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Although classification accuracy is a critical issue in cognitive diagnostic computerized

adaptive testing, attention has increasingly shifted to item exposure control to ensure

test security. In this study, we developed the binary restrictive threshold (BRT) method

to balance measurement accuracy and item exposure. In addition, a simulation study

was conducted to evaluate its performance. The results indicated that the BRT method

performed better than the restrictive progressive (RP) and stratified dynamic binary

searching (SDBS) approaches but worse than the restrictive threshold (RT) method in

terms of classification accuracy. With respect to item exposure control, the BRT method

exhibited noticeably stronger performance compared with the RT method, even though

its performance was not as high as that of the RP and SDBS methods.

Keywords: cognitive diagnostic computerized adaptive testing,measurement accuracy, item exposure rate, binary

searching algorithm, cognitive diagnostic assessment

INTRODUCTION

Cognitive diagnostic computerized adaptive testing (CD-CAT; Cheng, 2009, 2010; Chang, 2015)
has attracted the attention of numerous researchers and educators over the past few decades
(Wang et al., 2012). CD-CAT is a combination of a cognitive diagnostic model (CDM) and
computerized adaptive testing (CAT). A key advantage of CD-CAT is that educators can provide
remedial instruction for individuals based on the knowledge level of the individuals, which is
determined using CDM (e.g., Gierl et al., 2007). In addition, CD-CAT can generate a test tailored
to suit an individual’s latent trait levels (Mao and Xin, 2013; Chang, 2015; Lin and Chang, 2019).
Consequently, the estimation of an individual’s latent ability is more accurate when fewer items are
used compared with using traditional paper and pencil tests (Weiss, 1982).

One of the major objectives of CD-CAT is to improve classification accuracy. Numerous item
selectionmethods have been developed to achieve this objective. Item selectionmethods commonly
applied including the Kullback–Leibler method (KL; Xu et al., 2003), Shannon entropy method
(SHE; Tatsuoka and Ferguson, 2003), posterior weighted KL method (PWKL; Cheng, 2009),
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and modified PWKL (MPWKL; Kaplan et al., 2015). Several
attempts have been made to develop item selection methods
for short-length tests, such as the mutual information (MI;
Wang, 2013), posterior weighted CDM discrimination index,
and posterior weighted CDM attribute-level CDI (PWACDI)
(Zheng and Chang, 2016). All of the aforementioned item
selection methods noticeably enhance the classification accuracy
of CD-CAT. However, a major attribute of such methods is
that they focus largely on maximizing classification accuracy
rather than on controlling item exposure, which results in a
highly uneven distribution of item bank usage. Although CD-
CAT is used mainly for low-risk tests (Leighton and Gierl,
2007; Wang et al., 2011; Mao and Xin, 2013; Lin and Chang,
2019), where item exposure is not a major concern, items may
be at risk of overexposure if an individual already knows the
items before taking the test (Wang et al., 2011; Mao and Xin,
2013). In addition, it is not appropriate to administer an item
bank with a large number of underexposed items because item
bank development is a time- and money-consuming process
(Wang et al., 2011; Zheng and Wang, 2017). To establish
a balance between classification accuracy and item exposure
control, several novel item selectionmethods have been proposed
(e.g., Wang et al., 2011; Hsu et al., 2013; Zheng andWang, 2017).

Wang et al. (2011) proposed the combination of the
restrictive progressive (RP) and restrictive threshold (RT)
methods with the PWKL method to achieve item exposure
control for fixed-length tests in CD-CAT. In addition, Hsu
et al. (2013) developed the Sympson-Hetter method and
considers test overlap control, variable length, online update,
and restricted maximum information (SHTVOR) to address
item exposure with varied test length in CD-CAT. Recently,
Zheng and Wang (2017) applied the binary searching algorithm
for item exposure control in CD-CAT. They proposed the
dynamic binary searching method for varied-length tests and
the stratified dynamic binary searching (SDBS) method for
fixed-length tests. However, even though the RP method could
generate a more even distribution of item usage for fixed-length
tests, the classification accuracy was considerably decreased.
In comparison, the RT method achieved higher classification
accuracy but a more uneven distribution of item usage. The SDBS
method is a promising one-item selection method in terms of
the testing efficiency and distribution of item usage, but it has
relatively low measurement accuracy and flexibility. In addition,
the SDBS method does not take into account item parameters,
which potentially resulting in wasted item information and low
measurement accuracy. To address the shortcomings of the
aforementioned methods for fixed-length CD-CAT, we propose a
modified method inspired by Wang et al. (2011) and Zheng and
Wang (2017). The new method—the binary restrictive threshold
(BRT) method—integrates the binary searching algorithm into
the RT method.

The remainder of this paper is organized as follows: First,
two commonly used CDMs in CD-CAT, the deterministic input,
noisy “and” gate (DINA) model (Junker and Sijtsma, 2001)
and the reduced reparameterized unified model (RRUM; Hartz,
2002), are briefly introduced. Subsequently, four item control
indices—RP, RT, SDBS, and BRT—are presented to illustrate

how such indices balance the trade-off between classification
accuracy and item exposure control. Afterward, we perform a
simulation study to compare the performance of the novel item
exposure index with that of the RP, RT, and SDBS methods.
Finally, discussions and conclusions are based on the findings of
the simulation study are provided.

CDMs

The DINA Model
The DINA model is one of the most commonly used CDMs in
CD-CAT because of its simplicity and ease of explanation (e.g.,
Cheng, 2010; Chen et al., 2012). It classifies individuals into two
classes for each item: those whomaster all attributes that the item
measures and those who lack at least one attribute that the item
involves. The DINA model can be expressed as

P
(

Yij = 1|ηij
)

=
(

1− sj
)ηijgj

1−ηij ,

ηij =
∏K

k=1
(αik)

qjk ,

where Yij is the response of individual i to item j; η is the
ideal response indicating whether an individual master all the
required attributes of an item; s is the slip parameter; g is the
guess parameter; K is the number of attributes; αik denotes the
deficiency or mastery of the k attribute for individual i; and qjk is
the element of the Qmatrix.

One limitation of the DINAmodel is that it cannot distinguish
individuals who lack one attribute from those who lack more
than one attribute that a specific item measures. By contrast,
the RRUM allows the probabilities of different attribute mastery
patterns to vary across items.

The RRUM
The RRUM has attracted considerable attention in CD-CAT in
recent years (e.g., Dai et al., 2016; Huebner et al., 2018). The item
response function of the RRUM can be expressed as follows:

P
(

Yij = 1| αi
)

= π∗
j

K
∏

k=1

r∗jk
(1−αik)qjk ,

where π∗
j , the baseline parameter, refers to the probability of

correct response to item j when individuals have mastered all
attributes that the item requires; r∗

jk
, the penalty parameter,

denotes the reduction in the probability of correct response to
item j when an individual lacks attribute k.

ITEM EXPOSURE CONTROL INDICES IN
FIXED-LENGTH CD-CAT

The RP Method
Wang et al. (2011) developed this item exposure control index.
Two components are included in this method: the restrictive
component and the progressive component. The former imposes
a restriction to make sure that the maximum exposure rate
does not exceed a pre-defined value, r. The latter component
adds a stochastic element to the item selection methods to
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avoid the frequent selection of items with the largest amount of
information (Revuelta and Ponsoda, 1998). The RP method can
be expressed as follows:

RP_inf oj =
(

1− expj/r
)

[

(1− (x/J )) × Rj + inf oj × βx/J
]

,

where expj is the exposure rate for item j, x is the
number of items that have been administered, J is the test
length, Rj is a random value that is generated from a
uniform distribution U(0, max(inforj)), where infoj refers to the
corresponding information of item j, such as PWKL information,
and β is the importance parameter that is used to adjust
the relative importance of classification accuracy vs. the item
exposure control issue. A lower value of β indicates that test
security is more important than classification accuracy, and
vice versa.

The RT Method
This method is another item exposure control index that
was developed by Wang et al. (2011). It also includes two
components: a restrictive component and a threshold component
that is applied to derive an information interval. Candidate
items during each interval can be randomly administered to
individuals. The information interval is defined as follows:

RT_inf ointerval =
[

max
(

inf oj
)

− δ, max
(

inf oj
)]

,

δ =
[

max
(

inf oj
)

−min
(

inf oj
)]

× f (x) ,

f (x) = [1− (x/J )]β ,

where δ is the threshold parameter and β is the importance
parameter that determines the width of the information interval.
The higher the value of β , the narrower the information interval.
The rest of the symbols have meanings similar to those in the
RP method.

The SDBS Method
Zheng and Wang (2017) developed the SDBS algorithm, which
stratifies items on the basis of their discrimination index. This
method was inspired by the α-stratification method that is
commonly used in IRT-based CAT (Chang and Ying, 1999).
The classical testing theory (CTT)–based item discrimination
indices for the DINA model and the RRUM are

(

1− sj − gj
)

and
(

π∗
j − π∗

j

∏K
k=1 r

∗
jk
qjk

)

, respectively (Rupp et al., 2010). The

SDBS can be computed as follows:

Bm
j

=

∣

∣

∣

∣

∣

∣

∣

∑

Sm
jl
=1

p (αl|Yt−1) − 0.5

∣

∣

∣

∣

∣

∣

∣

,

Sm
jl

=

K
∏

k=1

I
(

qjk ≤ αlk

)

,

p (αl|Yt−1) =
P

(

Yj−1| αl

)

π0 (αl)

2K
∑

c=1
P

(

Yj−1|αc

)

π0 (αc)

,

where Bj is the binary searching index; Sjl is the separation for
item j and attribute profile l, where Sjl = 1 indicates that the
attribute profile l possesses all the attributes that item jmeasures
and Sjl = 0 otherwise; m represents the mth stage; p (αl|Yt−1) is

the posterior probability for the lth attribute profile conditional
on the first t – 1 item responses; Yt−1, P (Yt−1|αl) is the joint
probability of the first t – 1 items conditional on attribute profile
αl; π0 (αl) is the priori probability; and I(.) is the indicator
function, which equals 1 when the expression in the brackets is
true and equals 0 otherwise.

The SDBSmethod tends to select an item with a lower Bj value
as the next item to be administered. Because only the q-vector of
item j is used during the calculation of Bj and item parameters
(e.g., slip and guess parameter) are not taken into consideration,
items measuring similar or even different attribute profiles can
obtain consistent estimations of B.

The BRT Method
Inspired by Zheng and Wang (2017), the present study attempts
to combine the binary searching algorithmwith the RTmethod to
develop a novel item exposure control method. In particular, the
binary searching algorithm is applied first to obtain the candidate
item set that has the lowest binary searching index, B. The RT
method is then used to select items from the candidate item set.

Because the BRT method combines the binary searching
algorithm with the RT method, we expected it to achieve
lower classification accuracy but superior item exposure control
compared with the RT method. In addition, we expected the
BRT method to achieve higher classification accuracy compared
with the SDBS and BRP methods because the RT method, which
is involved in the BRT method, can yield higher classification
accuracy than the RP and SBDS methods (Wang et al., 2011;
Zheng and Wang, 2017) when applied to select the appropriate
item to be administered.

In the BRT method, items with the lowest Bj value can be
obtained first, and then the RT method is applied to randomly
select the next item from these items with the lowest Bj value. The
mathematical expression of the BRT can be defined as follows:

BRT_inf ointerval =
[

max
(

inf oj
)

− δ, max
(

inf oj
)]

,

δ =
[

max
(

inf oj
)

−min
(

inf oj
)]

× f (x) ,

f (x) = [1− (x/J )]β ,

j ∈ Q
min(Bj)

,

where Q
min(Bj)

is the q-vector of an item set with the lowest

Bj value.
The difference between the BRT and RT methods is that

an additional component, the calculated Bj value of each item,
is considered in the BRT method. According to Zheng and
Wang (2017), the additional component can be used to control
item exposure.

In summary, the steps of the BRT method are as follows:

Step 1. Randomly select an item from the item pool as the first
item to be administered to individuals;
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Step 2. Estimate each individual’s attribute profile;
Step 3. Calculate the binary researching index Bj on the basis of
the estimated attribute profile;
Step 4. Determine the candidate item set that has the lowest
binary researching index;
Step 5. Calculate the BRT index and select the appropriate item
as the next item to be administered.
Step 6. Repeat steps 2 to 5 until the terminal rule is satisfied.

SIMULATION STUDY

Simulation Design
We performed a simulation study to evaluate the performance
of the BRT method and then compared the BRT method with
other item exposure control methods that have been proposed in
previous studies (Wang et al., 2011; Zheng and Wang, 2017). In
the present study, wemanipulated factors such as model type, test
length, number of attributes, and item selection method. These
factors were set as follows:

Model Type
We included two model types in the present study, namely the
DINA model and RRUM, both of which are models commonly
applied in CD-CAT.

Number of Attributes
We applied four and six attributes in the present study, both of
which are number of attributes that are commonly applied in
CD-CAT (e.g., Cheng, 2009, 2010; Mao and Xin, 2013; Dai et al.,
2016; Kang et al., 2017; Huebner et al., 2018; Lin and Chang,
2019). For instance, Wang et al. (2011) adopted four attributes
in a simulation study, and Zheng and Wang (2017) applied four
and six attributes in their study.

Test Length
There are two levels with respect to test length: 25 items (short
length) and 40 items (long length). This setting is consistent with
those applied in related studies (e.g.,Wang et al., 2011; Zheng and
Wang, 2017).

Item Selection Method
Six item selectionmethods—the random, original PWKL, RP, RT,
SDBS, and BRT methods—were used in the current study.

The number of conditions was 2 (model type)× 2 (test length)
× 2 (number of attributes) × 6 (item selection method) = 48
in total, among which only the item selection method was a
within-group variable; the rest were between-group variables.
The simulation study was implemented in R software (R Core
Team, 2019), and the codes are available upon request from the
corresponding author.

Item Bank and Examinees Generation
Two different item banks were generated on the basis of the
number of attributes. Each item bank had 480 items, which is
also a setting that related studies have commonly applied (Wang
et al., 2011; Zheng and Wang, 2017). The item bank can be
represented using the Qmatrix, which describes the relationship
between items and attributes. That is, the element of theQmatrix

is 1 if the item measures the attribute, and the element is 0
otherwise. In the present study, the Q matrix was generated
entry-by-entry conditional on independence among attributes.
In addition, we assumed that each item involved at least one
attribute and measured 20% of the attributes on average, which
is similar to the case in Zheng and Wang (2017) study.

As for the item parameters, both the guessing and the
slipping parameters of the DINA model were generated from
a uniform distribution, U(0.05, 0.25). The baseline and penalty
parameters of the RRUM were generated from U(0.75, 0.95) and
U(0.20, 0.95), respectively. Other studies have also adopted such
settings (e.g., Cheng, 2010; Wang et al., 2011; Chen et al., 2012;
Mao and Xin, 2013; Zheng and Wang, 2017).

Two α matrices were generated to represent examinees’
mastery of the attributes. Two groups of examinees were
simulated, and each group was composed of 2,000 examinees.
Similar to the Q matrix, the element of the α matrix was
marked as 1 if examinees mastered the attribute and marked
as 0 otherwise. The steps for generating the α matrix followed
those proposed byWang et al. (2011), and both the threshold and
covariance among attributes were set as 0. Consistent with other
studies (e.g., Cheng, 2010; Wang et al., 2011; Chen et al., 2012;
Mao and Xin, 2013; Wang, 2013; Kaplan et al., 2015; Zheng and
Wang, 2017), only one replication was used in the present study.

The value of the importance parameter (i.e., β) for the RT
and RP methods was set to be 2. This is because Wang and her
colleagues found that the value 2 can generate a reasonable trade-
off between measurement accuracy and item usage (Wang et al.,
2011). In regard to the BRT method, the value of the importance
parameter was determined by a pilot study with varying β values.
Its result showed that the value 0.5 is sufficient to balance the
trade-off between measurement accuracy and item usage. Thus,
the value 0.5 was selected for the BRT method in the current
study. In addition, a total of five strata with equal number of
items were used for the SDBS method, which recommended by
Zheng and Wang (2017).

Evaluation Criteria
Two types of evaluation criteria were used in the current study.
The first one was correct classification rate, which includes
pattern correct classification rate (PCCR) and attribute correct
classification rate (ACCR). Higher values indicate better PCCR
and ACCR. The second criteria were item exposure control,
which includes the scaled χ2 (Chang and Ying, 1999), number
of items <2% (underused item rate; UIR) and more than 20%
(overused item rate; OIR), and the test overlap rate (TOR; Mao
and Xin, 2013). Lower values indicated favorable four item
exposure control indices. The calculation of such evaluation
criteria was performed as follows:

PCCR =

N
∑

i=1

I
(

α̂i = αi

)

/N,

ACCRk =

N
∑

i=1

I
(

α̂ik = αik

)

/N,

χ2 =
∑Nitem

j=1

(

erj − J/Nitem

)2
/(J/Nitem),
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erj =
Nadministered
j

N
,

TOR =

∑Nitem
j=1 Nadministered

j ×
(

Nadministered
j − 1

)

J × N × (N − 1)
,

where α̂i and αi denote the estimated and true attribute profiles
of examinee i, N is the number of individuals, J denotes the test
length,Nitem is the number of items in the item bank,Nadministered

j

is the number of times the jth item is administered (i.e., the
number of individuals who answer item j), and erj is the exposure
rate of item j.

RESULTS

Correct Classification Rate
Table 1 presents the correct classification rates for four attributes.
The original PWKL and the randommethods yielded the highest
and lowest PCCRs, respectively, regardless of model type and
test length. The RT method yielded the same or slightly lower
PCCRs compared with the PWKL method and much higher
PCCRs than the RP, SDBS, and BRT methods. In particular, the
differences between the RT method and the three item exposure
control methods (RP, SDBS, and BRT) were relatively small with
respect to the DINA model, which ranged from 0.003 to 0.007
for 25 items, and no difference existed among the methods for
40 items. However, the differences were slightly greater for the
RRUM, which ranged from 0.055 to 0.214 and from 0.008 to
0.052 for 25 and 40 items, respectively. The novel BRT method
yielded slightly lower PCCRs than did the RT method, while it
yielded higher PCCRs than did the RP and SDBS methods. The
differences between the BRT method and the other methods (i.e.,
the RP and SDBS methods) ranged from 0.000 to 0.004 for 25
items, and they shared similar PCCRs for 40 items conditional on
the DINAmodel. The differences ranged from 0.034 to 0.159 and
from 0.036 to 0.088, for 25 and 40 items, respectively, conditional
on the RRUM. In addition, among the four item exposure control
methods (RP, RT, SDBS, and BRT), the SDBS yielded the lowest
PCCRs under all conditions except one (J = 40, the DINA
model). Regarding ACCR, the averaged ACCRs for PWKL and
random methods were the greatest and lowest, respectively. The
BRT method yielded slightly lower average ACCRs than did
the PWKL but slightly higher average ACCRs than the RP and
SDBS methods. In addition, the SDBS yielded the lowest average
ACCRs among the four item exposure control methods.

The PCCR results for six attributes revealed similar patterns
with those for four attributes: the PWKL and random methods
yielded the highest and lowest PCCRs, respectively, regardless
of model type and test length. As for the remaining four item
selection methods, their PCCRs are illustrated in Table 2. The RT
method yielded the highest PCCRs under all conditions across
the four methods. Furthermore, the BRT method yielded lower
PCCRs than did the RT method; however, it had higher PCCRs
than the RP and SDBS methods. The SDBS method yielded the
lowest PCCR under all conditions. In addition, the differences in
the PCCRs among the methods were relatively low for the DINA
model compared with for the RRUM.

Item Exposure Control
Table 3 presents the item exposure control for four attributes.
The PWKL method had the highest scaled χ2 values, regardless
of test length and model type, which indicated that the item
exposure rate was quite skewed. In addition, the PWKL method
had the highest TOR, UIR, and OIR values. For instance, more
than 70% of the items were underused for the PWKL method,
irrespective of test length and model type. In addition, the
RT method yielded a slightly more even distribution of item
usage than did the PWKL method, but it still had higher TORs,
UIRs, and OIRs than the other methods, indicating that uneven
distribution of item usage occurred. Compared with the RT
method, the BRT method produced lower scaled χ2 values,
TORs, UIRs, and OIRs under most conditions. That is, the scaled
χ2 values that the BRT method produced were much lower than
those produced by the PWKL and RT methods. The TORs were
also lower than those of the RT under all conditions, and the
UIRs of the BRTmethod were lower than those of the RTmethod
under all conditions except one (J = 40, the DINA model). As
for the RP and SDBS methods, the SDBS method yielded slightly
better item exposure control than the RP method when the test
length was short (J = 25); however, it performed slightly worse
than the RP method when the test length was long (J = 40).
Both the RP and SDBS methods performed better than the BRT
method under all four indices (i.e., scaled χ2 value, TOR, UIR,
and OIR). The differences between the BRT method and the RP
and SDBS methods were relatively low in terms of the TOR and
OIR and higher in terms of the scaled χ2 value and UIR. In
summary, the BRT method yielded relatively poor item usage
distribution compared with the RP and SDBS methods but more
even distribution of item usage than the original PWKL and
RT methods.

Table 4 presents the results of item exposure control for six
attributes. Most of the results in the table exhibit a similar pattern
to that observed with four attributes. Specifically, the random
method had optimal item exposure control under all conditions.
As for the scaled χ2 value and TOR indices, the priority of the rest
of the five methods was the RP, SDBS, BRT, RT, and PWKL. With
respect to UIR and OIR, the RP method yielded the lowest values
under all conditions except one (J = 25, the RRUM), in which the
SDBS yielded the lowest UIR. The SDBS yielded lower UIRs and
OIRs than the BRT and RT methods under all conditions, and
the BRT method performed better than the RT method for the
two indices under most conditions.

DISCUSSION AND CONCLUSIONS

Inspired by the studies of Wang et al. (2011) and Zheng and
Wang (2017), we combined the binary searching algorithm
with the RT method to develop the BRT method for CD-CAT.
Because the core components of the SDBS method (i.e., a binary
searching algorithm) and RT method were integrated into the
BRT method, the RT method can be considered a specific case of
BRT method, which means that the RT method can be obtained
by adding some additional constraints to the BRT method. A
simulation study was performed to investigate the performance

Frontiers in Psychology | www.frontiersin.org 5 August 2021 | Volume 12 | Article 517155

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Sun et al. Item Exposure Control in CD-CAT

TABLE 1 | The correct classification for four attributes.

Item selection method J = 25 J = 40

PCCR ACCR PCCR ACCR

A1 A2 A3 A4 A1 A2 A3 A4

DINA

PWKL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RP 0.997 0.999 1.00 1.000 0.998 1.000 1.000 1.000 1.000 1.000

RT 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SDBS 0.993 0.998 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000

BRT 0.997 0.997 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

Random 0.876 0.952 0.978 0.970 0.964 0.962 0.990 0.992 0.994 0.985

RRUM

PWKL 0.986 0.998 0.994 0.996 0.996 0.999 1.000 1.000 1.000 1.000

RP 0.886 0.972 0.962 0.965 0.968 0.954 0.991 0.986 0.986 0.986

RT 0.975 0.994 0.992 0.994 0.994 0.998 1.000 1.000 0.999 1.000

SDBS 0.761 0.932 0.930 0.930 0.928 0.902 0.975 0.972 0.970 0.969

BRT 0.920 0.978 0.976 0.978 0.976 0.990 0.996 0.998 0.996 0.999

Random 0.572 0.865 0.874 0.865 0.864 0.716 0.913 0.930 0.923 0.904

DINA refers to the deterministic input, noisy “and” gate model; RRUM refers to the reduced reparametrized unified model; PWKL refers to the posterior weighted Kullback-Leibler; RP

refers to the restrictive progressive method; RT refers to the restrictive threshold method; SDBS refers to the stratified dynamic binary searching method; BRT refers to the binary RT

method; PCCR refers the pattern correct classification rate; and the ACCR refers to the attribute correct classification rate.

TABLE 2 | The correct classification for six attributes.

Item selection method J = 25 J = 40

PCCR ACCR PCCR ACCR

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

DINA

PWKL 0.995 0.999 0.998 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RP 0.955 0.989 0.990 0.990 0.990 0.992 0.990 0.998 1.000 0.999 0.999 1.000 1.000 1.000

RT 0.992 0.997 0.998 0.999 1.000 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SDBS 0.958 0.992 0.992 0.993 0.994 0.986 0.993 0.996 1.000 1.000 0.999 1.000 0.998 1.000

BRT 0.980 0.996 0.997 0.997 0.997 0.997 0.995 0.998 1.000 1.000 1.000 1.000 0.999 1.000

Random 0.650 0.942 0.930 0.896 0.931 0.918 0.924 0.829 0.972 0.968 0.966 0.971 0.966 0.960

RRUM

PWKL 0.904 0.977 0.983 0.982 0.984 0.984 0.980 0.984 0.997 0.996 0.996 0.998 0.998 0.998

RP 0.705 0.944 0.938 0.921 0.940 0.940 0.926 0.847 0.978 0.972 0.964 0.974 0.968 0.958

RT 0.876 0.976 0.971 0.975 0.978 0.982 0.978 0.978 0.998 0.998 0.994 0.995 0.998 0.994

SDBS 0.542 0.908 0.896 0.880 0.896 0.900 0.892 0.772 0.962 0.950 0.956 0.952 0.950 0.948

BRT 0.726 0.946 0.940 0.937 0.939 0.943 0.958 0.907 0.986 0.979 0.978 0.981 0.987 0.985

Random 0.308 0.838 0.828 0.792 0.828 0.811 0.804 0.468 0.910 0.883 0.858 0.892 0.858 0.873

of this novel item exposure control method. According to the
results, the BRT method has more discernible merits than the
PWKL and RT methods in terms of item exposure control,
irrespective of the number of attributes, model type, and test
length, although it yields slightly less accurate classification than
the PWKL and RT methods under all conditions. The BRT
method yields relatively poor item exposure control but more
accurate classification under all conditions when compared with
the RP and SDBS methods.

The results demonstrate that differences in the PCCRs
between the BRT and RT approaches are minor for the DINA
model, whereas the BRTmethod achieves superior item exposure
control to the RT method. This is especially true when the scaled
χ2 value and the TOR are examined. These findings indicate that
the BRT method, to some degree, is a good candidate for the RT
method when the DINA model is applied to CD-CAT with small
number of attributes or long length of tests. Compared with the
DINA model, the RRUM reveals larger differences in the PCCRs
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TABLE 3 | The usage of items for four attributes.

J = 25 J = 40

χ2 TOR UIR OIR χ2 TOR UIR OIR

DINA

PWKL 213.183 0.496 0.800 0.079 210.750 0.522 0.702 0.127

RP 5.116 0.062 0.000 0.000 2.475 0.088 0.000 0.000

RT 80.505 0.219 0.450 0.052 42.970 0.172 0.000 0.081

SDBS 3.949 0.060 0.010 0.000 4.488 0.092 0.000 0.000

BRT 12.837 0.078 0.208 0.000 9.604 0.103 0.027 0.010

Random 0.233 0.052 0.000 0.000 0.219 0.083 0.000 0.000

RRUM

PWKL 225.213 0.521 0.825 0.079 228.810 0.560 0.752 0.142

RP 12.477 0.078 0.265 0.000 7.688 0.099 0.000 0.000

RT 145.923 0.356 0.665 0.075 167.067 0.431 0.569 0.135

SDBS 6.844 0.066 0.017 0.002 9.960 0.104 0.002 0.023

BRT 23.454 0.100 0.338 0.012 32.619 0.151 0.258 0.075

Random 0.220 0.052 0.000 0.000 0.215 0.083 0.000 0.000

TABLE 4 | The usage of items for six attributes.

J = 25 J = 40

χ2 TOR UIR OIR χ2 TOR UIR OIR

DINA

PWKL 205.962 0.481 0.792 0.083 198.364 0.496 0.677 0.127

RP 4.952 0.062 0.000 0.000 2.272 0.088 0.000 0.000

RT 89.060 0.237 0.481 0.050 90.520 0.272 0.196 0.102

SDBS 9.333 0.071 0.190 0.000 10.053 0.104 0.010 0.021

BRT 20.152 0.094 0.298 0.008 21.490 0.128 0.144 0.050

Random 0.196 0.052 0.000 0.000 0.230 0.083 0.000 0.000

RRUM

PWKL 199.284 0.467 0.783 0.092 200.328 0.500 0.690 0.135

RP 11.023 0.075 0.210 0.000 6.650 0.097 0.000 0.000

RT 122.366 0.307 0.638 0.075 143.225 0.381 0.548 0.125

SDBS 13.047 0.079 0.125 0.008 14.427 0.113 0.029 0.031

BRT 21.810 0.097 0.275 0.015 32.583 0.151 0.183 0.075

Random 0.225 0.052 0.000 0.000 0.205 0.083 0.000 0.000

between the BRT and RT methods. That is, the RT method
produces higher PCCRs than the BRT method in all conditions.
However, the BRT method performs better than the RT method
with regard to item exposure control. These results indicate that
there is a trade-off between measure accuracy and item usage
when a selection is made from the RT and BRT methods for
the RRUM. As for how to choose reference values to interpret
the evaluation criteria (e.g., scaled χ2, overlap rate), there are
no definite answer, and reference values can be determined by
test purpose. The BRT method can be used to select items to be
administered if obtaining an even distribution of item usage is the
primary goal, wherein both item exposure control indices (i.e.,
lower scaled χ2 and overlap rate) and measurement accuracy
(i.e., higher PCCR) are important. In contrast, the RTmethod can
be applied if measurement accuracy is the major consideration,

such as classroom settings. In such situations, higher scaled χ2

and overlap rate are acceptable.
Furthermore, there might be a ceiling effect in measurement

accuracy for the DINA model. This is because values of
measurement accuracy are close to upper bound (i.e., 1.0) under
both 25 and 40 items conditions. We further investigated this
effect by conducting a pilot study with varying test length (10,
15, and 20 items) and varying number of attributes (four and
six attributes) for the DINA model. Its results showed that the
PCCRs are larger than 0.95 for the RT and BRT methods in
conditions with 15 items and four attributes and are close to
the upper bound in conditions with 20 items. The PCCRs are
close to 0.95 under conditions with 20 items and six attributes
and close to 1.0 under conditions with 25 items. These results
confirmed the ceiling effect of measurement accuracy for the
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DINA model. In addition, the pilot study also showed that
differences in the PCCRs between the RT and BRT methods are
smaller for conditions with four attributes than those with six
attributes regardless of which test length is used. In particular,
differences in the PCCRs ranged from 0.0 to 0.02 and 0.0 to
0.09 for conditions with four and six attributes, respectively.
This result indicated that the number of attributes has a positive
effect on the differences of the PCCRs between the RT and BRT
methods. The BRT method performs worse in PCCR than the
RTmethod under conditions with large number of attributes and
short length of tests.

Overall, the proposed BRT method, to some extent, can better
balance the trade-off between correct classification and item
exposure compared with prior methods. It yields slightly less
accurate classification compared with the original PWKL and RT
methods; however, it achieves superior item exposure control. In
addition, although the BRTmethod provides slightly poorer item
exposure control than do the RP and SDBS methods, it yields
more accurate measurements.

Although the current study presents promising findings, the
following potential future directions should be considered. First,
the majority of studies that have explored item exposure have
been based on the PWKL method. Other flexible methods, such
as the SHE, MI, and MPWKL, should be investigated further.
Second, both the DINAmodel and the RRUM are specific CDMs,
which assume either conjunctive or disjunctive relationships
between items in one tests. By contrast, the general CDMs relax
the constraints of the specific CDMs. That is, they allow each
item to select the optimal model to achieve optimal results
(Ravand, 2016). Whether the new method can be applied to
general CDMs is worthy of investigation in the future. It is
worth noting that a variety of CDMs have been developed for
varying situations in recent years, each of which makes specific
assumptions about the relationship between item response and
the attributes that item measured. Thus, assumptions that have
been made for a situation, to some degree, determines the
selection of a CDM. As well as data-driven model selection,
for instance, use Akaike’s information criterion and Bayesian
information criterion to select the CDMs. Third, the application
of the new method to the dual-objective CD-CAT (McGlohen
and Chang, 2008; Wang et al., 2012, 2014; Dai et al., 2016; Kang
et al., 2017; Zheng et al., 2018) could be investigated in the
future. The dual-objective CD-CAT combines the IRT model
and CDMs; therefore, it may be able to provide both an overall

score and specific diagnostic information for individuals. Because
the novel item exposure control method is proposed primarily
for single-objective CD-CAT, it requires modification before
application to dual-objective CD-CAT. Fourth, the new method
could be extended to variable-length CD-CAT in the future study.
However, it is important to note that the newmethod needs some
modifications before its application to variable-length CD-CAT.
This is because the posterior probability of an attribute profile
is usually used as termination rule in variable-length CD-CAT.
As such, the application of the new method to variable-length
CD-CAT would be more complicated than its application to
fixed-length CD-CAT. Last, true item parameters, rather than
estimated item parameters, are used in the current study. As
Huang (2018) and Sun et al. (2020) demonstrated, measurement
accuracy is decreased when estimated item parameters are
used. In other words, the reliability of item exposure control
methods is relatively low with estimated item parameters.
Therefore, further studies can consider investigating the
reliability of the BRT method when estimated item parameters
are used.
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