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Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue

function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly

understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining

mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes un-

derlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-

fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription

factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chro-

matin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms.

Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can con-

tact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer ac-

tivity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic

transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.

[Supplemental material is available for this article.]

A mammalian internal timing system, known as the circadian
clock, orchestrates temporal physiology in organs to anticipate dai-
ly environmental cycles (Dibner and Schibler 2015). Individual
cells within organs contain a molecular oscillator that, together
with rhythmic systemic signals such as hormones, temperature,
and feeding behavior, collectively drive diurnal oscillations in
gene expression and physiology (Lamia et al. 2008; Reinke et al.
2008; Cho et al. 2012; Vollmers et al. 2012). Remarkably, the circa-
dian clock impinges on many gene regulatory layers, from
transcriptional and post-transcriptional processes, translation effi-
ciency, to translational and post-translational processes (Mermet
et al. 2016).

Transcriptome analysis of different cell types and tissues has
highlighted the breadth of tissue-specific transcriptional regula-
tion (Merkin et al. 2012; Yue et al. 2014). However, physiological
processes are dynamic at the timescale of hours and often under
circadian control, such as hormone secretion, drug and xenobiotic
metabolism, and glucose homeostasis (Takahashi et al. 2008).
Adding the temporal dimension to tissue-specific gene regulation
is needed for an integrated understanding of physiology.

Chronobiology studies have shown that tissues utilize the cir-
cadian clock to drive tissue-specific rhythmic gene expression
(Storch et al. 2002; Korenčič et al. 2014; Zhang et al. 2014), presum-

ably to schedule physiological functions to optimal times of day.
Indeed, genetic ablation of the circadian clock in different tissues
can lead to divergent pathologies, such as diabetes in pancreas-
specific Bmal1 knockout (KO) and fasting hypoglycemia in liver-
specific Bmal1 KO, suggesting that the clock interweaves with
tissue-specific transcriptional programs (Bass and Lazar 2016),
but howdiurnal and tissue-dependent regulatory landscapes inter-
act to generate tissue-specific rhythms is poorly understood.

Results

Contributions of tissue, daily time, and circadian clock

to global variance in mRNA expression

To estimate the respective contributions of tissues, daily time, and
circadian clock to global variance in gene expression, we analyzed
available temporal transcriptomes across 11 tissues in WT mice
(Zhang et al. 2014) and generated temporal RNA-seq data of liver
and kidney from Bmal1 KO mice and WT littermates
(Supplemental Tables S1, S2; Methods). The Zhang et al. data set
was obtained under dark–dark (DD), ad libitum feeding, sampled
every 2 h. The liver and kidney Bmal1 KO and WT data sets were
obtained under light–dark (LD), night-restricted feeding condi-
tions, sampled every 4 h.

To avoid mixing different experimental designs (e.g., tempo-
ral resolution and number of repeats) (Deckard et al. 2013; Li et al.
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2015), we analyzed these data sets separately. We performed prin-
cipal component analysis (PCA) on the entire set of conditions (11
tissues × 24 time points) to obtain an unbiased overview into the
contributions of tissue- and time-specific variance.Most of the var-
iance concerned differences in expression between tissues (Fig. 1A;
Supplemental Fig. S1A–D). Temporal variance, in particular, 24-h
periodicity, was present among a group of principal components
carrying lower amounts of variance (Fig. 1A; Supplemental Fig.

S1E–G). Focusing on genome-wide temporal variation within
each tissue, we found that 24-h rhythms constituted the largest
contribution of temporal variance, followed by 12-h rhythms,
which were close to background levels for many tissues (Fig. 1B;
Hughes et al. 2009). We thus focused the rest of our analysis on
24-h rhythms.

We analyzed the peak-to-trough amplitudes (hereafter also re-
ferred to as fold change) of 24-h rhythmic transcripts. Metabolic

tissues, notably liver, brown fat, and skel-
etal muscle exhibited more (on the order
of 100 transcripts) intermediate- to high-
amplitude (between two- and 10-fold)
transcript rhythms. Brain tissues showed
virtually no rhythmic transcripts above
fourfold (Fig. 1C). In liver and kidney of
Bmal1 KOmice, the number of rhythmic
mRNAs was reduced by threefold com-
pared to WT littermates. This effect in-
creased for larger amplitudes. Few
transcripts in tissues of Bmal1 KO oscil-
lated by more than 10-fold (Fig. 1D).
Thus, a functional circadian clock is re-
quired for high-amplitude transcript
rhythms across diverse tissues, while sys-
temic signals regulate lower amplitude
rhythms that persist in clock-deficient
liver (Hughes et al. 2012; Atger et al.
2015; Sobel et al. 2017) and kidney
(Nikolaeva et al. 2012).

Combinatorics of rhythmic transcript

expression across tissues and genotypes

We reasoned that identifying sets of
geneswith shared rhythms across subsets
of tissues would allow finding underly-
ing regulatory mechanisms. We devel-
oped a model selection (MS) algorithm
extending harmonic regression (Fisher
1929) to classify genes into modules
sharing rhythmic mRNA profiles across
subsets of tissues (Fig. 2A; Methods).
Phase (time of peak) and amplitude
(log2 fold change) relationships between
genes and tissues are summarized using
complex-valued singular value decom-
position (SVD) (Fig. 2B; Methods). We
appliedMS to the 11 tissues, which iden-
tified gene modules involving rhythmic
mRNA accumulation in nearly all tissues
(tissue-wide) (Fig. 2C), in single tissues
(tissue-specific), or in several tissues
(tissue-restricted) (examples shown in
Fig. 2D; Supplemental Fig. S2A; Supple-
mental Table S3).

The tissue-widemodule contained a
set of both clock- and system-driven
rhythmicmRNAs, as determinedby com-
paring Bmal1 KO data in liver and kidney
(Fig. 2C, left). Moreover, these transcripts
oscillated in synchrony across all tissues
and peaked at fixed times of day,

Figure 1. Contribution of tissue, daily time, and circadian clock to global variance inmRNA expression.
(A) Principal component analysis (PCA) across 11 WT tissues sampled over 2 d. PC1 and PC2 show
clustering of samples by tissues; each point represents a tissue sample (see key) at a specific time point
(not labeled). (Inset) Loadings for PC13 and PC17 for the liver samples labeled with circadian time
(CT), showing temporal variation along an elliptic path. Labels indicate CT time; samples that are 24 h
apart are in the same color. (B) Fractions of temporal variance in each tissue explained by 24- and 12-
h periods, obtained by applying spectral analysis genome-wide for each tissue. Dotted horizontal lines
represent the expected background level, assuming white noise. (C,D) Cumulative number of rhythmic
genes (P < 0.01, harmonic regression) with log2 fold change larger than the value on the x-axis. (C)
Analysis on 11 WT tissues. (D) Analysis on four conditions: Bmal1 KO mice and WT littermates in liver
and kidney.
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Figure 2. Combinatorics of rhythmic transcript expression across tissues and genotypes. (A) Schema for the model selection (MS) algorithm to identify
rhythmic gene expression modules across tissues. Temporal transcriptomes of different tissues represented as a three-dimensional array (left). Gene mod-
ules are probabilistically assigned among different combinations of 24-h rhythms across tissues (e.g., tissue-specific or tissue-wide rhythms schematically
shownon right). (B) Genemodules are summarized by the first component of complex-valued singular value decomposition (SVD) to highlight phase (peak
time shown as the clockwise angle) and amplitude (log2 fold change shown as the radial distance) relationships between genes (gene space) and between
tissues (tissue space). SVD representation is scaled such that the genes show log2 fold changes, while tissue vectors are scaled such that the highest am-
plitude tissue has length of 1 and a phase offset of 0 h. (C–E) MS applied to 11WT tissues. (C) SVD representation of tissue-widemRNA rhythms from the 11
tissues. Genes are labeled as system-driven (blue) or clock-driven (red) according to the comparison of the corresponding temporal profiles in Bmal1 KO
andWT littermates. (D) Examples of anti-phasic rhythms (brown fat andmuscle, n = 20, first SVD component explains 81% of variance), and tissue-specific
rhythms (liver, n = 846, first SVD component explains 59% of variance). Representative genes with large amplitudes are labeled. (E) Number of transcripts
showing rhythms (P-value < 0.01, harmonic regression) in different numbers of tissues, in function of increasing peak to trough amplitudes on the x-axis. x-
axis: average log2 fold change calculated from the identified rhythmic tissues. (F,G) MS applied to Bmal1 KO andWT littermates in liver and kidney. (F ) SVD
representation of clock- (top, n = 991, 83% of variance) and system-driven (bottom, n = 1395, 84% of variance) liver-specific rhythms. (G) Number of tran-
scripts showing clock- (solid) or system-driven (dotted) rhythms (P-value < 0.01, harmonic regression) in liver (red), kidney (blue), or both (magenta).
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although their amplitudes varied between tissues, with brain re-
gions showing the smallest amplitudes (Fig. 2C, right). The clock
drove synchronized oscillations at high amplitudes, notably clock
genes (e.g., Arntl, Npas2, Nr1d1,2; note that Arntl and Nr1d1,2 are
also named Bmal1 and Rev-erba,b, respectively), clock output genes
(e.g., Dbp, Nfil3), and cell cycle regulators (Cdkn1a and Wee1)
(Matsuo et al. 2003; Gréchez-Cassiau et al. 2008). Interestingly,
clock genes Per1,2 continued to oscillate in Bmal1 KO in multiple
tissues, extending previous studies in liver (Kornmann et al.
2007). Other clock-independent oscillations included mRNAs of
heat- and cold-induced genes, such as Hspa8 and Cirbp (Morf
et al. 2012; Gotic et al. 2016), that peaked 12 h apart near CT18
and CT6 (CT: circadian time; CT0 corresponds to subjective dawn
and start of the resting phase; CT12 corresponds to subjective
dusk and start of the activity phase), concomitantly with highs
and lows in body temperature rhythms (Refinetti and Menaker
1992).

Tissue-restricted modules contained rhythmic transcripts
that peaked in synchrony, such as in liver and kidney, orwith fixed
offsets, such as the nearly 12-h shifted rhythms in brown fat and
skeletal muscle (Supplemental Fig. S3A). Overall, transcripts with
large amplitudes (FC > 8) oscillated in either a few tissues (three
or less) or tissue-wide (eight or more) (Fig. 2E).

To distinguish clock- and system-driven mRNA rhythms, we
applied the MS algorithm to the liver and kidney transcriptomes
in WT and Bmal1 KO mice (Fig. 2F; Supplemental Fig. S3B;
Supplemental Table S4). This separation identified clock- and sys-
tem-driven modules that oscillated in liver but were flat in kidney
(Fig. 2F), as exemplified by mRNAs of Lipg and Lpin1 (Supplemen-
tal Fig. S2B). Indeed, both transcripts oscillated inWT liver with ro-
bust amplitudes, peaking near ZT11, but were flat in kidney (ZT:
Zeitgeber time; ZT0 corresponds to onset of lights-on; ZT12 corre-
sponds to onset of lights-off). However, in Bmal1 KO, Lpin1 con-
tinued to oscillate, while Lipg was flat.

Summarizing, we found that shared clock-driven mRNA
rhythms, which contained core clock and clock-controlled genes,
oscillated with significantly larger amplitudes than system-driven
genes (Fig. 2G, magenta solid versus dotted). Similarly, clock-driv-
en liver-specific mRNA rhythms also oscillated at higher ampli-
tudes compared with system-driven mRNA rhythms (Fig. 2G, red
solid versus dotted). On the other hand, kidney-specific clock-
and system-driven transcripts oscillated with comparable ampli-
tudes (Fig. 2G, blue solid versus dotted) and were less numerous
overall, which could reflect the distinct cell types constituting
the kidney (Lee et al. 2015). The uncovered diversity of clock-
and system-driven mRNA rhythms involving distinct combina-
tions of tissues hints at complex transcriptional or post-transcrip-
tional regulation.

Oscillatory TF activity in one tissue but not others

can drive tissue-specific mRNA rhythms

We focused on WT and Bmal1 KO liver and kidney to identify
rhythmic TF activities underlying clock- and system-driven
tissue-specific mRNA rhythms. We first analyzed liver-rhythmic
genes driven by systemic signals (n = 1395, MS) (Fig. 3A), which
were associated with feeding and fasting rhythms (Gene
Ontology analysis around the clock) (Methods). Indeed, ribosome
biogenesis was up-regulated most strongly during the first 6 h of
the feeding phase (from ZT12 to ZT18) (Jouffe et al. 2013;
Chauvin et al. 2014), while insulin signaling was down-regulated
during first 6 h of the fasting phase (from ZT0 to ZT6)

(Ravnskjaer et al. 2013), consistent with daily responses to nutri-
ent fluctuations in liver (Sinturel et al. 2017).

To infer rhythmic TF activities thatmay underlie thesemRNA
rhythms, we applied a penalized regression model (MARA)
(Balwierz et al. 2014) that integrates TF binding site predictions
near promoters withmRNAaccumulation. TF analysis of thismod-
ule notably identified TFs related to insulin biosynthesis and glu-
coneogenesis, such as MAFB (Matsuoka et al. 2003) and EGR1
(Matsuoka et al. 2003; Shen et al. 2015), whose activities peaked
at ZT11 and ZT3, respectively (Fig. 3B; Supplemental Fig. S4A).
Integrating temporal activities of candidate TFs with RNA-seq
and our previously described temporal nuclear protein data set
(Wang et al. 2017), we found that rhythmic activity of MAFB
and EGR1was supported by rhythmicmRNAabundance, followed
by rhythmic nuclear protein abundance (Fig. 3B; Supplemental
Fig. S4B), likely reflecting the delayed protein abundance after
mRNA accumulation (Mermet et al. 2016).

Next, we analyzed clock-driven transcripts oscillating specifi-
cally in the kidney (n = 156, MS) (Fig. 3C), among which sodium
ion and organic anion transporters peaked near ZT12 and ZT0, re-
spectively. The up-regulation of sodium ion transporters in kidney
during the behaviorally active phase may underlie clock-depen-
dent increase of sodium excretion (Nikolaeva et al. 2012).
Similarly, the up-regulation of organic anion transporters during
the resting phase may explain increased transport activity for pre-
cursors of gluconeogenesis, such as pyruvate and lactate, during
fasting (Stumvoll et al. 1998; Ekberg et al. 1999). TF analysis pre-
dicted TFCP2 to regulate mRNAs that peaked during the resting
phase (Fig. 3D; Supplemental Fig. S4C). The predicted TFCP2 activ-
ity was anti-phasic with Tfcp2 mRNA abundance, suggesting a re-
pressive activity, consistent with the ability of TFCP2 to recruit
histone deacetylase HDAC1 (Kim et al. 2016).

Finally, liver-specific clock-driven rhythmic transcripts (n =
991, MS) were comprised of genes associated with glucose metab-
olism (enriched at ZT18), such as Gck and Ppp1r3b (Kelsall et al.
2009; Oosterveer and Schoonjans 2014), as well as lipid, cholester-
ol, and bile acid metabolism genes (enriched at ZT2), such as
Elovl3, Insig2, Hsd3b7, and Cyp8b1 (Fig. 3E; Shea et al. 2007; Le
Martelot et al. 2009; Guillou et al. 2010; Sayin et al. 2013).
Predicted activity of ELF oscillated and peaked near ZT3 inWT liver
butwas flat inBmal1KO (Fig. 3F; Supplemental Fig. S4D; Fang et al.
2014). Interestingly, mRNA abundance of Elf1, as well as its nucle-
ar protein abundance, also oscillated in WT, supporting Elf1 as a
potential regulator of oscillating transcriptions peaking near ZT6.

Colocalized binding of clock- and liver-specific TFs drives

liver-specific mRNA rhythms

To further dissect liver-specific clock-driven rhythms, we reasoned
that accessible chromatin regions specific to the liver could harbor
regulatory sites for clock TFs, which could then regulate mRNA
rhythms liver-specifically. ComparingDNase I hypersensitive sites
(DHSs) in liver and kidney (DNase-seq data from ENCODE) (Yue
et al. 2014),we found that liver-specific clock-drivengeneswere en-
riched with liver-specific DHSs (within 40 kb of promoters), com-
pared to system-driven as well as nonrhythmic genes (Fig. 4A).
Using TF binding site predictions underlying these liver-specific
DHSs, we applied MARA to predict rhythmic TF activities that ex-
plain gene expression of this module (Supplemental Fig. S5A). In
WT liver, the predicted activity of RORE oscillated with robust am-
plitudes andpeakednear ZT21. RORE activity becamehigh and flat
in Bmal1 KO liver, consistent with loss of REV-ERB expression and
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consequently de-repression of REV-ERB target genes (Fig. 4B, top;
Bugge et al. 2012). Activity of E-box inWT liver peaked at ZT7, con-
sistent with BMAL1:CLOCK activity (Rey et al. 2011), albeit with
weaker amplitudes compared to RORE activity, likely reflecting
fewer E-box target genes compared to RORE in this module. In
Bmal1KOmice, E-box activitywas lowand flat in liver, as expected.

Wehypothesized that cooperativity of liver-specific and clock
TFs at liver-specific DHSs can regulate liver-specific mRNA
rhythms. Pairwise analysis of TF binding sites at liver-specific
DHSs found enrichment of co-occurrence between RORE and liv-
er-specific TF motifs, FOXA2, ONECUT, and CUX2 (Fig. 4C).
Enrichment of both CUX2 and ONECUT (also named HNF6) is
consistent with ONECUT1 binding to both ONECUT and CUX2
motifs (Conforto et al. 2015). mRNAs of genes with co-occurrence
of RORE and liver-specific TF motifs peaked near ZT1, consistent
with peak RORE activity (near ZT21) preceding peak mRNA abun-
dance of REV-ERB targets (Supplemental Fig. S5B). Analysis of
ChIP-exo data sets targeting FOXA2, ONECUT1, and REV-ERBa
in liver (Wang et al. 2014; Zhang et al. 2015; Iwafuchi-Doi et al.
2016) confirmedcolocalizedTFbindingat liver-specificDHSsdistal
from clock-driven liver mRNAs such as Insig2 and Slc4a4 (Fig. 4D).

Liver-specific chromatin loops regulate liver-specific

mRNA rhythms

To test whether distally located liver-specific DHSs can contact
promoters of clock-driven liver-rhythmic genes, we selected the

promoters of Mreg, Pik3ap1, and Slc44a1 as baits for 4C-seq exper-
iments in liver and kidney harvested at the time of peak mRNA ac-
cumulation for the selected genes (Methods; Fig. 5A; Supplemental
Figs. S6A, S7A). Upstream of Mreg, the 4C-seq signal, which mea-
sures frequency of promoter-enhancer contacts (van de Werken
et al. 2012), decayed rapidly to background level in both liver
and kidney (Fig. 5B, top). Downstream from Mreg, however, the
4C-seq signal showed a tissue-dependent pattern, decaying slowly
in the liver butmore rapidly in the kidney. This difference in decay
suggests increased frequency of promoter-enhancer contacts in
the liver compared to the kidney. Indeed, differential analysis
identified liver-specific chromatin contacts 40 kb downstream
from the promoter (Fig. 5B, bottom). Overlaying the contact
data with DNase-seq, we found that liver-specific chromatin con-
tacts downstream from Mreg connected liver-specific DHSs with
theMreg promoter (Fig. 5C). Furthermore, ChIP-exo showed coloc-
alization of REV-ERBa and FOXA2 binding at liver-specific DHSs
contacting the promoters (Fig. 5C). In contrast, accessible regions
upstreamof theMreg promoter did not show liver-specific chroma-
tin contacts. The 4C-seq data thus suggest that liver-specific chro-
matin loops can recruit clock-bound distal elements to promoters
to regulate liver-specific transcriptional rhythms. Other liver-spe-
cific rhythmic transcripts, Pik3ap1 and Slc44a1, also displayed liv-
er-specific chromatin loops between promoter and liver-specific
open chromatin regions (Supplemental Figs. S6, S7). In sum, tis-
sue-specific chromatin looping can drive tissue-specific mRNA
rhythms.

Figure 3. Oscillatory TF activity in one tissue but not others can drive tissue-specific rhythms. (A) Module describing system-driven liver-specific rhythms
(n = 1395, first SVD component explains 84% of variance). Radial coordinate of the colored polygons represents enrichment of the indicated GO terms
at each time point, obtained by comparing the genes falling in a sliding window of ±3 h to the background set of all 1395 genes assigned to the module
(P-value computed from Fisher’s exact test). (B) MAFB is a candidate TF for the module in A. Predicted MAFB activity (blue), nuclear protein abundance
(orange triangles), and mRNA accumulation (gray) oscillate in WT and Bmal1 KO, with peak mRNA preceding peak nuclear protein and TF activity.
Error bars in nuclear protein, mRNA, and TF activity show SEM (n = 2). (C) Clock-driven kidney-specific module (n = 156, first SVD component explains
80% of variance). Colored polygons as in A. (D) TFCP2 is a candidate TF for the module in C. The temporal profile of predicted TFCP2 activity (blue) is
anti-phasic with Tfcp2 mRNA accumulation (gray) in WT, and both are flat in Bmal1 KO. Error bars in mRNA and TF activity show SEM (n = 2). (E)
Clock-driven liver-specific module (n = 991, first SVD explains 83% of variance). (F) ELF is a candidate TF for the module in E. The temporal profile of pre-
dicted ELF activity (blue) in WT matches that of nuclear protein abundance in liver (orange triangles), and both are delayed compared to Elf1 mRNA ac-
cumulation (gray). In Bmal1 KO, ELF activity and Elf1 mRNA are nonrhythmic. Error bars in nuclear protein, mRNA, and TF activity show SEM (n = 2).
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Figure 4. Colocalized binding of clock- and liver-specific TFs underlies liver-specific mRNA rhythms. (A) The fraction of genes containing liver-specific
DNase I hypersensitive sites (DHSs) in the clock-driven liver-specific module is higher compared with both nonrhythmic and system-driven liver-specific
modules. Error bars and P-values calculated from 10,000 bootstrap iterations. (B) Predicted temporal activities of RORE (top) and E-box (bottom) TF motifs
located within liver-specific DHSs. Error bars show standard deviation of the estimated activities. (C ) Co-occurrence of RORE with all other TFs in the
SwissRegulon database (Pachkov et al. 2007) (189 TF motifs). Positive log10 odds ratios (ORs) represent pairs of motifs enriched in the clock-driven liv-
er-specific module compared to the flat module. P-values for the motif pairs were calculated from χ2 tests applied to three-way contingency tables
(Myšičková et al. 2012). Selected pairs are in bold. (D) DNase I hypersensitivity in liver, kidney, and the corresponding differential signal (in log2 fold
change) near two representative genes (top: Insig2; bottom: Slc4a4). RORE, ONECUT1, and FOXA2 TF binding motifs (posterior probability > 0.5,
MotEvo) co-occur at liver-specific DHSs (red boxes). Predicted TF binding sites correspond to experimentally observed TF binding in publicly available
ChIP-exo data sets for REV-ERBa, ONECUT1, and FOXA2 (bottom).
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Precise promoter-enhancer contacts underlie liver-specific

mRNA rhythms

To test whether distinct chromatin loopswould form at alternative
nearby gene promoters with distinct temporal mRNA profiles,
we searched for candidate geneswhere one promoterwas rhythmi-
cally transcribed while the alternative one was nonrhythmic
(Supplemental Fig. S8). Slc45a3 has two alternative transcripts
using different promoters 8 kb apart. The shorter pre-mRNA oscil-
lated in the liver (rhythmic promoter, Slc45a3-short), while the
longer did not (flat promoter, Slc45a3-long). In kidney, neither
Slc45a3-short nor Slc45a3-long showed robust transcript rhythms
(Supplemental Fig. S9). Targeting the Slc45a3-short promoter
with 4C-seq in liver and kidney showed liver-specific chromatin
loops at three distal regions (two upstream, one downstream)
(Fig. 6A). These same regions did not form liver-specific chromatin
loops with the Slc45a3-long promoter (Fig. 6B), suggesting
that promoters 8 kb apart can contact distinct enhancers.
Overlaying 4C-seq with DNase-seq showed that these chromatin
loops link liver-specific DHSs specifically to the Slc45a3-short
promoter (Fig. 6C). These liver-specific DHSs were bound by liv-
er-specific TFs, FOXA2 and ONECUT1, and clock TF, REV-ERBa,
as shown in ChIP-seq. The 4C experiments suggest that
enhancers can contact a rhythmic promoter while looping out
nearby nonrhythmic alternative promoters, confining rhythmic
enhancer activity to specific promoters (Fig. 6D). Furthermore,
rhythmically active enhancers can contact promoters in a tis-
sue-specific manner. Thus, chromatin folding not only regulates
tissue-specific rhythms but also differentiates between closely
spaced promoters to control rhythmic transcription with spatial
precision.

Discussion

The mammalian genome encodes tran-
scriptional programs that allow the mo-
lecular clock to robustly oscillate across
diverse tissue transcriptomeswhilemain-
taining flexibility to regulate distinct
clock outputs in different combinations
of tissues. Here, we identified two regula-
tory modes underlying tissue-specific
transcript rhythms: Regulatory sequenc-
es can recruit individual TFs bearing
rhythmic activity; coordinated binding
of clock- and tissue-specific TFs can gen-
erate tissue-specific rhythms. Moreover,
we found that clock- and tissue-specific
TFs bound at distal enhancers can be re-
cruited to promoters through precise
chromatin loops.

Several of our predictions of tran-
scription regulators and regulated genes
(e.g., Egr1, Por, Upp2) corroborated with
previous analyses of independent data
sets (Yan et al. 2008; Bozek et al. 2009;
Bhargava et al. 2015). Further analysis in-
corporating outputs of enhancer activity,
such as eRNAs (Fang et al. 2014), across
multiple tissues may uncover additional
rhythmically active regulators.

Colocalized binding of clock- and
tissue-specific TFs at enhancers provides
aputativemechanismfor the clock to reg-

ulate clockoutput genes in a tissue-specificmanner. Inmouse liver,
clock TFs can colocalize with liver-specific TFs, such as FOXA2 and
ONECUT1, consistentwithmultiple TFs associatingwith liver-spe-
cific DHSs (Iwafuchi-Doi et al. 2016). Our findings are currently
based on sequence-specific DNA binding of TFs, comparison of
tissues, and ChIP-seq data sets. Further mechanistic basis for the
functional significance of colocalization couldbe gained, for exam-
ple, by using inducible knockout models for tissue-specific regula-
tors. Moreover, the observed colocalization does not exclude other
cooperative modes, such as tethering of REV-ERBa to ONECUT1
through protein-protein interactions (Zhang et al. 2015).

Our 4C analysis showed that chromatin loopingmight medi-
ate interaction between clock- and tissue-specific transcriptional
programs by recruiting clock-bound distal elements to promoters
in a tissue-specific manner. Such loops can surgically discriminate
between nearby promoters as close as 8 kb apart, suggesting a
way to separate temporal regulation of neighboring promoters. A
previous 4C study on a core clock gene enhancer proposed that co-
hesion-mediated promoter-enhancer looping can compartmental-
ize rhythmic gene expression within genomic regions spanning
150 kb (Xu et al. 2016). Here, chromatin interactions that differed
between tissues were localized to a small genomic region (<10 kb)
near promoters (<100 kb). Future studies integrating temporal data
across tissues with large-scale promoter-enhancer networks may
reveal regulatory sequences that encode promoter-enhancer com-
patibility and elucidate whether this compatibility is tissue-specif-
ic (Li and Noll 1994; Merli et al. 1996; Zabidi et al. 2014; Nguyen
et al. 2016).

While our work focused on transcriptional mechanisms,
studying other mechanisms such as post-transcriptional,

Figure 5. Liver-specific chromatin loops regulate liver-specific mRNA rhythms. (A) Temporal mRNA
profile for Mreg, a clock-driven liver-rhythmic gene. Error bars are SEM (n = 2). (B) 4C-seq profiles (sum-
mary from two replicates, each pooling two different mice) using theMreg promoter as a bait in liver and
kidney at ZT20. Data are shown in a window of ±250 kb from the bait (top). Profiles of differential con-
tacts between liver and kidney (bottom) represented as signed log P-values (regularized t-test, positive
values denote liver-enriched 4C contacts). (C) Tracks of differential 4C contacts (signed log P-values),
log2 fold change of DNase I hypersensitivity between liver and kidney, and ChIP-exo of REV-ERBa and
FOXA2. Regions of significant differential 4C contacts correspond to liver-specific DNase I hypersensitive
regions and REV-ERBa binding sites.

Yeung et al.

188 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222430.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222430.117/-/DC1


translational, and post-translational processes using PRO-seq,
Ribo-seq, and proteomics data may provide additional insights.
Expanding our 24-h analysis to 12-h or other harmonics would
broaden the view of tissue-specific temporal gene expression but
may require experimental designs of higher temporal resolution
(Hughes et al. 2009; Krishnaiah et al. 2017). In sum, integrating
the temporal axis into tissue-specific gene regulation offers an in-
tegrated understanding of how tissue physiology resonates with
daily cycles in the environment.

Methods

Animal experiments

Eight- to 14-wk-old C57Bl/6 mice have been purchased from
Charles River Laboratory. Bmal1KOmice have been previously de-
scribed (Jouffe et al. 2013). Without further indications, mice are
kept under a 12-h light/12-h dark regimen and ad libitum feeding.
All animal care and handling was performed according to the
Canton de Vaud (Fred Gachon, authorization no. VD 2720) laws
for animal protection.

RNA-seq experiments

To complement the mouse liver WT and Bmal1 KO RNA-seq
data (GSE73554) (Atger et al. 2015), transcriptomes of kidneys

from Bmal1 KO and WT littermates (12-h light/12-h regimen;
night-restricted feeding) were measured from poly(A)-selected
mRNA using single-end reads of length 100. mRNA levels
were quantified using kallisto version 0.42.4 (mm10) (Bray et al.
2015).

Global temporal variance

For each tissue, we estimated the contribution of temporal vari-
ance for each gene, broken down by its Fourier components. We
calculated the background level assuming temporally unstruc-
tured data (white noise), whose magnitude (strength of the white
noise) was estimated from the mean of squared magnitudes of
Fourier coefficients that were not submultiples of 24 h (i.e., the
mean of 48-, 16-, 9.6-, 6.9-, 5.3-, 4.4-h components).

Model selection

We fitted harmonic regression models that integrated temporal
gene expression across different combinations of rhythms in dif-
ferent conditions (Atger et al. 2015). We used a g-prior for the
rhythmic parameters �b as a penalization scheme (Liang et al.
2008).We set g = 1000,whichwe found tomaximize temporal var-
iations captured in the shared rhythms model while minimizing
temporal variations captured in the flat model.

Figure 6. Precise promoter-enhancer contacts underlie liver-specific mRNA rhythms. (A,B) 4C-seq profiles for the (A) Slc45a3-short and (B) Slc45a3-long
isoforms within ±250 kb around baits targeting the two TSSs (top). Signed log P-values for differential contacts between liver and kidney (bottom) as in
Figure 5B. TSSs for Slc45a3-short and Slc45a3-long are 8 kb apart. (C) Differential 4C contacts (signed log P-values), log2 fold change of DNase I hyper-
sensitivity between liver and kidney, and ChIP-exo signal of REV-ERBa, FOXA2, and ONECUT1. Regions of significant differential contacts in Slc45a3-short
correspond to liver-specific DNase I hypersensitive regions. Yellow arrowheads in A and C show liver-specific distal contacts recruited to the Slc45a3-short
TSS. These contacts are absent for Slc45a3-long TSS (B). (D) Schematic model illustrating enhancer-promoter interactions in liver and kidney that may gen-
erate liver-specific rhythms. Yellow circles illustrate liver-active enhancers contacting the rhythmic promoter (red arrow) but not the alternative nonrhyth-
mic promoter (gray arrow). In kidney, the enhancer is not accessible, and both promoters are nonrhythmic.
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Complex singular value decomposition representation of gene and
tissue module

We first transformed the time domain to the frequency domain
corresponding to 24-h rhythms. The resulting matrix was decom-
posed using SVD; the first left-singular and first right-singular
values were visualized in separate polar plots (Supplemental
Methods).

Functional analysis by GO terms

We used Fisher’s exact test to assess statistical significance of gene
enrichment for each GO term. Foreground genes were genes with
phases within a 6-h window. Background genes were genes as-
signed to a model. For each GO term, we slid the 6-h window
with a step size of 1 h and calculated the P-value enrichment.
GO terms were chosen by visualizing significant GO terms in the
tree and choosingGO terms thatwere comparably deep in the tree.

Chromatin conformation experiments and analysis

C57Bl/6 mice were sacrificed at ZT08 and ZT20 to extract liver and
kidneys. Liver and kidney nuclei were prepared as previously de-
scribed (Ripperger and Schibler 2006) with some minor changes.
4C-seq assays were performed as in Gheldof et al. (2012). Raw
read counts for each sample were normalized by library size by
the sum of the read counts on the cis-chromosome (excluding 10
fragments around the bait). We used a weighted linear model to
fit the log10 signal around each fragment f. A Gaussian window
of standard deviation = 2.5 kb centered on f was used to incorpo-
rate signal from neighboring fragments (Supplemental Methods).
Differential contacts were estimated using t-statistics.

Data access

Raw and processed RNA-seq and 4C-seq data generated from
this study have been submitted to the NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE100457.
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