-Almagro et al., 2021), we expect that the con-

founding effects introduced by both physiological structured noise

and head motion are minimized and do not explain our results. Yet,

we do not exclude the possibility that residual effects from these vari-

ables are still present, which does not necessarily imply the presence

of noise in our genomic factors. For example, head motion has been

increasingly perceived as a complex measure that also carries behav-

iorally relevant effects that are heritable (Couvy-Duchesne

et al., 2014; Hodgson et al., 2017) and genetically correlated with

demographic and behavioral traits (Hodgson et al., 2017). The more

recent awareness of arousal as an MRI confounder (Bijsterbosch

et al., 2017) leads to a similar scenario, given its relationship with heri-

table sleep-related measures (Kocevska, Barclay, Bramer, Gehrman, &

Van Someren, 2021) that share genetic factors with relevant traits to

our case of study (Lane et al., 2017; Madrid-Valero, Rubio-Aparicio,

Gregory, Sánchez-Meca, & Ordoñana, 2020). The case of arousal

applies particularly to our second factor (SN2, SN5–SN9), not only

due to the previously reported phenotypic association between
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sensory RSN amplitudes and arousal (Bijsterbosch et al., 2017), but

also because the lead SNP associated with our second factor

(rs6737318) is also associated with sleep duration (Dashti et al., 2019;

consult Table S25).

This study should be viewed in light of several strengths and limi-

tations. Strengths of our study are the use of GWAS results of large

resting-state fMRI samples, which provided the power necessary to

run this analysis. Furthermore, we used state of the art novel technol-

ogies to find shared genetic etiologies in summary statistics including

genomic SEM, which provided statistical power-boosting through the

joint analysis of GWASs. Our results provide a new, data-driven basis

for studying biological pathways relevant to brain function, by inte-

grating multiple data sources spanning genomics, epigenomics, and

transcriptomics. However, this characterization was limited by the

data sources that are currently available. As more resources become

publicly available and integrated in FUMA and equivalent platforms, in

the future an even broader genetic mapping of traits will be possible.

Another limitation of our study is the fact that our approach focused

exclusively on the effects of common SNPs, without including the

effects of rare genetic variants or gene–environment interactions and

correlations. Including rare variation in follow-up studies and more

extended explicit modeling of gene–environment interplay may pro-

vide even more insight into the biological pathways underlying brain

function.

In conclusion, we show that pleiotropy in heritable RSNs is best

represented by a two-factor model mainly distinguishing the genetic

influences on multimodal association from those on sensory networks.

GWAS-based analysis of these genetic factors led to the discovery of

relevant SNPs and genes. With our approach, we demonstrate that

taking advantage of the pleiotropy of RSNs using multivariate

genome-wide approach provides new insights in the genetic and

molecular roots of brain function.

4 | MATERIALS AND METHODS

4.1 | GWAS sample

We used GWAS summary statistics from the UK Biobank initiative,

publicly available in a second release via Oxford Brain Imaging Genet-

ics Server (open.win.ox.ac.uk/ukbiobank/big40/; accessed on January

14, 2021). They contain GWAS results for 3,919 imaging phenotypes

of brain structure and function, based on a discovery sample con-

sisting of 22,138 unrelated individuals of UK ancestry, of which

11,624 female (females: mean age = 63.6 ± 7.3 years; males:

mean = 65.0 ± 7.6 years; Smith et al., 2021), an independent replica-

tion sample of 11,086 individuals, including 5,787 female (replication

sample: mean age [females] = 63.7 ± 7.4 years; mean age

[males] = 65.0 ± 7.6 years), and the BIG40 sample comprising both

the discovery and replication samples (N = 33,224). In the discovery

and replication samples, 21,081 and 10,607 individuals with available

rfMRI data were respectively included in the GWAS on the amplitude

of 21 RSNs (i.e., the standard deviation of BOLD signal measured

within each RSN), so as the 31,688 individuals comprised in the

GWAS of the BIG40 sample. The MRI acquisition and analysis proce-

dures of the brain imaging phenotypes have been described previ-

ously (Alfaro-Almagro et al., 2018; Miller et al., 2016) and accounted

for the confounders age, sex, head size, and estimated amount of

head motion (Alfaro-Almagro et al., 2021). Genotypes were imputed

with the Haplotype Reference Consortium (HRC) reference panel

(McCarthy et al., 2016) and a merged UK10K + 1,000 Genomes refer-

ence panel as described by Bycroft et al., 2018. The GWAS summary

statistics come from the study Smith et al., 2021. This GWAS used a

QC procedure that included thresholding for minor allele frequency

(MAF ≥ 0.001), the quality of the imputation (INFO ≥ 0.3), and

Hardy–Weinberg Equilibrium (HWE �Log10[p] ≤ 7), while controlling

for population structure represented by the first 40 genetic principal

components. A total of 20,381,043 SNP associations were reported in

the selected GWAS summary statistics of the discovery sample,

whereas GWASs of the replication and BIG40 samples contained

results for 17,103,079 SNPs. The SNP associations were estimated

via linear association testing in BGENIE software (Bycroft

et al., 2018).

4.2 | Description of RSNs

The 21 RSNs covering spontaneous BOLD fluctuations in the brain

were labeled based on the clustering analyses conducted in

Bijsterbosch et al., 2017, which appointed RSNs to one of two distinct

system categories: multimodal association and sensory systems. In

Table S29, we show the system category given to each RSN, the

respective UK Biobank label, and its respective two-dimensional ana-

tomical visualization. Visualization of RSNs is also provided by the UK

Biobank online resources (fmrib.ox.ac.uk/ukbiobank/group_means/

rfMRI_ICA_d25_good_nodes.html).

4.3 | Genomic structural equation modeling

Taking the GWAS summary statistics of BOLD amplitude in 21 RSNs,

we modeled the potentially shared underlying genetic etiologies using

a genomic factor analyses in genomic SEM package v0.0.2 in R v3.4.3,

developed by Grotzinger et al., 2019. For more details, see github.

com/MichelNivard/GenomicSEM/wiki/3.-Models-without-Individual-

SNP-effects. First, we conducted a QC step on the selected GWAS

summary statistics that included (a) selection of SNPs reported in the

HapMap3 reference panel (Duan, Zhang, Cox, & Dolan, 2008);

(b) exclusion of SNPs located in the major histocompatibility complex

region; (c) exclusion of SNPs with MAF lower than 1%; (d) exclusion

of SNPs with INFO scores lower than 0.9. This QC step retained a

total of 1,171,392 autosomal SNPs in the discovery sample and

1,169,271 autosomal SNPs in the replication and the BIG40 samples.

Second, we calculated the SNP-based heritability of the 21 RSN

amplitudes with LD-Score regression (LDSC v1.0.0) (Bulik-Sullivan

et al., 2015). The univariate LDSC calculates SNP-based heritability
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estimates of traits, based on SNP effect sizes in relation to each SNP's

LD (Bulik-Sullivan et al., 2015). Only RSNs with FDR-corrected signifi-

cant (adjusted p [FDR] < .05) SNP-based heritability were taken for-

ward to the next genomic SEM steps.

In the following step, the covariance matrices estimating the plei-

otropy among heritable RSN amplitudes were retrieved using the mul-

tivariate extension of LDSC distributed by the genomic SEM package.

We obtained (a) a genetic covariance matrix quantifying the genetic

overlap among the RSNs; (b) the respective matrix containing the

standardized genetic covariance values (i.e., genetic correlations); (c) a

sampling covariance matrix informative of the standard errors associ-

ated with the genetic covariance measures.

To determine the number of factors in the model, and which

imaging phenotype loaded on which factor, we conducted an EFA

with maximum likelihood estimation. Before running EFA, the LDSC-

derived covariance matrix was smoothed to the nearest positive, as

part of the default genomic SEM pipeline. We tested EFA with one

factor and repeated the same step for an increasing number of factors

up to six. We selected the highest number of factors leading to an

explained variance increase (r2) of equal or more than 10% (Levey

et al., 2020). For all the modeling results, positive or negative factor

loadings with magnitudes equal or higher than 0.35 were assigned to

a given factor, identical to Grotzinger et al. (2019).

For the most optimal model, we ran CFA using the genomic SEM

package, in order to estimate the factor loadings of the variables

included in the model and evaluate the respective model fit. Both the

genetic and sampling covariance matrices were analyzed using

weighted least squares estimation, providing fit statistics and inferred

factor loadings. We retained factor loadings at a Bonferroni signifi-

cance level across the factor loadings within the model (p

[Bonferroni] ≤ .05/number of factor loadings). Further, with the model

retaining Bonferroni-significant factor loadings in the discovery sam-

ple, we conducted a CFA on the independent replication sample, in

which the replication of the factor loadings was determined by “nomi-

nal” significance (p ≤ .05).

4.4 | Multivariate GWAS

A multivariate GWAS was conducted on the factors of the most opti-

mal model (see Section 4.3), in order to discover the SNPs driving

their pleiotropy. Only SNPs reported in the 1,000 Genomes phase

3 reference panel were taken forward in this step, and SNPs were

excluded in case of MAF lower than 1% or INFO score lower than 0.6,

as in Grotzinger et al. (2019). This analysis leads to the multivariate

effect sizes and p values for each SNP, reflecting the contribution to

each factor of 8,135,328 autosomal SNPs available in the discovery

sample, and of 8,134,789 autosomal SNPs in the replication and

BIG40 samples. SNP associations in the discovery and BIG40 sample

were considered significant under the genome-wide significance

threshold (p ≤ 5E�8), whereas the replication of SNP associations in

the discovery sample was confirmed in case of “nominal” significance
(P ≤ .05). Additionally, for each SNP in the BIG40 sample, the results

included a heterogeneity statistic (QSNP) and respective p value

addressing whether the SNP effect was mediated by the common

factor(s) (null hypothesis), or is specific to one of the traits (p ≤ 5E�8).

The SNP-based heritability of genetic factors represented in each

model was also estimated, using LDSC (Bulik-Sullivan et al., 2015), fol-

lowing the same procedure used for the 21 RSN amplitudes (see

Section 4.3).

4.5 | Functional annotation and mapping analysis

Functional annotation and gene-mapping of genomic risk loci of our

multivariate GWAS results in the BIG40 sample was performed using

FUMA version v1.3.6 (Watanabe et al., 2017), an online platform used

to prioritize, annotate, and interpret GWAS summary results (access

via fuma.ctglab.nl). For each multivariate GWAS, FUMA annotates

SNPs that reach independent genome-wide significance (p < 5E�8),

or that reach nominal significance (p < .05) and are in LD (r2 ≥ .6) with

any of the independent genome-wide significant SNPs within a

250 kb window. After determining the independent significant SNPs,

the lead SNP of each genomic locus is chosen according to a more

stringent LD squared coefficient r2 ≤ .1 (Watanabe et al., 2017). For

each independent significant SNP, FUMA retrieved information

regarding the type of variant and the nearest gene, while providing for

each genomic locus a GWAS Catalog list of published studies

reporting genome-wide associations with SNPs located in that same

locus. Gene-mapping was performed by (a) selecting genes located

within 10 kb of each SNP, (b) annotating SNPs based on their eQTL

enrichment in the data resources listed in Table S30, and (c) the chro-

matin interactions depicted in the HI-C data resources reported in

Table S31. Only FDR-corrected significant gene associations were

reported based on eQTL mapping (adjusted p [FDR] ≤ .05) and chro-

matin interaction mapping (adjusted p [FDR] ≤ 1E�6), as rec-

ommended in FUMA (Watanabe et al., 2017).

4.6 | Gene-wide and gene-set analyses

To test for aggregated association of multiple SNPs within genes, we

performed gene-wide analyses on the multivariate GWAS results of the

BIG40 sample. We then performed gene-set analysis for curated gene-

sets and GO terms from MsigDB c2 and c5, respectively, testing for the

presence of pathways associated with these factors. Furthermore, we

performed tissue gene expression analysis in the genomic factors. These

analyses were all performed using the MAGMA v1.08 software

(de Leeuw et al., 2015) as embedded within the FUMA platform

(Watanabe et al., 2017), for details see the Supplementary Methods.

4.7 | Genetic correlations with other traits

To examine shared genetic effects between the RSN genomic factors

estimated with the BIG40 sample and other traits, we performed
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genetic correlation analyses with GWAS summary statistics from

10 selected traits. We followed the same QC and bivariate genetic anal-

ysis procedures used for RSN amplitudes (see Section 4.3). Among the

selected GWAS summary statistics, we included six neuropsychiatric

disorders with high prevalence in the population that are widely associ-

ated to RSN function in literature (Badhwar et al., 2017; Cortese

et al., 2021; Lau et al., 2019; Mulders et al., 2015; Wojtalik et al., 2017).

We selected GWAS summary statistics reported for Alzheimer's disease

(Jansen et al., 2019), the most common cause of dementia, and for five

major psychiatric disorders reported by the Psychiatric Genomics Con-

sortium: attention deficit/hyperactivity disorder (Demontis et al., 2019),

autism spectrum disorder (Grove et al., 2019), bipolar disorder (Stahl

et al., 2019), major depressive disorder (Wray et al., 2018), and schizo-

phrenia (Pardiñas et al., 2018). In addition, physical factors which were

previously linked to RSN activation (Miller et al., 2016), were included in

our analysis with GWAS summary statistics of BMI (Pulit et al., 2019),

height (Wood et al., 2014), bone density (Morris et al., 2019), and dia-

stolic blood pressure (Evangelou et al., 2018). Significant genetic corre-

lations were determined by FDR multiple comparison correction

(adjusted p [FDR] ≤ .05). For detailed information about these GWAS

summary statistics, consult Table S32.
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