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Simple sequence repeats drive genome plasticity
and promote adaptive evolution in penaeid shrimp
Jianbo Yuan1,2,3,9, Xiaojun Zhang 1,2,3,9, Min Wang4,5,9, Yamin Sun6, Chengzhang Liu1,2,3, Shihao Li1,2,3,

Yang Yu1,2,3, Yi Gao1,2,3, Fei Liu1,2,3, Xiaoxi Zhang1, Jie Kong7, Guangyi Fan8, Chengsong Zhang1,2,3,

Lu Feng 4,5✉, Jianhai Xiang 1,2,3✉ & Fuhua Li 1,2,3✉

Simple sequence repeats (SSRs) are rare (approximately 1%) in most genomes and are

generally considered to have no function. However, penaeid shrimp genomes have a high

proportion of SSRs (>23%), raising the question of whether these SSRs play important

functional and evolutionary roles in these SSR-rich species. Here, we show that SSRs drive

genome plasticity and adaptive evolution in two penaeid shrimp species, Fenneropenaeus

chinensis and Litopenaeus vannamei. Assembly and comparison of genomes of these two

shrimp species at the chromosome-level revealed that transposable elements serve as car-

riers for SSR expansion, which is still occurring. The remarkable genome plasticity identified

herein might have been shaped by significant SSR expansions. SSRs were also found to

regulate gene expression by multi-omics analyses, and be responsible for driving adaptive

evolution, such as the variable osmoregulatory capacities of these shrimp under low-salinity

stress. These data provide strong evidence that SSRs are an important driver of the adaptive

evolution in penaeid shrimp.
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S imple sequence repeats (SSRs) are repetitive sequences
composed of tandem repetitions of short motifs (1–6 bp).
SSRs account for only ~1% of the genome in most

sequenced species1,2, and have been commonly regarded as non-
coding DNA, since they do not contain functional genomic
information3. Recently, the genomes of many species have been
published, revealing multiple species with genomes containing
large proportions of SSRs2,4,5, e.g., the body louse Pediculus
humanus (10.52%) and the Californian leech Helobdella robusta
(6.36%). The genome of a penaeid shrimp Litopenaeus vannamei
is particularly notable for having the highest proportion of SSRs
(~23.93%) among sequenced animal genomes up to now. Fur-
thermore, a high proportion of SSRs (~10%) have been identified
in the draft genomes of other penaeid shrimp6. Thus, these
findings raise questions about the functions of these significantly
expanded SSRs, including their role in the adaptation and evo-
lution of SSR-rich species. In addition, it is unclear how these
SSRs originated and expanded.

One of the most widely accepted hypotheses for the origin of
SSRs is the DNA polymerase slippage model7. During DNA
replication or repair, DNA polymerase slippage can occur when
one DNA strand temporarily dissociates from the other, which
leads to an increase in the number of repeats1. Slippage mutations
have been demonstrated in many species but appear to lead to
only small changes in motif repeat number8. A few SSRs could
reach 30 motif repeats because of the existence of the mismatch
repair (MMR) system9–11. Even escape from the MMR system,
slippage mutations are unlikely to cause a major expansion of
SSRs throughout the genome of SSR-rich species12. Thus, aside
from slippage mutations, additional mechanisms underlying SSR
expansion may exist in SSR-rich species.

Generally, SSRs were considered to have no functions in the
genome, whereas many studies support an evolutionary role for
some SSRs as important sources of adaptive genetic variation3.
These SSRs might provide an evolutionary advantage for fast
adaptation to new environments by serving as evolutionary
“tuning knobs”3,13. These SSRs with putative functions might
include regulation of genomic structures and gene expression14.
Indeed, SSR variation has been shown to correlate with variations
in social behavior phenotypes, skeletal morphology, and adaptive
divergence of different populations15–17. The potential positive
effects of SSRs on adaptive evolution of organisms are particularly
interesting in SSR-rich species. The penaeid shrimp, whose
Penaeidae ancestor originated in the Late Devonian18,19, are
especially interesting in this regard as this group might have
undergone at least three worldwide mass extinctions during its
evolutionary history2,20. In addition, these species present dif-
ferent ecological distributions and environmental adaptability
traits21. Thus, the genomes of penaeid shrimp might provide us
with an important opportunity to investigate whether SSR
expansion contributed to the adaptive evolution and divergence
of penaeid shrimp species.

Genomic plasticity, including genome copy number variation,
inter- and intrachromosomal rearrangements, DNA insertions
and deletions, and loss of heterozygosity, is well known in
eukaryotes22. In this study, we aimed to determine whether the
significant expansion of SSRs has driven genome plasticity and
adaptive evolution in penaeid shrimp genomes. Here, based on
the genome described in our previous study2, we updated the
genome assembly of L. vannamei to the chromosome level and de
novo assembled the genome of another important penaeid
shrimp, Fenneropenaeus chinensis. Comparative genomic analyses
were performed to thoroughly investigate the functional and
evolutionary roles of the SSRs of these two genomes, including
functions in genome rearrangement and environmental adapta-
tion. The expansion of SSRs drives the rapid adaptive evolution

and divergence in the ancestor of penaeid shrimp, and our multi-
omic analyses revealed that some SSRs have important functions
in response to environmental stress.

Results
Significant SSR expansion is a common characteristic in
penaeid shrimp species. To explore whether the SSR expansion
originated from the ancestor of penaeid shrimp, we performed
genome assembly and comparative analyses in two penaeid spe-
cies (Fig. 1a). The F. chinensis genome size was estimated to be
1.88 Gb (Supplementary Figs. 1 and 2). We applied multiple
sequencing technologies following the method described in our
previous study2 to overcome the extreme difficulties in genome
assembly of penaeid shrimp species. Based on the various
sequencing data (Supplementary Tables 1–3), a high-quality de
novo reference genome assembly of F. chinensis was obtained
with a total length of 1.58 Gb and a contig N50 of 59.00 kb,
comparable to that of the previously constructed genome
assembly of L. vannamei2. The genome assembly of F. chinensis
was further refined using Hi-C data to comprise 8768 scaffolds
with a scaffold N50 of 28.91Mb (Table 1 and Supplementary
Table 4). The assembly showed high integrity and quality as
assessed by the Illumina read coverage (91.12%), unigenes from
transcriptomes (94.83%), and conserved core arthropod genes
(92.68%) (Supplementary Tables 5–7).

To perform comparative genomics analyses at the chromo-
some-level, we also refined the genome assembly of L. vannamei
using Hi-C data (196×), and the total length of the final assembly
was 1.63 Gb with a scaffold N50 of 31.30 Mb (Supplementary
Fig. 3). To assess the accuracy of the assembly, we further
compared the genome assembled based on the Hi-C data
with a previously constructed high-density linkage map of
L. vannamei23. As expected, high synteny was detected between
the two chromosome-level genome assemblies (Fig. 1b and
Supplementary Table 8).

Protein-coding gene prediction and annotation resulted in a
total of 26,343 protein-coding genes annotated in the F. chinensis
genome, with an average length of 7312 bp and 5.77 exons per
gene; these measures were very similar to those of the
L. vannamei genome (25,596 protein-coding genes, an average
length of 8,889 bp, and 5.94 exons per gene; Supplementary
Table 9 and Supplementary Fig. 4). Besides, the annotated genes
in the two shrimp genomes showed very similar characteristics in
gene structure (Supplementary Fig. 5) and functional classifica-
tion distributions (Supplementary Figs. 6 and 7).

Repetitive sequences accounted for 48.58% in the genome of
F. chinensis, and among them, transposable elements (TEs)
accounted for 19.12%, which was close to that in the L. vannamei
genome (16.17% of TEs; Supplementary Table 10 and

Table 1 Summary of two penaeid shrimp genome assemblies
and annotations.

F. chinensis L. vannamei

Genome assembly
Chromosome number 88 (2n) 88 (2n)
Total length 1,581,129,620 bp 1,631,536,563 bp
Scaffold number 8768 28,409
Contig N50 58,996 bp 57,650 bp
Scaffold N50 28,916,617 bp 31,296,514 bp
GC content 36.45% 35.68%
Genome annotation
Transposable elements 19.12% 16.17%
SSRs 19.50% 23.93%
Protein-coding genes 26,343 25,596
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Supplementary Fig. 8). DNA transposons, especially En-Spm, in
the two penaeid shrimp genomes were highly expanded
compared to those in other decapods (p < 0.01). Comparison
between the two genomes indicated that F. chinensis has a higher
proportion of En-Spm elements (10.08%) than L. vannamei
(6.39%, p < 0.01). In addition, more type I long interspersed
nuclear elements (LINEs) (0.84%) and fewer hAT-Charlie

elements (0.14%) were present in the F. chinensis genome than
in the L. vannamei genome (LINE/I: 0.23% and hAT-Charlie:
1.00%; Supplementary Fig. 9). SSRs accounted for the highest
percentage (19.50%) of the repetitive sequences in the F. chinensis
genome, and the percentage was comparable to that in the
L. vannamei genome (23.93%). The SSRs in these species were
significantly higher than those in other decapod species (p < 0.01),
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such as Procambarus virginalis (0.41%) and Eriocheir sinensis
(6.90%), as well as in other published genomes (Fig. 1c and
Supplementary Tables 11 and 12). These results suggest that
significant SSR expansion is a common characteristic shared by
penaeid shrimp species.

Genome evolution with SSR variation in penaeid shrimp. The
penaeid shrimp are estimated to have diverged from other dec-
apods approximately 225 million years ago (MYA) (Fig. 1c), after
the Permian-Triassic mass extinction era (~252 MYA)20, as evi-
denced by the fossils of the Luoping Biota24. Shrimp taxa,
including the penaeid shrimp species F. chinenesis and L. van-
namei, rapidly evolved in the Late Cretaceous after a mass
extinction event25. Notably, F. chinensis and L. vannamei both
belong to the same genus, Penaeus; six subgenera of Penaeus have
been upgraded to the genus level in recent decades26, but this
change has not yet been completely adopted. Despite belonging to
the same genus, F. chinensis, L. vannamei, and species in six
subgenera displayed some diversity in morphology and genetic
composition (Fig. 1d). The whole-genome sequencing reads
showed significantly higher physical coverage and mapping rates
within each subgenus (i.e. Fenneropenaeus) than between the
subgenera (Supplementary Fig. 10 and Supplementary Table 13).
To distinguish the species in different subgenera, it is better to
upgrade their taxonomic levels. Thus, we used Fenneropenaeus
and Litopenaeus as genus names in this study.

A large number of Penaeidae-specific (2726) and significantly
expanded (36) gene families have been identified in the two
penaeid shrimp genomes (Supplementary Fig. 11). These genes
were enriched in functions related to the myosin and actin
cytoskeleton, various organismal systems (e.g., endocrine and
immune system), and some metabolic processes (e.g., metabolism
of glycan, amino acid and lipid), and so on (Supplementary Data:
Tables SS1 and SS2), reflecting the typical phenotypic changes
that occur during adaptive evolution. They were expanded two
times before and after the divergence of penaeid shrimps,
respectively (Supplementary Fig. 12). Besides, 148 genes were
identified under positive selection, which enriched in photo-
transduction and amino acid metabolism (Supplementary
Fig. 13).

In addition to these expanded gene families, the significant
expansion of SSRs was also an obvious characteristic shared by
penaeid shrimp. Principal component analysis (PCA) indicated
that the SSR structures of the two penaeid shrimp species were
highly similar, and distinct from those of other 17 arthropods
(Fig. 1e). When comparing with that of other SSR-rich species
(Supplementary Table 11)2, e.g. P. humanus (10.52% SSRs) and
H. robusta (6.36% SSRs), we found that both the mean length
(72.21 bp for L. vannamei and 56.54 bp for F. chinensis) and the
density (3315.23/Mb for L. vannamei and 3449.10/Mb for
F. chinensis) of SSRs were higher in the two penaeid shrimp

species, except that P. humanus had the highest SSR density at
4508.69/Mb (Supplementary Data: Tables SS3 and SS4). More-
over, the penaeid shrimp harbored many more dinucleotide SSRs
((AT)n, (AC)n, (AG)n), while P. humanus had more A-rich SSRs
((A)n, (AAT)n, (AAAT)n), and H. robusta had more triplet and
tetranucleotide SSRs ((ATC)n, (ATC)n, (AAC)n, and (ATAC)n)
(Supplementary Fig. 14). Thus, the expansion of specific types of
SSRs was an independent lineage-specific event rather than a
convergent evolution event in SSR-rich species. Among the four
available decapod genomes, E. sinensis also had a high SSR
content (6.90%)27, but the composition and structures of its SSRs
(especially the SSR density) differed significantly from those of
the penaeid shrimp species (Fig. 1f and Supplementary Table 12).
Except for (AGG)n and (ACT)n, the SSR density in the genome of
E. sinensis was significantly lower than two shrimp species for
most types of SSRs, especially dinucleotide SSRs. In contrast, the
significant expansion of SSRs, especially dinucleotide SSRs, was
similar in the two penaeid shrimp species, which suggested that
these SSRs might stem from a common ancestor.

Even though the SSR compositions in these two shrimp species
were quite similar, some variations were observed. The average
length of (AT)n SSRs was longer in the L. vannamei genome
(113.45 bp) than in the F. chinensis genome (62.95 bp), although
their (AT)n densities were similar (Fig. 1f); thus, the overall (AT)n
content in the genome of L. vannamei (10.21%) was twice of F.
chinensis (5.51%; Supplementary Table 12). In contrast, F.
chinensis had higher content and higher density of (AAT)n SSRs
(1.45%, 267.44/Mb) than L. vannamei (0.88%, 158.33/Mb).
Therefore, the (AT)n and (AAT)n are two major species-specific
expanded SSRs in L. vannamei and F. chinensis, respectively. The
major telomeric SSRs, (AACCT)n, was more numerous and
longer in L. vannamei than in F. chinensis11, and a similar
phenomenon was identified for another penta-nucleotide SSR,
(AAACC)n (Fig. 1f). In total, 18,830 (71.48%) and 20,018
(78.28%) protein-coding genes containing SSRs were identified
in F. chinensis and L. vannamei, respectively. Except for SSR-free
genes, the SSR compositions in most of the orthologous genes of
these two shrimp species are different.

Overall, since stem from the same genus, the two penaeid
shrimp species shared similar genomic characteristics, including
protein-coding genes and SSRs, which might inherit from their
ancestor. However, some variations, especially species-specific
expanded SSRs, were also identified between the two genomes,
which occurred after their divergence.

SSR expansion in penaeid shrimp genomes is associated with
TE expansion. To understand how SSRs expanded in penaeid
shrimp, we analyzed the two shrimp genomes thoroughly. Gen-
erally, SSRs are short (<30 repeats) because of correction by
MMR system1,3. However, the average length of dinucleotide
SSRs (except (CG)n) in the penaeid shrimp genomes was longer

Fig. 1 Comparative genomics of penaeid shrimp and other arthropods. a The pictures of F. chinensis and L. vannamei. b Synteny of the chromosome-level
genomes assembled based on Hi-C data and a high-density linkage map of L. vannamei. Rearrangements were identified in four pseudochromosomes (red
circles), and a Hi-C scaffold was found to be composed of two linkage groups (green circle). c Phylogenetic placement of penaeid shrimp in the arthropod
phylogenetic tree. The numbers on the branches indicate the estimated divergence times (MYA). Error bars indicate 95% confidence levels. The SSR
content for each species is shown in the right bar plot. d Comparison of the physical coverage and read mapping rates of the two penaeid shrimp genomes
based on the Illumina sequencing data of various penaeid shrimp species. A positive value of log2(CovFch/CovLva) indicates that the genome sequences of
the corresponding species were more similar to that of F. chinensis, while a negative value indicates that the genome sequences of the corresponding
species were more similar to that of L. vannamei. The line indicates the median value, the square symbol indicates the mean, the upper and lower box
edges indicate the 75% and 25% quartiles, respectively, and the “X” indicates the outliers. * indicates significant difference between two groups of values
(p < 0.01). e Principal component analysis (PCA) of SSR composition among arthropod genomes. f Comparison of SSR length and density of each type
among three decapod genomes. The orange star indicates a significant variation (p < 0.05) between F. chinensis and L. vannamei, and the black star indicates
a significant variation between L. vannamei and E. sinensis.
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than 70 bp (Fig. 1f; Supplementary Fig. 15; Supplementary Data:
Tables SS3 and SS4), and the longest SSRs reached 13,769 bp and
9212 bp in L. vannamei and F. chinensis, respectively. Besides, the
MMR genes were widely distributed throughout the genomes of
both shrimp species, similar to those of other crustaceans, which
suggests the presence of functional MMR systems in these
penaeid shrimp (Supplementary Fig. 16). Thus, additional
mechanisms underlying SSR expansion may exist beside slippage
mutation.

Interestingly, we noted that many SSRs were located within or
near TEs in these shrimp genomes, which suggesting a potential
relationship between SSRs and TEs2. Thus, we analyzed
compositions of TEs and their surrounding sequences in detail.
Similar to that of SSRs, the composition of TEs was comparable

between the two shrimp genomes, and DNA transposons
accounted for the majority of the TEs in these genomes
(13.00% and 9.33% of the genomes for F. chinensis and
L. vannamei, respectively) (Supplementary Table 10 and
Supplementary Fig. 8). These DNA transposons, especially En-
Spm, are of ancient origin (~105Myr) that expanded before the
divergence of two penaeids (Fig. 2a). Interestingly, these ancient
TEs comprised as much as 79.92% of SSRs in the genome, and
furthermore, more than 90% of them were found to harbor SSRs,
a significantly higher number than that of recently transposed
TEs (<70%) (Fig. 2b, c). Therefore, the dramatic expansion of
SSRs in the penaeid shrimp ancestor was tightly associated with a
significant expansion of ancient TEs, especially En-Spm DNA
transposons.
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In addition to these ancient TEs, recently transposed TEs that
expanded after penaeid shrimp divergence were also identified to
contain SSRs, especially recently expanded species-specific SSRs.
Both recently transposed TEs and species-specific expanded TEs
were identified in the two penaeid shrimp genomes, and were
mainly LINEs, primarily RTE-BovB, Penelope, and LINE/I
(Fig. 2a). Although the proportion of recent TEs containing SSRs
was low (4.37%), variations were detected between the two
shrimp species, especially in RTE-BovB and LINE/L2 (Fig. 2b).
Besides, Gypsy and hAT-Charlie elements were found to have
specifically expanded in F. chinensis and L. vannamei, respectively
(Fig. 2a; Supplementary Fig. 9 and Supplementary Table 10).
Interestingly, almost all the hAT-Charlie elements (99.18%) in
L. vannamei harbored SSRs, and the proportion was significantly
higher than that in F. chinensis (61.75%), while the situation was
reversed for Gypsy elements (66.13% for L. vannamei and 90.27%
for F. chinensis). Therefore, these TEs may have contributed to
the species-specific expansion of SSRs after the divergence of
penaeid shrimp.

Unexpectedly, most of the recently and specifically expanded
TEs did not specifically harbor the species-specific expanded SSRs
((AT)n and (AAT)n) except for the Gypsy TEs that specifically
contained (AT)n in L. vannamei, and mainly contained (AAT)n in
F. chinensis (Supplementary Fig. 17), whereas we found that the
differences in SSRs between the two shrimp genomes were the
length of (AT)n and density of (AAT)n SSRs. L. vannamei
harbored a greater number of long (AT)n stretches (>65 bp),
while F. chinensis had a higher density of (AAT)n SSRs (Fig. 1f;
Supplementary Fig. 15). Unlike that of the other species and other
types of SSRs (single peak in length distribution), two peaks,
indicating short and long SSRs, were identified in the length
distributions of (AT)n, (AC)n, and (AG)n in the L. vannamei and
F. chinensis genomes (Supplementary Figs. 15 and 18). Impor-
tantly, two peaks were also detected in the distributions of the
numbers of SSR-containing TEs (Fig. 2d and Supplementary
Fig. 19), and the peak representing long (AT)n SSRs was more
obvious in L. vannamei than in F. chinensis. Interestingly, the
recently expanded TEs (Penelope and RTE-BovB) and
L. vannamei-specific expanded TEs (hAT-Charlie) contained a
significantly greater number of long (AT)n than short (AT)n in
L. vannamei (p < 0.05), while no difference could be identified
among the other types of SSRs or in F. chinensis (Fig. 2e), whereas
Penelope and RTE-BovB of F. chinensis even contained fewer
long (AT)n than short (AT)n SSRs. Therefore, the recent
expansion of TEs was tightly associated with the specific
expansion of long (AT)n SSRs in L. vannamei.

Next, we evaluated (AAT)n density. We found that the recently
expanded TEs (LINE/L2) and specifically expanded TEs (Gypsy)
contained significantly more SSRs in F. chinensis than in
L. vannamei (Fig. 2a, b). These were the only two types of TEs
that specifically harbored (AAT)n SSRs in F. chinensis rather than
in L. vannamei (Fig. 2f). Gypsy TEs were especially notable, as
45.54% of them harbored (AAT)n in F. chinensis, but only 1.06%
in L. vannamei (Supplementary Fig. 17). Thus, the expansion of
Gypsy seems to have been tightly associated with the specific
expansion of (AAT)n in F. chinensis.

We further identified some recently transposed TEs through-
out the genome of L. vannamei. These TEs (Penelope) showed
high similarity in nucleotide sequences (identity >98%) and held
complete terminal repeat structures and a gene encoding reverse
transcriptase. Both TEs showed high synteny, as did the SSRs
located within the TEs, suggesting these SSRs translocated along
with the TE (Fig. 2g). Besides, the elongation and newly insertion
of SSRs could be detected after TE transposition. Thus, even for
the most recently transposed TEs, they are also responsible for
SSR expansion.

In summary, the SSR expansion in these two shrimp genomes
was tightly associated with TE expansion. A significant expansion
of ancient TEs have resulted in an extreme expansion of SSRs in
the penaeid shrimp ancestral genome, and the recent expansion
TEs was associated with the specific expansion of (AT)n and
(AAT)n SSRs in L. vannamei and F. chinensis, respectively.

High intrachromosomal rearrangement is associated with SSR-
rich chromosomal regions in penaeid shrimp. SSRs are known
to contribute to chromosome rearrangement28,29; therefore, we
investigated level of genome rearrangement in the SSR-rich spe-
cies L. vannamei and F. chinensis. To this end, we compared the
two shrimp genomes to determine the level of genome synteny.
Unexpectedly, these genomes showed a poor synteny even though
they had close phylogenetic relationship (Supplementary Fig. 20).
Only 293 synteny blocks (involving at least five collinear gene
pairs) covering 2149 genes were identified. However, a one-to-
one chromosome relationship was clearly displayed, and was
further supported by the synteny results for pairwise orthologous
genes (Fig. 3a and Supplementary Fig. 21). A total of 12,358
orthologous genes were mostly located within the corresponding
chromosomes of the two genomes. However, the intrachromo-
somal orthologous genes were not collinearly distributed due to
chromosomal rearrangements (Fig. 3b).

To further investigate the degree of chromosome rearrange-
ment, we next focused on the Hox gene cluster, which is highly
conserved across animal genomes and contains at least nine
collinearly distributed genes30. As expected, the ten Hox genes of
penaeid shrimp were located on the same chromosome and in the
same order as those of other arthropod genomes. However, unlike
the conventional compact Hox clusters found in many
genomes31, the Hox genes of these two penaeid shrimp were
widely spaced in the genome (spanning more than 21Mb in L.
vannamei and 14Mb in F. chinensis) and interspersed with non-
Hox genes (Fig. 3c). When comparing the two shrimp genomes,
we found that rare non-Hox genes were collinearly distributed
along with their neighboring Hox genes. Thus, intrachromosomal
rearrangements had occurred even in a highly conserved gene
cluster.

To evaluate if the significant expansion of SSRs in penaeid
shrimp genomes may have contributed to the remarkable number
of intrachromosomal rearrangements in these species, we
determined the SSR and TE content in and around genome
rearrangement sites. We validated the candidate rearrangement
sites in the L. vannamei genome using genome resequencing data
from wild and cultured populations. In the regions with a high
number of rearrangement sites (Fig. 3d, lower graph), the SSR
content was generally low, but sharp peaks of high SSR content
were identified adjacent to these regions (Fig. 3d, upper graph).
Thus, genomic translocation breakpoints were frequently mapped
to SSR-rich chromosomal regions, consistent with a previous
report in species with low SSR content29. As the potential SSR
carriers, TEs displayed similar distributions with that of SSRs, but
the sharp peaks of high TE content were generally identified
adjacent to the peaks of SSRs (Fig. 3d, upper graph).

SSRs drive salinity adaptation in penaeid shrimp. In order to
learn the functions of SSRs in the genome, we next studied
whether the SSRs in these two species had contributed to their
environmental adaptation. We focused on their salinity adapta-
tion capacities, one of the conspicuous phenotypic variations
between the two shrimp species. Specifically, the euryhaline
Pacific white shrimp L. vannamei lives in both coastal and
oceanic areas and is capable of surviving in a large range of
salinities32, while F. chinensis is naturally distributed in a relative
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narrow region and cannot be cultivated in freshwater. To identify
the genes involved in this differential phenotype, we first per-
formed comparative transcriptomic analyses on these two shrimp
species under salinities of 30‰ (control), 9‰ and 3‰ (Supple-
mentary Table 14), and determined the differentially expressed
genes (DEGs) (Supplementary Table 15 and Supplementary
Fig. 22). For both shrimp species, the DEGs were enriched in
pathways related to amino acid and lipid metabolism, including
glycine, serine, and threonine metabolism (ko00260), cysteine
and methionine metabolism (ko00270), taurine and hypotaurine

metabolism (ko00430), glycerolipid metabolism (ko00561), gly-
cerophospholipid metabolism (ko00564), etc. (Fig. 4a).

Free amino acids and lipids have been shown to be involved in
osmoregulation in decapods, including many other penaeid
shrimp species33–35. We performed metabolome comparisons
under low-salinity stress in both shrimp species. As expected,
many metabolites related to amino acid and lipid metabolism,
which may be involved in osmoregulation in decapods, were
differentially regulated, and the functionally enriched pathways
were very similar to those identified by the DEG analysis
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Fig. 3 Intrachromosomal rearrangement in penaeid shrimp genomes. a Heatmap of the orthologous gene numbers in each pair of chromosomes from the
two shrimp genomes. b Intrachromosomal rearrangement between the homologous chromosomes of the two shrimp genomes. c Synteny of Hox genes
and neighboring genes on the homologous chromosomes of the two shrimp species. d Relationship between rearrangement sites and SSRs. The
rearrangement sites were calculated according to the paired-end read (Illumina 170 bp libraries) mapping results. When the distance between the paired
mapping reads was longer than 50 kb, the site considered a candidate rearrangement site. The number of rearrangement sites in a window of 10 kb was
calculated and compared between the shrimp used for genome sequencing and other populations of L. vannamei (Mexico, USA, and Thailand). The blue
boxes show areas that have high chromosomal rearrangements and low SSR content, but sharp peaks of high SSR content adjacently.
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(Supplementary Data: Tables SS5–SS7 and Supplementary
Fig. 23).

Beside similarity, the two shrimp species also displayed some
differences in salinity adaptation. Although similar number of
genes in the pathways related to amino acid and lipid metabolism
were identified in the genomes of the two species, more DEGs
were identified in L. vannamei than in F. chinensis

(Supplementary Tables 16 and 17). Furthermore, these DEGs
displayed apparently differential expression patterns between the
two species (Fig. 4b). In L. vannamei, the DEGs were mostly
differentially expressed at the initial change in salinity (from 30‰
to 9‰), but in F. chinensis, they were mostly differentially
expressed when the salinity decreased from 9‰ to 3‰. These
data indicate that L. vannamei responds to low salinity more
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rapidly than F. chinensis, and thus these responses might endow
L. vannamei with a better osmoregulatory capacity.

Similar to the RNA-seq results, few metabolites displayed
similar regulation patterns between the two shrimp species. Most
metabolites were up- or downregulated in one shrimp species, but
unchanged in the other one (Fig. 4c). As indicated by the KEGG
map, the glycine, serine, and threonine metabolic pathway was
potentially co-regulated with many other amino acid and lipid
metabolic pathways (Fig. 4d and Supplementary Fig. 22).
Supportingly, the DEGs in these pathways displayed similar
expression patterns (Fig. 4b). The metabolite levels were tightly
correlated with gene expression (Supplementary Fig. 24). For
example, the downregulation of several genes (e.g. PSPH, SDS,
CHA1, and CTH) corresponded to a high serine level upregulated
L. vannamei, but the upregulation of CHA1 and CBS corre-
sponded to a low serine level in F. chinensis (Fig. 4d). Similar
phenomena were also detected for the production of glycine, L-
cysteine, and threonine. These results suggest that the DEGs
identified in the transcriptome analysis and their expression
patterns directly affect metabolite regulation, which would result
in variations in the osmoregulatory capacities of these two
penaeid shrimp species and hence their different salinity
adaptation capacities.

Next, we compared the structures of the orthologous genes in
the pathway of glycine, serine, and threonine metabolism of these
two shrimp species to investigate if the different SSR distribution
in these species could underlie the differential gene expression
observed under different salinity conditions in these two species.
The composition of the SSRs located within introns or UTRs
showed significant differences in most orthologous genes, even
though exons displayed high synteny between the two shrimp
species (Supplementary Fig. 25). A high number of new SSRs
have been inserted or deleted in these genes, including some
extraordinarily long SSRs, e.g., (AT)676 in the intron 2 of GNMT
and (AT)637 in the intron 2 of PSPH. In addition, some SSRs were
significantly elongated in one shrimp species compared to the
other despite being located at the same position in an orthologous
gene, e.g., (AG)n in the intron 5 of DMGDH had the motif repeat
numbers of 53 and 421 in F. chinensis and L. vannamei,
respectively. Even for SSR-free genes (e.g., Klf1), the SSRs located
in the UTRs also showed some differences (Supplementary
Fig. 25). Therefore, the compositions of the SSRs between pairs of
orthologous genes in these two shrimp species displayed
significant differences, which could potentially affect the regula-
tion of gene expression.

To assess if SSRs could indeed affect gene expression, we
performed ATAC-seq to identify the regulatory regions that
responded to low-salinity stress (Supplementary Tables 17 and 18
and Supplementary Fig. 26). As many as 3291 and 4294
differential ATAC peaks (p < 1.00E−5), representing potential
regulatory regions responding low-salinity stress, were identified
by comparing the control (30‰) and low-salinity (3‰) samples

of L. vannamei and F. chinensis, respectively (Supplementary
Table 19). In total, 762 and 2226 genes were located within or
around these differential ATAC peaks in L. vannamei and
F. chinensis, respectively. These genes were mostly involved in
various pathways related to biosynthesis and metabolism,
including pathways related to amino acid and lipid metabolism
(Supplementary Figs. 27 and 28), which was consistent with the
RNA-seq results. Thus, the chromatin accessibility of these genes
was adaptively altered in response to low-salinity stress. Analysis
of the composition of accessible regions showed that the SSR
content was significantly higher in the differential ATAC peaks
(peaks with differential test p < 1.00E−3) than in the normal
peaks (total 98,967 and 112,604 peaks under the salinity of 30‰
and 3‰) (Fig. 4e). Furthermore, the SSR content in the
differential peaks increased following the significance level of
the peaks, and even reached 3.86% in the differential peaks with
the significance p value <1.00E−10, which was significantly
higher than that in the normal peaks (0.66%, 30‰ salinity).
Similar to that of SSRs, the content of TEs in the differential peaks
increased as the significance level increased, but unchanged until
p value <1.00E−5 (Supplementary Fig. 29). The accessible regions
with greater significance (p value) of differential peaks indicating
that these regions were more active and more important in
response to environmental stresses. Therefore, SSRs and TEs as
located in the regulatory regions might play important roles in
regulating gene expression under low-salinity stress.

To specifically understand how SSRs might affect expression of
genes involved in amino acid metabolism, we focused on glyA,
which encodes serine hydroxymethyltransferase that regulates the
production of both glycine and serine, and it is a key enzyme in
the glycine, serine, and threonine metabolic pathway (Fig. 4d).
Two differential peaks were identified in the 5′UTR and exon 3 of
glyA, and the differential peak in the 5′UTR partially overlapped
with an SSR ((AG)89) in L. vannamei (Fig. 4f), whereas the
corresponding SSR was not present in the glyA orthologue of F.
chinensis. In addition, an SSR insertion ((CCTTT)73) was also
identified near the exon 3 in F. chinensis, which might potentially
affect its transcription. In comparison, TEs did not show obvious
correlation with these two differential peaks.

By combining the above results, it can be concluded that SSRs
play important roles in regulating gene expression, and help
regulate osmoregulation in penaeid shrimp.

Discussion
As SSRs make up a large portion of the penaeid shrimp genome,
we aimed to determine whether SSRs drive genome plasticity and
adaptive evolution in these species. Many factors have been found
to drive genome plasticity, and TEs are one of the most widely
investigated factors, since they make up a large part of the gen-
ome36. However, in this study, we found that SSRs are the major
type of DNA repeats in penaeid shrimp genomes and shape the
genome plasticity to allow for an increased ability to adaptively

Fig. 4 Multi-omic analyses of two penaeid shrimp species under low-salinity stress. a KEGG enrichment analysis of the DEGs of L. vannamei (Lva) and
F. chinensis (Fch). Only the pathways with significantly enriched DEGs (p < 0.05) are shown on the heatmap. NA indicates no DEGs identified in related
pathways. b Expression patterns of the DEGs in different pathways. The number of DEGs and their corresponding expression patterns are shown in the
yellow box at right. c Differentially regulated metabolites in penaeid shrimp under low-salinity stress. Metabolite levels were compared between the two
shrimp species, and the metabolites were divided into four groups, namely, those differentially regulated in only L. vannamei (yellow background), those
differentially regulated in only F. chinensis (orange background), those up- or downregulated consistently in both shrimp species (light blue background),
and those with different regulation patterns between the two shrimp species (green background). A white background indicates no significant difference.
d Correlations between DEGs and differentially regulated metabolites in the pathway of glycine, serine, and threonine metabolism in both the L. vannamei and
F. chinensis genomes. e SSR contents in all identified peaks at 3% and 30% salinity and only the differential peaks (3% vs. 30%) identified by ATAC-seq. The
differential peaks were identified according to various p values from differential analyses of ATAC-seq. f ATAC peak distribution and structure comparison of
the glyA gene in both L. vannamei and F. chinensis. The brown lines indicate orthologous regions of the differential peaks in the genes.
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evolve. A massive expansion of SSRs occurred in the penaeid
shrimp ancestor, and an additional specific SSR expansion
occurred after the divergence of this group (Fig. 5). Newly gen-
erated SSRs were also identified in some recently transposed TEs
and orthologous genes (Fig. 2g and Supplementary Fig. 25). In
addition, the SSR length was highly polymorphic among different
aquaculture populations of penaeid shrimp (Supplementary
Fig. 30). Therefore, we suggested that SSRs have contributed to
the high genomic diversity of penaeid shrimp genomes from
ancient times to the present. Further, many intrachromosomal
rearrangement events and significant gene structure alterations
were found to be caused by SSR expansion. Chromosomal rear-
rangements leading to genome plasticity have been identified in
some species, and the high incidence of repetitive sequences has
been suggested as a potential driving force for this
phenomenon22,37. In addition, tandem DNA repeats, including
SSRs, have been identified as hot spots for recombination since
translocation breakpoints are preferentially allocated in repeat-
rich regions29,38. The simple base composition of SSRs provides
an important opportunity for pairing to produce segmental
duplications and genome rearrangements during replication.
Significant alterations in gene structure (SSR elongation and
insertion) were observed in most of the orthologous genes of the
two shrimp genomes (Supplementary Fig. 25). SSR expansions
and/or contractions in protein-coding regions can lead to a gain
or loss of gene function, and SSRs located in UTRs and introns
can affect gene transcription, mRNA splicing, or export to cyto-
plasm12. Thus, SSRs are a significant source of genomic plasticity
and can alter genomic structures and gene transcription.

As an important component of the genome, TEs are also
important for genomic plasticity22. TEs may also contribute to
the genome rearrangements, and gene structure and function
regulation. Whereas, in the penaeid shrimp genomes, TEs were
identified to be associated with SSR expansion, similar with that
of micron and RTE retrotransposons39,40. Both ancient (DNA
transposons) and recently transposed TEs (DNA retro-
transposons) functions as carriers for SSR expansion in the
penaeid shrimp genomes. TEs were generally identified adjacent
to SSRs in the genome (Fig. 4f). In contrast to slippage mutation-
based self expansion, the TE harboring may be a new and more
efficient way for the SSR expansion in SSR-rich species.

SSRs were identified in some recently transposed retro-
transposons (Fig. 2g), indicating that the expansion of SSRs along
with retrotransposons is active at present, and will remain active
in the future. Beside TE carrying, the new generation of SSRs that
has escaped from the MMR system was also identified in the
penaeid shrimp genomes, as indicated by the recently transposed
TEs and SSR polymorphisms in different populations (Fig. 2g and

Supplementary Fig. 30). Mutations that escaped from the MMR
system will become new alleles at the SSR loci, and then regulate
and/or change gene products, eventually leading to phenotypic
changes12. Thus, vast numbers of SSRs have been retained from
the penaeid shrimp ancestor, and newly generated SSRs will
continue to contribute to the adaptive evolution of these shrimp.

Genomic plasticity shaped by repeats enables organisms to
adapt to environmental changes and occupy novel niches41.
Adaptive radiation and rapid diversification were generally occur
after mass extinction events, as more space and opportunities are
available at such times42. In terms of evolution, decapods are
important members of the modern evolutionary fauna after mass
extinction43. The divergence of Decapoda was consistent with the
time after the Permian–Triassic extinction (Fig. 5). Harsh con-
ditions led to the extinction of approximately 96% of marine
species44, followed by a radiation of many new life forms,
including shrimp-like decapods, in the Early-Middle Triassic45.
Another radiation event occurred in the Late Cretaceous, gen-
erating many modern penaeid shrimp species25,46. During these
two events, an extreme expansion and species-specific expansion
of SSRs were identified in penaeid shrimp genomes, suggesting
the potential relationship between SSR expansion and shrimp
adaptive evolution. Supportingly, some Penaeidae-specific and
species-specific expanded gene families were identified during
these two stages. The remarkable genomic plasticity shaped by
SSR expansions may have helped penaeid shrimp adaptively
evolve for rapid diversification after mass extinctions.

In addition to their evolutionary roles, SSRs play important
functional roles in environmental adaptation. The influence of
SSRs on gene regulation, transcription and protein function
typically depends on motif repeat number3. SSR expansions or
contractions in protein-coding regions can lead to a gain or loss
of gene function via frameshift mutations, while SSR variations in
UTRs could regulate gene expression by affecting transcription
and translation12. Significant variations in SSR composition,
including SSR insertion, deletion, expansion, and contraction,
were identified in the orthologous genes of the two shrimp spe-
cies, and could ultimately affect the functions of these genes. SSRs
located in regulatory regions can regulate gene expression, and
cause variations in the osmoregulatory capacities of the two
shrimp species.

In this study, we identified the potential mechanisms of SSR
expansion, and their evolutionary and functional roles during
adaptive evolution, which provide a new view of the ways for SSR
expansion and make SSRs as new key elements for the genome
evolution in SSR-rich species. However, further investigations of
SSRs are needed to study the SSR origination and functions in
SSR-rich species, as many problems are still unsolved. How did

Fig. 5 SSR expansion during penaeid shrimp evolutionary history. Timescale of SSR expansion and relationships with the origination and divergence of
penaeid shrimp.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01716-y

10 COMMUNICATIONS BIOLOGY |           (2021) 4:186 | https://doi.org/10.1038/s42003-021-01716-y | www.nature.com/commsbio

www.nature.com/commsbio


TEs carry SSRs? Why are dinucleotide SSRs specifically selected
by penaeid shrimp? What other functions do SSRs serve in SSR-
rich species? Further studies of SSRs will help us understand the
penaeid shrimp genomes better and extend its utilization in many
more scientific areas. For example, SSR length polymorphisms
have been shown to play important roles in viral resistance in
various aquaculture populations of L. vannamei47. As the most
important economic shrimp group all over the world, penaeids
are widely cultured, and future utilization of the potential func-
tions of SSRs will promote the selective breeding of these
organisms.

Methods
Genome sequencing. The muscle of a wild male adult of F. chinensis was collected
from the sea area of Jimo Qingdao for DNA extraction and genome sequencing. Total
genomic DNA was extracted using TIANamp Marine Animal DNA Kits (Tiangen,
Beijing, China). Paired-end and mate-paired libraries with insert sizes ranging from
137 to 17 kb were constructed according to the instructions provided in the Illumina
library preparation kit (Illumina, San Diego, USA). The constructed libraries were
then sequenced on the Illumina HiSeq 2500 platform (Illumina, San Diego, USA).
After removal of the Illumina sequence adaptors and low-quality reads with Trim-
momatic v.0.35 (http://www.usadellab.org/cms/index.php?page=trimmomatic), the
retained clean reads were used for subsequent analyses.

For PacBio library construction, at least 10 μg of genomic DNA was sheared to
~20 kb. Fragments below 7 kb were filtered out using BluePippin (Sage Science,
Beverly, USA). SMRTbell libraries were constructed for single-molecule real time
(SMRT) sequencing using the P6C5 sequencing chemistry (Pacific Biosciences, San
Diego, USA), and then sequenced on the PacBio RSII sequencing platform (Pacific
Biosciences, San Diego, USA).

For Hi-C library construction, muscle samples from both F. chinensis and
L. vannamei were flash frozen and pulverized prior to formaldehyde crosslinking.
Then, restriction enzyme (MboI/DpnI/HindIII) digestion was used for cell lysis,
and the ends were labeled with biotin and then supplemented and connected.
Protease K and SDS were added to remove the cross-links, and the DNA was
purified and extracted by AMPure XP beads. The biotin-labeled DNA fragments
were captured with M-280 Streptavidin beads. The ends were repaired by adding
A-tails, and then, the sequencing connector was attached. Finally, the constructed
library was used for sequencing on the Illumina X-TEN platform (Illumina, San
Diego, USA) with 2 × 150 bp reads.

Genome size estimation. The genome size of F. chinensis was estimated by flow
cytometry and K-mer frequency. The hemolymph of adult F. chinensis was col-
lected by chopping with a razor blade in PBS buffer, and the homogenized cell
suspension was filtered through a 30 µm nylon filter. Then, 12 µL of propidium
iodide (50 mg/mL) and the cells were stained with 2 µL of RNase (10 mg/mL) for
20 min for measurement in a BD FACSAria II (BD Biosciences, San Jose, USA).
The genome size estimated by flow cytometry was compared with the reference
standard (mouse: Mus musculus “KM”, genome size ~2.50 Gb). Jellyfish was used
to calculate K-mer frequencies and then estimate the genome size with the high-
quality reads from the short-insert libraries48. The genome size was estimated as
the ratio of the total number of K-mers from all reads to the peak depth. Since the
genome size estimated by these two approaches was similar, we used the K-mer
frequency estimate to represent the genome size of F. chinensis.

Genome assembly. The F. chinensis genome was de novo assembled using
WTDBG software based on the subreads from PacBio sequencing49. The assembled
sequence was then polished using Quiver (SMRT Analysis v2.3.0) with the default
parameters. Besides, paired-end Illumina clean reads from 137, 170, 300, and 500
bp libraries were also used for iterative error correction several times. Finally,
scaffolds were generated through gap-filling with SSPACE 3.0 with the parameter
values “-x 1 -m 50 -o 10 -z 200 -p 1” using meta-paired Illumina sequencing reads
(2, 5, 10, 12, and 17 kb libraries).

To assemble the chromosome-level genomes of F. chinensis and L. vannamei,
the Hi-C sequencing data were aligned to the assembled scaffolds by using Juicer50.
The Hi-C data were independently analyzed in the HiC-Pro pipeline (default
parameters and LIGATION_SITE=GATC). The scaffolds were clustered onto
chromosomes with the 3D-DNA pipeline (version 180419)51, and the contact maps
were plotted using HiCPlotter software52.

Quality assessment of genome assembly. To evaluate the quality of the genome
assembly, the Illumina sequencing reads from the paired-end library (170 bp) were
mapped using Bowtie2 (ref. 53). A total of 91.12% of the reads could be mapped to
the current assembly, which covered 82.46% of the genome (Supplementary
Table 5). The unmapped genomic regions were mostly composed of SSRs2. To
evaluate the completeness of the genome assembly in the gene regions, we mapped
the unigenes from the transcriptome data to the shrimp genome. A total of 64,708

unigenes were assembled using Trinity54, and then mapped to the scaffold using
BLAT55; 94.83% of the unigenes could be identified in the assembly (Supple-
mentary Table 6). In addition, we used BUSCO to evaluate the quality of the
genome assembly (http://gitlab.com/ezlab/busco). The 1066 conserved BUSCOs of
Arthropoda were used as the database for a BLAST search. A total of 92.68% of
conserved genes could be identified in the F. chinensis genome (Supplementary
Table 7).

Repetitive sequence annotation. For TE annotation, both RepeatModeler and
RepeatMasker were used to perform de novo identification56. The substitution
rates of TEs were calculated between the genome and repeat consensus sequences.
The divergence times of TEs was calculated based on the TE substitution rate
according to a previously determined molecular clock of decapods (2 × 10−9

substitutions per site per year)57. The SSR annotation was conducted by SciRoKo
v3.4 (ref. 58). The average length and density (number per Mb) of the total SSRs
and each type of SSR were calculated and compared with those of other species.

Protein-coding gene prediction and annotation. Protein-coding genes were
predicted through a combination of homology-based prediction, de novo predic-
tion, and transcriptome-based prediction methods. For homology-based predic-
tion, homologous proteins from L. vannamei, Daphnia pulex, P. virginalis, Parhyale
hawaiensis, Eulimnadia texana, Drosophila melanogaster, Anopheles gambiae, and
Bombyx mori were downloaded from NCBI and mapped against the F. chinensis
genome with Exonerate version 2.2.0 (http://www.ebi.ac.uk/~guy/exonerate/). For
de novo prediction, the coding regions were predicted using Augustus v2.5.5
(ref. 41). For transcriptome-based prediction, the RNA-Seq data were mapped
against the assembly using Tophat v2.1.1, and then, the transcripts were converted
to gene models using Cufflinks v2.2.1 (ref. 59). Finally, all the gene models derived
from the above three methods were integrated with EVidenceModeler (EVM)60.

BLASTP against the NR and SwissProt databases was used for functional
annotations of the predicted genes with an E-value of 1E−05. InterProScan and
HMMER were used for protein domain annotation by mapping to the InterPro and
Pfam databases61,62. KEGG Automatic Annotation Server (KAAS) was used to
annotate the pathways in which the genes might be involved through mapping
against the KEGG database. The Gene Ontology (GO) classifications of the genes
were extracted from the corresponding InterProScan or Pfam results.

Functional enrichment analysis was conducted on a subset of interesting genes
according to their GO and KEGG classifications. The enriched GO terms and KO
pathways were calculated relative to the background of all protein-coding genes
using Omicshare CloudTools (http://www.omicshare.com/).

Gene family analyses. Gene family clustering was performed using
OrthoMCL63. All-to-all blast searches using the BLASTP program were con-
ducted on the protein-coding genes of 17 arthropods, including F. chinensis,
L. vannamei, P. virginalis, E. sinensis, P. hawaiensis, D. pulex, E. texana,
Eurytemora affinis, Tigriopus californicus, Strigamia maritima, Ixodes scapularis,
P. humanus, Tetranychus urticae, Acyrthosiphon pisum, Locusta migratoria,
B. mori, and D. melanogaster. We used CAFE software for computational analysis
of gene family evolution64, and then identified the expansion and contraction of
gene families. Expanded gene families sequences were aligned using the program
MAFFT version 5 (ref. 65). Maximum likelihood (ML) analyses were conducted
using RaxML66. The divergence time of the expanded gene families was estimated
by BEAST v2.6.3 using Relaxed Clock Log Normal model67. The divergence time
of P. virginalis (~225 Myr) was set as the calibration information.

Phylogenetic analysis. A total of 51 single-copy homologous genes in the
17 species of Arthropoda were extracted from the above gene family analysis and
used for phylogenetic tree construction. The amino acid sequences of the single-
copy genes were fully aligned using MUSCLE 3.6 with the default settings68.
Positions with gaps and missing data were trimmed using an in-house Python
script (allfasta2snp.py, https://github.com/jianbone/L_vannamei_genome). The
final dataset containing 8232 amino acids was used to construct the phylogenetic
tree. Afterward, the conserved alignments of the single-copy genes were con-
catenated to form the final alignment matrix. Then, the ML method was used for
phylogenetic analysis using RAxML under the JTT matrix-based model66. The
initial trees for the heuristic search were obtained automatically by applying the
neighbor-joining and BIONJ algorithms to a matrix of pairwise distances estimated
using a JTT model. The divergence time was estimated based on the phylogenetic
tree. A time-calibrated phylogeny was inferred using a relaxed molecular clock
method as implemented in BEAST v2.6.3 (ref. 67). Chains were run for 10,000,000
generations, and runs were sampled every 1000th generation. The initial 10% were
discarded as burn-in. Divergence time calibration information was obtained from
the TimeTree database (http://www.time.org/).

Genome synteny analysis between two penaeid shrimp species. The ortho-
logous genes between the two shrimp species, F. chinensis and L. vannamei, were
identified by using reciprocal best hit, in which orthologs are assumed if two genes
in different genomes find each other as the best hits in the other genome. Synteny
plot diagrams were drawn and compared using the Python jcvi library. Synteny
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blocks with at least five collinear orthologous genes were detected using
MCSCANX software69 with the following standard parameters: MATCH_SCORE:
50, MATCH_SIZE: 20, GAP_PENALTY: -1, OVERLAP_WINDOW: 5, E_VALUE:
1e-05 and MAX GAPS: 25. Dotplots were drawn and compared using Multi-
Genome Synteny Viewer70.

A total number of 12,618 orthologous genes were identified between the two
shrimp species, and positively selected genes were identified using yn00 in the
PAML package. Genes with the dN/dS value larger than 1 were identified as under
positive selection.

Transcriptome sequencing and analyses. To investigate the mechanisms of
osmoregulation in response to low-salinity stress, transcriptome sequencing and
comparative analyses were performed on the two penaeid shrimp species with the
help from GENE DENOVO. Adult shrimp of F. chinensis (6.8 ± 0.4 cm) and
L. vannamei (7.2 ± 0.5 cm) were collected at the shrimp culture laboratory of the
Institute of Oceanology Chinese Academy of Sciences (IOCAS) in Qingdao, and
acclimated to a salinity of 30‰. The salinity was gradually reduced to 3‰, and the
animals were allowed to acclimate to salinities of 9‰ and 3‰ for 24 h. Then,
hepatopancrea samples were collected from animals acclimated to salinities of
30‰, 9‰, and 3‰. According to the standard manufacturer’s protocol, total RNA
was isolated and purified from the samples using TRIzol extraction reagent
(Thermo Fisher Scientific, USA). RNA quality and concentration were determined
by 1% agarose gel electrophoresis, and RNA concentration was assessed using a
Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). Tran-
scriptome libraries were prepared according to the instructions of the TruSeq RNA
Library Prep Kit (Illumina, San Diego, USA), and then sequenced on the Illumina
HiSeq 2500 platform. The TopHat v1.2.1 package was used to map the tran-
scriptome reads to the shrimp genomes59. Then, fragments per kilobase of tran-
script per million fragments mapped (FPKM) was calculated using Cufflinks v2.2.1
(http://cole-trapnell-lab.github.io/cufflinks/). The differential gene expression
analysis was conducted by using edgeR V3.10 (ref. 71).

Metabolome sequencing and analyses. In order to investigate whether free
amino acids and lipids were associated with osmoregulation in penaeid shrimp,
metabolome sequencing and analyses were performed on the two shrimp species
under low-salinity stress. The samples collected from the shrimp under salinities of
30‰ and 3‰ were used for metabolite extraction. Each sample (50 mg) was
homogenized with 1000 µl of ice-cold methanol/water (70%, v/v). Cold steel balls
were added to the mixture, which was then homogenized for at 30 Hz for 3 min.
The mixture was agitated for 1 min and then centrifuged at 12,000 r.p.m. at 4 °C for
10 min. The collected supernatant was used for LC-MS/MS analysis by using LC-
ESI-MS/MS system (UPLC, Shim-pack UFLC SHIMADZU CBM A system; MS,
QTRAP® System). LIT and triple quadrupole (QQQ) scans were acquired on a
triple quadrupole-linear ion trap mass spectrometer (QTRAP), The QTRAP® LC-
MS/MS System, equipped with an ESI Turbo Ion-Spray interface, operating in
positive and negative ion mode and controlled by Analyst® 1.6.3 software (https://
sciex.com/products/software/analyst-software). Instrument tuning and mass cali-
bration were performed with 10 and 100 μmol/l polypropylene glycol solutions in
the QQQ and LIT modes, respectively.

Orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to
identify the differential metabolites72. Two criteria were used to assess the
significance of differential metabolite levels. One was the fold change of the
variable, and the other was the variable importance in projection (VIP) value.
When its fold change was ≥2 or ≤0.5, and VIP was ≥1, the metabolite was
considered differentially regulated. The VIP value was calculated using OPLSR.
Anal of MetaboAnalystR from R package73. The data were log transformed (log2)
and mean centered before OPLS-DA was performed.

ATAC-seq sequencing and analyses. To identify the regulatory regions related to
low-salinity adaptation in penaeid shrimp, an assay for transposase accessible chro-
matin with high-throughput sequencing (ATAC-seq) was performed on the samples
taken under salinities of 30‰ and 3‰. The samples were spheroplasted prior to
incubation with Nextera Tn5 Transposase (Illumina, San Diego, USA). After the
transposition reaction, DNA purification, and PCR amplification, the libraries for
sequencing were prepared according to the protocols of ATAC-seq74. ATAC-seq and
the Nextera workflow were designed for sequencing using Illumina high-throughput
sequencing instruments (Illumina, San Diego, USA). The sequencing reads were
mapped to the shrimp genomes using Bowtie2 (ref. 53). Peak calling was performed
using MACS v2.1.0 with a p value cutoff of 1E−05 and the broad flag and were filtered
based on mappability75. Peaks appearing in common in the replicate samples were
called and used for the following comparative analyses. UCSC Genome Browser was
used for the visualization of the peaks. DESeq2 was used for differential peak iden-
tification with nominal p values. The relationships of the differential peaks to the
annotated genes were calculated according to the positions of the genes.

Statistics and reproducibility. The statistics for this study are conducted using
Student’s t-test (between two groups) and one-way ANOVA (among three or more
groups) using SPSS 22.0 software (https://www.ibm.com/analytics/spss-statistics-
software). Significant differences are indicated when p value < 0.05. We did

transcriptome, metabolome, and ATAC sequencing with three replicates for each
condition.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genome sequence data that support the findings of this study have been deposited in
NCBI GenBank with the accession number of JABKCB000000000 and BioProject
accession codes of PRJNA627295. The F. chinensis genome and the annotation
information can also be downloaded from the Shrimp Genome Database (http://www.
genedatabase.cn/fch_genome.html).
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