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Abstract: Aminopeptidase N (APN)/CD13 (EC 3.4.11.2) is a transmembrane protease present

in a wide variety of human tissues and cell types (endothelial, epithelial, fibroblast, leukocyte).

APN/CD13 expression is dysregulated in inflammatory diseases and in cancers (solid and

hematologic tumors). APN/CD13 serves as a receptor for coronaviruses. Natural and synthetic

inhibitors ofAPNactivity have been characterized. These inhibitors have revealed that APN is able

to modulate bioactive peptide responses (pain management, vasopressin release) and to influence

immune functions and major biological events (cell proliferation, secretion, invasion, angiogen-

esis). Therefore, inhibition of APN/CD13 may lead to the development of anti-cancer and anti-

inflammatory drugs. This reviewprovides an update on the biological and pharmacological profiles

of known natural and synthetic APN inhibitors. Current status on their potential use as therapeutic

agents is discussed with regard to toxicity and specificity.� 2005Wiley Periodicals, Inc.MedResRev, 26,

No. 1, 88–130, 2006
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1 . I N T R O D U C T I O N

Aminopeptidase N (EC 3.4.11.2, APN) is a metallo-dependent integral membrane protease.1 The

enzyme belongs to the M1 family of the MA clan of peptidases2 also called gluzincins.3

Aminopeptidase N consists of 967 amino acids with a short N-terminal cytoplasmic domain, a single

transmembrane part, and a large cellular ectodomain containing the active site.4 This enzyme was

first isolated in 1963 by Pfleiderer and Celliers from pig kidney5 and is known under several different

names (alanine aminopeptidase; microsomal aminopeptidase; microsomal leucine aminopeptidase

aminopeptidase M; amino oligopeptidase; GP 150). In the last few years, certain surface molecules

identified as cluster differentiation (CD) antigens were found to be identical to some membrane

proteins. Thus, CD13 is identical to APN.6,7 Soluble APN is detectable in plasma/serum and urine8–11

but the mechanism of release of membrane APN remains unknown.

Membrane-bound APN/CD13 is widely distributed outside the hematopoietic system

(epithelial-, endothelial-, fibroblast-cell types) with main sources being brush border membranes

of kidney proximal tubule cells and enterocytes, and in the hematopoietic compartment is not

confined to a particular lineage.1,12,13 APN/CD13 is predominantly expressed on stem cells and on

cells of the granulocytic and monocytic lineages at distinct stages of differentiation and is therefore

considered as a marker of differentiation.14,15

Dysregulated expression of membrane and/or soluble forms of APN/CD13 is observed in many

diseases. Compiled observations indicate enhancedAPN levels in tumor cells such asmelanoma,16,17

renal,18 pancreas,19 colon,20 prostate,21 gastric,22 and thyroid23 cancers. Tumor-infiltrating T cells in

renal and lung cancers are CD13-positive.24,25 APN activity is elevated in plasma and effusions of

cancer patients.11 APN activity on neutrophils from patients affected by a rare adrenal gland tumor,

adrenal pheochromocytoma, is significantly increased as compared with healthy controls.26 CD13 is

overexpressed in acute and chronic myeloid leukemias1,12,27–29 and in anaplastic large cell

lymphomas.30,31 Overexpression of APN/CD13 in T lymphocytes or neutrophils occurs in several

inflammatory diseases (chronic pain, various forms of joint effusions, rheumatoid arthritis, multiple

sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis, pulmo-

nary sarcoidosis).32–39

APN/CD13 may be therefore considered as a useful clinical marker. Whether this protease

critically contributes to the pathological behavior remains however unknown. In this review, we

briefly summarise knowledge on the structure and the mechanisms of cleavage of APN/CD13 to

integrate current knowledge in natural and synthetic APN inhibitors. The reader is referred to

excellent reviews for the characteristics of APN/CD13 and substrate specificity.25,40–45 Various

aspects on the roles of APN/CD13 are reviewed here in the context of the in vitro and in vivo use of

certain APN inhibitors.

2 . A M I N O P E P T I D A S E N / C D 1 3

APN is anchored to the plasmamembrane, via an uncleaved signal sequence, by the C-terminus (type

II) facing extracellularly.1 Membrane APN/CD13 is found as a dimer of two non covalently

associated subunits with a relative molecular mass of 160 kDa (Fig. 1A).40,41,43 The human CD13

gene, cloned in 19896 and subsequently mapped to chromosome 15 q25-26,46 possesses two

promoters (Fig. 1B).46–51

The cDNA sequence reveals the presence of the amino acid sequence His-Glu-Xaa-Xaa-His

which is a Znþþ binding motif found in one class of metallo-peptidases.3 Site-directed mutagenesis

indicates that extracellular cysteines in the molecule confer correct structure and consequently

enzymatic activity and surface expression of APN.52 Mutation of glutamic acid 355 in an

aminopeptidase conserved region (the GAMENmotif) leads to an inactive enzyme53 indicating that
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this glutamic acid belongs to the anionic binding site in APN and interacts with the N-terminal a-
amino group of the substrate. APN/CD13 cleaves preferentially neutral amino acids (with the

exception of proline) (Fig. 1C) from the unsubstituted N-terminus of oligopeptides.1,12 Biologically

active peptide substrates cleaved by APN/CD13 are neuropeptides (Met- and Leu-enkephalins,

neurokinin A, Met-lys-bradykinin, and endorphins such as spinorphin),41,54–59 vasoactive peptides

(kallidin, somatostatin, and angiotensins)60–67 and chemotactic peptides (monocyte chemotactic

protein//MCP-1 and N-formyl methionine leucine phenylalanine/f-MLP).40,68

Apart from its hydrolytic ability, APN serves as a receptor for coronaviruses.69–72 In humans, the

229E corona virus uses APN to enter alveolar cells and establish an upper respiratory tract

infection.72

3 . A P N / C D 1 3 I N H I B I T O R S

Bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) and substance P (Arg-Pro-Lys-Pro-Gln-Gln-

Phe-Phe-Gly-Leu-Met-NH2) are natural peptides capable of inhibiting APN in micromolar

concentrations.73 Similarly, elevated concentrations of leucine, proline, L-alanine, L-arginine,

L-glutamine, L-methionine, as well as divalent cations (Co2þ, Zn2þ, Mn2þ, Ca2þ, Ni2þ) inhibit APN

activity.40 (for review) Moreover, molecules with a broad spectrum of action such as KCN, NaN3,

Figure 1. Schematic diagrams showing protein (A) and promoter (B) structures of APN/CD13.The enzyme is a dimer of two non

covalentlyassociatedmonomers.Thegeneiscontrolledby twopromoters,withanepithelialpromoterandamyeloidpromoter (inthe

hematopoietic system). (C) substrate specificity.Thearrow indicates thebondcleaved.
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ammonium oxalate, N-ethyl-maleimide, and 8-hydroxyquinoline inhibit APN/CD13.40 (for review)

APN activity is also inhibited by puromycin (1),74,75 lapstatin (2),76 some N-phenylphthalimide

derivatives such as compound 3,77–80 several N-phenylhomophthalimide derivatives like PIQ-22

(4)77,78 which has later been described as a rather puromycin-sensitive aminopeptidase (PSA)

inhibitor by the same group,80–83 phosphinate dipeptide analogues illustrated by hPheP[CH2]Tyr

(5),84 pseudoglutamyl aminophosphinic peptides such as GluC(PO2CH2)Leu-Ala (6),85 several

variously substituted 3-amino-2-oxobutyramide exemplified by compound 7,86 a-aminoboronic

derivatives such as the benzyl derivative 8,87 or a-aminobenzaldehydes illustrated by (S) 2-amino-5-

methylpentanal (9).88 An eclectic set of compounds has been described and used for the biochemical

characterization or/and inhibition of other proteases—e.g.: urokinase-type plasminogen activator,

dipeptidylpeptidase IV (DPPIV/CD26), or other different aminopeptidases including human

enkephalin degrading aminopeptidase (HEDA), cytosolic leucine aminopeptidase (LAPc), glutamyl

aminopeptidase (APA), and arginyl aminopeptidase (AP-B). In this context, it is also worth

mentioning two systematic studies devoted to hydroxylated naturally occurring flavonoids such as

baicalein (10), apigenin (11), or myricetin (12) and related compounds which, aside their activity on

neutral endopeptidase (NEP/CD10) or angiotensin-converting enzyme (ACE/CD143), exhibited a

significant in vitro inhibitory effect toward APN.89,90 Formulas, Ki, IC50 or inhibition percentages of

enzymes for compounds 1–12 are depicted in Figure 2. Two recent publications describing either the

irreversible inhibition of both APN/CD13 and DPP IV/CD26 enzymatic activities by aqueous

extracts of a Cistus incanus L.91 or ACE, NEP, and APN inhibition by extracts of Epilobium

angustifolium92 deserve also quotation.

Although the borderline is not easy to position, leaving out the above-mentioned studies dealing

with non-specific compounds targeting other enzymes and, incidentally, revealing an inhibitory

activity on APN, we have chosen to focus the present review on the data tightly dedicated to natural

and synthetic inhibitors of APN/CD13 itself.

A. Naturally Occurring APN/CD13 Inhibitors

The most widely used among the naturally occuring APN/CD13 inhibitors are microorganism-

produced and have been purified from microbial culture filtrates. A large part of them are generated

by bacteria belonging to the order Actinomycetales, especially of the genera Streptomyces:

1. Actinonin

(2R)-N4-hydroxy-N1-[(1S)-1-[[2S)-2-(hydroxymethyl)-1-pyrrolidinyl]carbonyl]-2-methylpropyl]-2-

pentylbutanediamide (13) was first isolated by R. Green and R. Bhagwan Singh from a Malayan

strain of Actynomycetes. This compound was then listed as Streptomyces Cutter C/2 (N.C.I.B.

8845).93 About 20 years later, actinonin was also obtained from another strain referenced MG848-

hF6 and its inhibition against APN was found to be competitive with the substrate.94 The structural

study and the chemical synthesis of 13 and some analogues have aroused numerous works95–102

completed by a structure–activity relationship investigation dealing with anti bacterial properties

observed in this actinonin series.103

2. AHPA-Val

(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valine) (14)) and two closely related derivatives:

AHPA-Val-Pro-Hyp (2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl-L-prolyl-(trans-4-

hydroxy-L-proline) (MR387A) (15) and AHPA-Val-Pro-Pro (2S,3R)-3-amino-2-hydroxy-4-phenyl-

butanoyl-L-valyl-L-prolyl-L-proline) (MR387B) (16) were obtained from the culture broth of

Streptomyces neyagawaensis SL-387.104–106 The preparation of several novel synthetic AHPA

derivatives (exemplified by 17) bearing, for most of them, heterocyclic moieties and exhibiting
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Figure 2. Miscellaneous inhibitors of APN/CD13.
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Figure 2. (Continued )
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interesting in vivo antitumor potencies (30–40% inhibitory rate on S180 sarcoma) has been recently

reported.107

3. Amastatin

(2S,3R)-3-amino-2-hydroxy-5-methylhexanoyl-L-valine-L-valine-L-aspartic acid) (18) has been

reported to be a slow-binding competitive inhibitor of APN.108 It was first isolated from the culture

filtrate of Streptomyces sp. ME98-M3.109 and its structure has been unambiguously determined.110

Several enantioselective syntheses of this tetrapeptide have been reported,110,111 and some of its

analogues have also been prepared in the context of a SAR study.112

4. Bestatin

(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-leucine) (Ubenimex
1

) (19) is an inhibitor of vari-

ous leucine and arginine aminopeptidases,113 and an efficient inhibitor of LTA4 hydrolase.
114–117

However, in spite of its marked toxicity and of its relative lack of selectivity toward exopeptidases, it

is one of the most used compound for its APN/CD13 inhibitory effects.118 Bestatin has been

described as a slow-binding competitive inhibitor of APN,108 and a schematic representation of 19

within the active site of APN53,84 is depicted in Figure 3. Bestatin was first isolated from a culture

filtrate of Streptomyces olivoreticuli (MD976-C7)119 and its chemical structure has been sub-

sequently ascertained.120 Several stereoselective total syntheses of 19 have been reported,121–130 the

preparation of its stereoisomers has been performed131 and some ubenimex derivatives or analogues

such as the para-hydroxybestatin (20),132 the 2-thiolbestatin (21),133,134 the bestatin thioamide

(22),133,135 or the reduced bestatin 23136 have also been prepared.

5. Phebestin

(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl-L-phenylalanine) (24) is a tripeptide pro-

duced by Streptomyces sp. MJ716-m3.137 Some stereoselective syntheses of 24 have been recently

reported.125,128,129

Figure 2. (Continued )

Figure 3. Bindingof Bestatin to theactive site of APN.
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6. Probestin

(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl-L-prolyl-L-proline) (25) is a tetrapeptide

isolated from the culture of Streptomyces azureus (MH663-2F6)138 and its structure has been

unambiguously established.139 Probestin has been described as a competitive inhibitor of APN138

and, here also, some total syntheses have been lately described.125,128,129

An overview of the formulas of compounds 14–25 reveals that, except the synthetic analogue 23

prepared in its racemic form, they all possess the absolute configuration (2S,3R) which appears

crucial for activity.136 A comparable chiral framework is also existent in the side chain of the

pharmacologically important series constituted by taxoids and, in this context, it is worth pointing out

that numerous and various synthetic approaches to building blocks liable to lead to enantiomerically

pure (2S,3R)-3-amino-2-hydroxyalkanoic structures and/or their diastereomers have attracted

considerable attention.140–185

7. Leuhistin

(2R,3S)-3-amino-2-hydroxy-2-1H-(imidazol-4-ylmethyl)-5-methylhexanoic acid (26) has been

isolated in 1991 by Takeuchi and co-workers from the culture broth of a bacteria belonging to the

phylum Firmicutes: Bacillus laterosporus BM156-14F1.186,187 This compound inhibits APN in a

competitive manner with the substrate.186 The structure of 26 and its absolute configuration have

been thereafter ascertained by the same group.188

Several naturally occuring APN inhibitors are of vegetal origin:

8. Benzo[c]phenantridines

Benzo[c]phenantridines such as 1,2-Dimethoxy-12-methyl 1,3dioxolo[4 0,5 0:4,5]benzo[1,2-c]phe-
nanthridin-12-ium chloride or Chelerythrine (27) and some closely related alkaloids have recently

been isolated from extracts of the Papaveraceae Macleaya cordata (Wild.) R. Br. Some of these

compounds showed an efficacy against APN similar to that of amastatin (18) or bestatin (19). A

weaker inhibitory effect on DPP-IV has also been reported.189

9. Curcumin

(E,E-1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) (28) is a yellow natural

phenolic compound isolated from the rhizomes of asian perennial herbs extensively cultivated in

tropical areas and belonging to the Zingiberaceae family. All these plants are of the generaCurcuma.

The most exploited representative is Curcuma longa L., whose dried rhizome is the source of the

spice turmeric which is widely employed in food and has a long tradition of use in folk medicine. In

addition to its irreversible APN/CD13 inhibition potencies,190 curcumin is now considered by

oncologists as a potential cancer chemopreventive agent,191,192 and clinical trials in this context are

carried out in several laboratories.193 Furthermore, curcumin possesses anti-inflammatory activity

and is a potent inhibitor of reactive oxygen-generating enzymes (e.g. lipooxygenase/cyclooxygen-

ase-2, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase).194 Curcumin hinders

also the initiation of carcinogenesis by inhibiting the cytochrome P-450 enzyme activity and

increasing the levels of glutathione-S-transferase. Its anti-tumor effect in the promotion and

progression stages has been attributed, in part, to the arrest of cancer cells in S, G2/M cycle phase,

and induction of apoptosis.195 It has also been proposed that curcuminmay suppress tumor promotion

by blocking signal transduction pathways in the target cells.196 Curcumin is a potent inhibitor of

protein kinase C, EGF-receptor tyrosine kinase and I-kB kinase. In addition, curcumin inhibits the

activation of NF-kB and the expression of c-jun, c-fos, c-myc.194,197 Last, curcumin has been
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proposed as aHIV-1 orHIV-2 protease inhibitor,198 as aHIV-1 integrase inhibitor,199 and proved to be

radioprotectant.200,201 Several chemical synthesis of 28, involving 2,4-pentanedione and vanillin,

have been reported202–206 as well as the preparations of some of its analogues designed as

angiogenesis inhibitors207 through their ability to inhibit endothelial cell proliferation.208

10. Betulinic Acid

(3b-hydroxylup-20(29)-en-28-oic acid) (29) is a pentacyclic compound widely present in the plant

kingdom. This oxidized derivative of betulin owes its trivial name to the fact that this class of lupane

type triterpenes was first isolated from Betula ssp. (birch trees). Afterwards, betulinic acid has been

obtained from various other vegetal species including Ancistrocladus ssp.,Arbutus ssp., Diospyros

ssp., Paeonia ssp., Picramnia ssp., Syzygium ssp., Tetracera ssp., Tryphillum spp., Zizyphus ssp. One

of the main current sources of betulinic acid from natural origin is the bark of plane trees (e.g.

Platanus acerifolia) by employing a patented procedure.209 In addition to its APN inhibitory activity

in a dose-dependent manner,210 and possibly as a partial consequence of this inhibitory potency,

betulinic acid has been shown to modulate the immune response, to exhibit anti-inflammatory

properties and to block HIV-1 entry into cells. It has also been reported to be a selective inhibitor of

DNA polymerase b and to induce apoptosis in tumor cells. The wide range of biological properties

linked to betulinic acid have recently been recapitulated and analyzed in three excellent revues.211–213

Several hemisynthesis of 28 starting from betulin via betulonic acid214–217 or from various naturally

occuring betulinic acid derivatives such as glycosides,218–221 sulfates,222 or dihydroxycinnamic

esters223 have been reported.

To our knowledge, only one naturally occuring APN inhibitor originates from animal kingdom:

11. Psammaplin A

((E,E)-N,N 0-Bis[(3-(3 0-Bromo-4 0-hydroxyphenyl)-2-oximidopropionyl]cystamine) (30) is a sym-

metrical disulfide compound bearing two hydroxyimino functional groups. This bis-bromotyrosine

derivative was, almost simultaneously, first isolated in 1987 by three groups: from an unidentified

marine sponge (probably of the Verongidae family) collected in Guam,224 from a Psammaplysilla

sp.,225 and from Thorectopsamma xana.226 Its structure has been unambiguously and independently

established by these different authors. Thereafter, psammalin A has also been extracted from other

sponges: Psammaplysilla purpurea,225,227 Dysidea spp. (in this case, the authors have erroneously

named «bisprasin»—the misspelled name of the psammalin A dimer—a compound which is

obviously the psammalin A itself as judged by the reported formula)228 Aplysinella rhax,229–231

Pseudoceratina purpurea,232 or from a two-sponge association: Poecillastra wondoensis and Jaspis

wondoensis.233,234 A biosynthetic pathway has been proposed for the formation of 30 involving

modified cysteine and bromotyrosine227,232 and, to our knowledge, only one laboratory preparation of

psammalin A has been carried out starting from L-tyrosine through its itsN,N 0-bis-(tetrahydropyran-
2-yl)oxime derivative.235 It is also worth pointing out that a library comprising about two hundred

psammalin A type derivatives has recently been prepared by Nicolaou and his co-workers by using

solution phase combinatorial synthesis with the aim to evaluate their antibacterial activity.235,236

In addition to its very recently reported ability to inhibit APN in a non-competitive manner thus

inducing a suppression of in vitro angiogenesis,237 30 has been shown to induce a variety of bio-

logical effects: (i) a significant in vitro antibacterial activity against Staphylococcus aureus226 and

methicillin-resistant Staphylococcus aureus235,236,238 which is assumed to be due to its ability to

inhibit DNA gyrase,238 (ii) a cytotoxicity against various human tumor cell lines,229,231–233 (iii) an

increase inCa2þ release from the heavy fraction of skeletal muscle sarcoplasmic reticulum,228 (iv) an

inhibition of topoisomerase II,239 Leucine aminopeptidase and farnesyl protein transferase,229,

mycothiol-S-conjugate amidase,240 chitinase,231 histone deacetylase andDNAmethyltransferase,232
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and DNA replication by targeting polymerase a-primase.241 Some antifungal and insecticidal

activities have been further reported.231

Chemical structures of APN inhibitors 13–30, and enzyme inhibition values are depicted in

Figure 4.

B. Synthetic APN/CD13 Inhibitors

Several synthetic small molecules belonging to various chemical families have been reported to

inhibit APN activity.

1. a-Aminomethylketones

a-Aminomethylketones such as (S)-3-Amino-4-methylpentan-2-one hydrochloride (valine methyl

ketone hydrochloride) (31)242 have been described as potent competitive inhibitors of APN.243

Figure 4. Natural inhibitors of APN/CD13.
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2. Alkyl D-Cysteinates

Alkyl D-cysteinates display also efficient competitive APN inhibitions. Among the five esters tested,

an optimal inhibitory activity has been observed with the n-butyl derivative (32).244

3. 3-Amino-2-Tetralone Derivatives

3-amino-2-tetralone derivatives such as the 2-amino-1,4-dihydro-2H-phenanthren-3-one hydro-

chloride (33) have been reported to be efficient and selective competitive inhibitors of APN. These

compounds do not affect AP-A or AP-B and poorly inhibit LAPc.245

4. 3-Amino-2-Hydroxypropionaldehyde and 3-Amino-1-Hydroxypropan-2-One Derivatives

3-Amino-2-hydroxypropionaldehyde and 3-amino-1-hydroxypropan-2-one derivatives such as 34

and 35, respectively. These competitive inhibitors of APN are very moderately active on LAPc or

APB.246

5. Flavone-8-Acetic Acid Derivatives

Flavone-8-acetic acid derivatives constitute a class of products whose the parent compound showed

antiangiogenic properties.247 In this series, products bearing a nitro group in the 2-position such as the

2 0,3-dinitroflavone-8 acetic acid (36) proved the most potent APN inhibitors and act by reversibly

binding to the catalytic site of the enzyme. These compounds present the advantage to exhibit no

Figure 4. (Continued )
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Figure 4. (Continued )
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Figure 4. (Continued)
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toxicity towards cultured human cells, to induce no apoptosis, and to be inactive on other proteases

such as MMP-9, ACE, NEP, g-glutamyl transpeptidase, cathepsin G, or DPPIV.248

6. N-Hydroxy-2-(naphthalene-2-ylsulfanyl)Acetamide

N-Hydroxy-2-(naphthalene-2-ylsulfanyl)acetamide (37) has recently been identified as a potent

APN inhibitor. It acts in a dose-dependent manner and is inactive on metalloenzymes MMP-2,

MMP-9, MMP-14, or A-LAP.249

The design of synthetic APN inhibitors has often been relied to structure–activity studies based

on active site models derived from structural data obtained on the zinc-dependent protease

thermolysin crystallized with a variety of inhibitors.250Molecules capable of interacting with at least

the S1 subsite of APN and which have a strong zinc-chelating group251,252 were designed. According

to these criteria, some a-aminophosphinic acids and derivatives such as 38 or 39253 have been

prepared and proved to be very potent APN inhibitors. According to the patterns of these models,

synthesis of analogs such as the iodo derivative 40 (RB 129) have next been performed to give rise to

the radiolabelled (125I)RB129254which represents a useful probe to investigate the physiological role

of APN.13,255,256 In the same context, several b-aminothiols exemplified by 41257 or 42251 have been
conceived and synthesized. The research in this field has then been extended tomore elaborated series

by Roques and co-workers, and novel sulfur-containingmolecules capable of inhibitingAPN such as

43, 44,258 45, 46259 or 47253 were prepared. From these works on b-aminothiols, two products

emerged: PC 18 (S)(2-amino-4-methylthiobutanethiol) (48)253 and EC 27 (S)(2-aminopentan-1,5-

dithiol) (49).259 These products have essentially aroused deeper studies because they are able to

induce vasopressin release by acting on the half-life of angiotensin III.61,66,260,261

Figure 4. (Continued)
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Figure 4. (Continued )
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Formulas of the synthetic APN inhibitors 31–49, and enzyme inhibition values are outlined in

Figure 5.

C. Synthetic Dual APN/CD13 and E-24.11/CD10 (NEP) Inhibitors

The similarities between the active sites of APN and the membrane-bound protease neutral

endopeptidase 24.11 (EC3.4.24.11, CD10, NEP) led to the idea that mixed inhibitors could be

developed by selecting frameworks bearing a strong zinc-chelating group and a residue able to

interact with at least one subsite (S1, S1
0, and S2

0) of each peptidase.65,251,262–265 The first dual

E24.11/APN inhibitors developed were hydroxamate-containing molecules such as Kelatorphan

(50) or RB 38A (51)262,266,267 whose several analogs have been synthesized and found to be also

potent inhibitors of leukotriene A4 hydrolase.
268 However, the important water solubility of these

compounds is an impediment for crossing the blood–brain barrier and, consequently, for obtaining a

good bioavailability. Another strategy, involving more lipophilic derivatives, led to the synthesis of

RB 101 (N-((R,S)-2-benzyl-3((S)(2-amino-4-methylthio)butyldithio)-1-oxopropyl)-L-phenylala-

nine benzyl ester (52) and RB 120 (N-((S)-2-benzyl-3((S)(2-amino-4-methylthio)butyldithio)-1-

oxopropyl)-L-alanine benzyl ester (53), two dual inhibitors in which a disulfide bridge links the

APN inhibitor PC 18 with analogs (the phenylalanine analog (ST 43) in the case of 52, or the alanine

analogue in the case of 53) of the benzyl ester of Thiorphan, a specific NEP inhibitor269

(Fig. 6).251,263,270 Such mixed inhibitors present the advantage to possess the above-mentioned

disulfide bond which is relatively stable in plasma, in contrast to its rapid cleavage in brain, thus

allowing the delivery of the NEP and APN inhibitors in their active form toward their respec-

tive target.263 The development of such mixed inhibitors has constituted an important advance in the

research of new antihypertensives and novel antinociceptive drugs devoid of opioid side

effects.264,271 (for reviews) More recently, a new generation of phosphinic acid derivatives have

been prepared as NEP/APN dual inhibitors, and compounds such as 54 have been successfully tested

in this context.252,272

Chemical structures of APN inhibitors 50–54, and enzyme inhibition values are outlined in

Figure 7.

Figure 4. (Continued )
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Figure 5. Synthetic inhibitors of APN/CD13.
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Figure 5. (Continued )
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Figure 5. (Continued )
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Figure 7. Dual inhibitors of APN/CD13.
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4 . A P N / C D 1 3 I N H I B I T O R S I N M O D U L A T I O N O F C E L L F U N C T I O N S

The effects of some of these above described inhibitors on cell behavior have been assayed in in vitro

approaches. Table I provides a summary of most relevant studies in the human system.

A. APN Inhibitors as Modulators of Cell Growth and Maturation

Actinonin, bestatin, probestin, and psammaplin A (at 1–100 mM concentrations) were shown

to reduce the growth of human T/B lymphocytes, dendritic and cord blood CD34þ cells273–276

and human myeloid and lymphoid cell lines,273,274,276–282 as well as the proliferation of

Table I. Effects of APN/CD13 Inhibitors in in vitro, in Animal and Clinical Approaches

AMINOPEPTIDASE-N/CD13 (EC 3.4.11.2) INHIBITORS * 109



keratinocytes283,284 and various tumor and endothelial cell lines.237,285–287 A question central to

APN inhibition studies is how cell growth can be turned off by APN inhibitors. APN inhibitors may

alter the processing of (unknown) growth factors directly involved in the regulation of growth. In

addition, several studies indicate that inhibitors like actinonin and probestin may transmit

intracellular-transduction signals by interfering with theMAP kinase signaling pathway.25,279,288,289

A second cell signaling pathway involving the Wnt-5a proto-oncogene appears also affected by

inhibition of APN by actinonin.290

It has to be pointed out that actinonin (at a 10 mM concentration) inhibited the growth of both

CD13-positive myeloid and CD13-negative lymphoma cell lines287 suggesting that the effects

induced by actinonin are not likely to be mediated by CD13. Moreover, amastatin at a concentration

which inhibits APN activity was found without any effect on the growth of human myeloid cell

lines274,291.

Bestatin-mediated cell growth arrest is associated with an induction of cell maturation of

clonogenic GM-CFU (granulocyte-macrophage colony forming unit) cells from human immature

derived-bone marrow cells.292,293 Similarly, treatment of human myeloid U937 and NB4 cell lines

with bestatin induced phenotypic changes characteristic of macrophage (U937) or neutrophil (NB4)

maturation.280,293,294

B. Effects of APN Inhibitors on Cell Secretion

Cell growth arrest induced byAPN inhibitors correlateswith alternated secretion of proinflammatory

and immunosuppressive cytokines involved in pathophysiological processes. Bestatin (2.9 mM)

increased the levels of IL-8 secreted by endothelial cells,295 and of IL-1 release from mouse

peritoneal macrophages and IL-2 release from concanavalin-stimulated T cells.296 Probestin induces

the synthesis and release of TGF-b1.41,297

C. Effects of APN Inhibitors on Apoptosis

Recent observations point to the involvement of APN in the process of apoptosis (programmed cell

death). Bestatin and actinonin (starting 30 mM) induce apoptosis in a large variety of cell lines, i.e.

myeloid (P39/TSU, HL-60, U937, NB4) and lymphoid (Jurkat, BJAB, NALM6, BOE) cells, and

carcinoma (fibrosarcoma, cervical, and lung carcinoma).274,282,287,291,298,299 Betulinic acid induces

apoptosis in the HT29 colon cancer cell line (26 mM)84 and in acute leukemia cells (50 mM).300

D. Effects of APN Inhibitors on Cell Motility

In a general way, cell motility (migration and invasion) may be influenced by the processing of

chemokines and/or degradation of the extracellular matrix (ECM). The two small proteins with

chemotactic activity,MCP-1 and f-MLP, are in vitro hydrolyzed byAPN/CD13.With regard toMCP-

1, there is no current data reporting the potential action of APN inhibitors on the MCP-1-mediated

migration. Actinonin and amastatin were able to enhance the chemotactic response of human

neutrophils toward f-MLP.301 One explanation of the effects of actinonin or amastatin would be that

both inhibitors prevent the inactivation of f-MLP by APN, to further enhance the f-MLP-mediated

chemotactic response. It has however to underline that both inhibitors weakly inhibited APN

enzymatic activity over the range from 10�8 to 10�4 M, concentrations that are effective on

neutrophil migration.301

APN inhibition by actinonin or bestatin significantly enhanced the in vitro migration

of eosinophils across HUVEC monolayers.302 Moreover, actinonin, bestatin as well as leuhistin

(50–150 mM) significantly blocked the invasion of various human metastatic tumor cells into

reconstituted basement membranes303,304 or into Matrigel.21,305–307 These latter data suggested that
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APN could be indirectly involved in type IV collagen degradation by activating type IV

procollagenase/proMMP-9.17,303,304 Recent studies demonstrated that soluble APN/CD13 induces

in vitro chemotactic migration of T lymphocytes, and that bestatin at high concentration (580 mM)

abolishes this process, suggesting that the enzymatic activity of APN was responsible for the

chemotactic activity.34,36,304,308

5 . A P N I N H I B I T O R S A N D A N G I O G E N E S I S

The demonstration of the participation ofAPN in angiogenesis has come from recent studies inwhich

blocking APN activity by APN inhibitors resulted in the perturbation of ‘‘angiogenic’’ assays

(Table I).

A. In Vitro Assays

APN/CD13 is expressed on the human umbilical vein endothelial cells (HUVECs) of angiogenic,

but not normal, vasculature.309 Bestatin, betulinic acid, amastatin, curcumin, and psammaplin A

(10–250 mM) abrogate the ability of the HUVECs cultured on matrigel to organize a capillary

network20,190,237,310–312without altering their proliferation rates.310 In contrast, one study underlines

the proangiogenic effect of bestatin (8–250 mM) which instead causes matrix degradation and

stimulates the invasion of microvascular endothelial cells into a fibrin matrix.313

B. In Vivo Assays

In the chorioallantoic membrane (CAM) assay, the angiogenic response is determined by measuring

the number of avian extraembryonic capillary vessels that grow within a matrix polymer (containing

an angiogenic molecule such as fibroblast growth factor-2/FGF-2) placed on the yolk sac membrane

of a 4 day embryo in culture.314 The chick vasculature expresses a phenotype APN/CD13, and

subsequent treatment with bestatin or actinonin (200 mg) inhibited FGF-2-induced angiogenesis.309

In the mouse retinal neovascularization model, bestatin (200 mg/mouse) leads to the blockade of

hypoxia-induced retinal neovascularization inmice.309 The intraperitoneal administration of bestatin

(50–100mg/kg/day) after the orthotopic implantation ofB16-BL6melanoma cells intomice reduces

the number of vessels oriented toward the established primary tumor mass on the dorsal side of

mice.311

6 . E F F E C T S O F A P N / C D 1 3 I N H I B I T O R S I N A N I M A L M O D E L S

Compiled data documenting the involvement of APN/CD13 in pathophysiological events (cancer,

inflammation, infection, pain suppression) have come from studies which blocked APN activity in

rodent models (Table I).

Studies in rats indicate that administration of bestatin leads to the inhibition of fetal growth and

the induction of placental apoptosis.315,316 The in vivo anti-cancer activities of bestatin and betulinic

acid have been reported through their capacities to inhibit the growth of syngeneic tumor (leukemia/

melanoma/ovarian/hepatoma/gastric carcinoma) cells implanted in mice16,213,309,310,317–325 and

rats.319,326,327 Doses as low as 0.5mg/kg for bestatin and 5mg/kg for betulinic acidwere used in these

studies. Moreover, high doses (up to 500 mg/kg) did not lead to any cytotoxic effect in mice.

Bestatin, leuhistin, and betulinic acid have been investigated for anti-inflammatory properties.

Betulinic acid possessed moderate ant-inflammatory abilities at relatively high concentrations
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(100 mg/kg/mouse, i.v.).213 In contrast, bestatin and leuhistin inhibit acute inflammation associated

the accumulation of polymorphonuclear neutrophils in a mouse model (2 mg/kg, i.v.).57,328

Moreover, oral administration of bestatin (5mg/kg) in carcinoma-bearingmice induces generation of

cytotoxic T cells and NK (natural killer) cells.317

Angiotensins II and III are two peptide effectors of the brain rennin–angiotensin system that

participate in the control of blood pressure, increase water consumption and vasopressin release. In

hypertensive rats, infusion of amastatin (16 nmol/min i.v.) prevents degradation of angiotensins

associated with blood pressure decrease.67,329. In the mouse brain, APN inhibition by PC18 or EC27

(10–300 mg injected intracerebroventricularly) increases the half life of angiotensin III, resulting in
enhanced vasopressin release.61,66,260

Several studies report that bestatin exerts anti-infectious properties by augmenting host

resistance to bacterial, viral or fungal experimental infections in mice by inducing neutrophil and

macrophage activation330,331 and enhancing antibody production.330–335

Finally, in the central nervous system, enkephalins which modulate responses to painful stimuli,

are inactivated by APN and the membrane-bound protease neutral endopeptidase 24.11

(EC3.4.24.11, CD10). This led to the idea that inhibition of these enzymes (alone or in combination)

could achieve clinically efficient analgesia. Actinonin as well as the dual inhibitors RB101 and

RB120 (9 mg/kg, i.v.; 80 mg/kg, i.p.) exhibited analgesic properties against chronic pain in rats and

mice.261,263,267,336,341

7 . E F F E C T S O F B E S T A T I N I N C L I N I C A L T R I A L S

In first clinical trials, bestatin (30 mg/daily) has been used to treat patients with acute and chronic

myeloid leukemias (AML, CML) and lymphomas.342–346 Therapeutic efficacy was demonstrated by

a prolongation of survival in patients with AML345,346 and lymphomas,342,343,347 and in promoting

graft versus leukemia effects in patients following allogeneic bone marrow transplant.348

In a phase Ib trial, activation of bloodmonocytes and increase in the CD4/CD8 lymphocyte ratio

were observed in Hodgkin’s and non-Hodgkin’s lymphoma patients treated orally with high doses of

bestatin (90–180 mg/daily/60 days) following autologous bone marrow transplantation.330,334,349

In phase III trials in resected stage I squamous cell lung carcinoma, survival was statistically

better for patients who were treated with bestatin (30 mg/daily/2 years) as a post-operative adjuvant

therapy than those who received a placebo.350,351

8 . C O N C L U D I N G C O MM E N T S A N D P E R S P E C T I V E S

APN/CD13, is useful in defining clinical subgroups of patients with various malignancies or

inflammatory diseases. The use of natural and synthetic APN inhibitors has revealed that APN/CD13

participates to the control ofmajor biological processes such as proliferation, secretion and apoptosis.

Dysregulation ofAPN/CD13 in tumors is often linked to tumor invasion and angiogenesis. Studies on

non-hematopoietic cells suggest that APN/CD13 may influence cell migration and invasion. APN/

CD13 inhibitors have been shown to alter angiogenesis in in vitro and in vivo assays. Documented

evidence underlines both the antiangiogenic and proangiogenic effects of bestatin.309,310,313 Figure 8

summarizes our current understanding of the involvement of APN inhibitors in the modulation of

these events. The detailed molecular mechanisms underlying these effects are however yet unclear.

Importantly, the requirement for APN in these processes has beenmostly confirmedwith studies

in which APN/CD13 expression was blocked by neutralizing CD13 antibodies20,285,303,309,310 or

antisense CD13 oligonucleotides,20,41,352 or enhanced by the use of CD13 transfectants.17
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It has however to be pointed out that most of APN inhibitors lack tight specificity by inhibiting

other membrane-bound metalloproteases or secreted matrix metalloproteinases (MMPs) (Table I).

For example, bestatin interacts with leucyl-aminopeptidase (EC3.4.11.1, oxytocinase, Leu-AP),

aminopeptidase B (EC 3.4.11.6, AP-B) and aminopeptidaseW (EC 3.4.11.16, AP-W)136,353–357 thus

suggesting that some of the observed chemotherapeutic actions of bestatinmay be due to inhibition of

other cell surface peptidases. Actinonin was recently shown to interact with human peptide

deformylase,358,359meprina (EC 3.4.24.18, endopeptidase 24.18),360 andMMP-2.361Amastatin and

probestin in the low micromolar range (1.5–20 mM) inhibit aminopeptidase A (EC 3.4.11.2, AP-A)

and AP-W.109,355,362 Leuhistin inhibits AP-A and AP-B to the same degree than APN.186 Curcumin

and betulinic acid block MMP-9 expression and collagenase activity through inhibition of NF-kB
activation.363–367 In addition, the use of availableAPN inhibitors in some experimental situations has

revealed complex effects on cell behavior. Asmentioned in paragraph 4.A,CD13-positive andCD13-

negative cell lines are equally sensitive to the growth-inhibitory effect of actinonin (50–260 mM)287

thus emphasizing that actinonin may induce unspecific cytotoxic side-effects. Moreover, betulinic

acid inhibits tube formation of bovine aortic endothelial cells at a concentration which had no effect

on the cell viability and in vivoAPNactivity of endothelial cells, thus indicating anAPN-independent

mode of action of betulinic acid.312

Together, these observations emphasize the need for more specific and targeted APN inhibitors

to (re)evaluate the actions ofAPN/CD13 in pathophysiological processes. Future consideration has to

be given to the obtention of the three-dimensional structure of APN determined by NMR

spectroscopy to helpAPN inhibitor design strategy. Further invitro and invivo studieswith promising

non cytototoxic APN inhibitors (such as psammaplin A, phosphonic derivatives, flavone-8-acetic

acid derivatives) are also required before clinically prescribing an APN inhibitor as an anti-cancer or

anti-inflammatory agent.

Figure 8. BiologicaleffectsofAPN/CD13 inhibitors.TheactionsofAPNinhibitors invitroandinvivo (animalmodels)arediverse; they

maydirectly targetcancercells, oract indirectlyagainst targetsbyactivationof immune cells (T,B, neutrophils, naturalkiller/NK cells,

macrophages) oralterationofangiogenesis (endothelial cells). Inthebrain, APNinhibitors exhibitanalgesicpropertiesby increasing

the levels of Met-enkephalin.
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