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Abstract

The physiochemical determinants of drug-target interactions in the microenvironment of the

cell are complex and generally not defined by simple diffusion and intrinsic chemical reactiv-

ity. Non-specific interactions of drugs and macromolecules in cells are rarely considered for-

mally in assessing pharmacodynamics. Here, we demonstrate that non-specific interactions

lead to very slow incorporation kinetics of DNA binding drugs. We observe a rate of drug

incorporation in cell nuclei three orders of magnitude slower than in vitro due to anomalous

drug diffusion within cells. This slow diffusion, however, has an advantageous conse-

quence: it leads to virtually irreversible binding of the drug to specific DNA targets in cells.

We show that non-specific interactions drive slow drug diffusion manifesting as slow reac-

tion front propagation. We study the effect of non-specific interactions in different cellular

compartments by permeabilization of plasma and nuclear membranes in order to pinpoint

differential compartment effects on variability in intracellular drug kinetics. These results pro-

vide the basis for a comprehensive model of the determinants of intracellular diffusion of

small-molecule drugs, their target-seeking trajectories, and the consequences of these pro-

cesses on the apparent kinetics of drug-target interactions.

Author summary

Small-molecule drug design assumes target binding of high affinity. Most small molecules

can interact with other macromolecules in the cell ‘nonspecifically,’ i.e., with significantly

lower affinity. The extent to which these nonspecific interactions influence the availability

and action of the drug for its specific target depends upon the relative concentrations of

drug, the specific target, and nonspecific targets. The structure of the cell is quite crowded

with a highly non-uniform distribution of macromolecules that can interact with the drug

of interest both specifically and nonspecifically. Thus, some compartments or micro-

domains within the cell may have a comparatively high concentration of nonspecific tar-

gets, sufficient to trap the drug and retard its diffusion toward the specific target. Here,

using small-molecule binding to DNA and single cell monitoring, we demonstrate that

this effect results in apparently anomalous small molecule-DNA binding kinetics in cells
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at rates that are 1000-fold slower than in a homogeneous, dilute, aqueous environment.

This slow intracellular diffusion, however, has an advantageous consequence: it leads to

virtually irreversible binding of the small molecule (drug) to specific DNA targets in cells.

We study and quantify the effect of nonspecific interactions between small DNA-binding

molecules, including known DNA-binding drugs, in different cellular compartments in

order to identify factors that account for the variability in binding kinetics among individ-

ual cells.

Introduction

Drug efficacy in vivo is notoriously difficult to predict owing, in part, to the complexity of the

underlying biochemical processes that govern drug–target interactions in situ. Semi-empiric

pharmacokinetic/pharmacodynamic (PK/PD) models typically describe accumulation of the

drug in tissue(s) and, hence, do not address the question of variability in efficacy for individual

cells, which is determined by the drug’s access to and interaction with its target(s) within a cell.

Variability in drug efficacy may, therefore, be a key factor driving resistance, selection, and

toxicity.

Here, we investigate factors affecting drug–target interactions at the single cell level. Our

model system is a monolayer cell culture that allows continuous monitoring of drug binding

to its target in individual cells. While this model system is, of course, far from ideal, provided

that the free drug concentration in a given tissue is fairly uniform, cell culture experiments can

meaningfully address the question of heterogeneity of response in a cell population.

We monitor the kinetics of 2’-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2,5’-bi-1H-

benzimidazole trihydrochloride trihydrate (Hoechst 33342 dye) incorporation in individual

cell nuclei by measuring the dye’s fluorescence signal intensity. Hoechst dye becomes signifi-

cantly more fluorescent upon binding to the minor groove of DNA and, therefore, fluores-

cence intensity corresponds to the amount of bound target (DNA) in the nucleus.

Fluorescence microscopy permits resolution of both the temporal and spatial dependence

of dye incorporation. It is instructive to investigate the incorporation process on two different

spatial scales. By integrating out spatial degrees of freedom, we can assess overall dye incorpo-

ration kinetics with measurement of fluorescence intensity over time, Itot(t), for individual

cells. At a sub-nuclear scale, we can analyze the time dependence of individual pixel intensities,

Ið~x; tÞ, that typically correspond to a spatial resolution two orders of magnitude smaller than

the whole nucleus in our system. Individual pixel intensities are noisy, for which reason we

developed a method based on moments of distribution to characterize drug diffusion and sig-

nal ‘homogenization’ within the nucleus.

We introduce a physical multi-compartment model of drug diffusion and binding/dissocia-

tion that can explain our experimental findings. Within this model, we also incorporate the

effects of membrane permeability and partitioning (as recently addressed [1]). We further

extend this reaction scheme to include diffusion [2–4] and account for non-specific interac-

tions (high capacity, low affinity) between drug and macromolecules other than intended

targets.

Non-specific interactions are often driven by chemical reactions requiring close proximity

of interacting species. In a crowded intracellular environment with high local concentrations

of non-specific binders, this proximity can be achieved. We, therefore, incorporated non-spe-

cific binding and dissociation processes into our reaction-diffusion model.
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With this detailed model, we show computationally that owing to their spatial localization

in the intracellular environment, non-specific binders act as a trap, reducing extracellular drug

concentration and retarding specific drug-target kinetics. The implications of these findings

for drug-target interactions and pharmacological efficacy are discussed.

Materials and methods

Cell culture

We used the MFC10A cell line with the NLS-Venus (nuclear) reporter for microscopy.

Human epitheloid cervical carcinoma cells (HeLa cell line) were used for spectrofluorimetric

measurements.

Spectrofluorimetry

We used a spectroflurorimetric plate reader (SpectraMax Gemini) to monitor binding kinetics

on a cell population-average level. To this end, HeLa cells were fixed with 4% formalin and

resuspended in Dulbecco’s phosphate-buffered saline (dPBS, Sigma-D5652) at various cell

densities. Next, cells were incubated with Hoechst 33342 dye (Invitrogen-H1399), and fluores-

cence changes over time were monitored using the microplate reader (excitation 350 nm,

emission 461 nm). In order to measure free dye concentration in solution, cells were centri-

fuged and the collected supernatant was incubated with calf thymus DNA. Using a DNA stan-

dard (calf thymus, Sigma-D1501), we estimated the free dye concentration in the supernatant

as a function of concentration and time.

Microscopy

Fluorescent images were taken with the Operetta High Content Imaging System (Perkin

Elmer). The 20x objective was used throughout the experiments unless otherwise noted.

Image processing and analysis were performed using customized imageJ and Matlab scripts

(S1 Text). In brief, the cherry-NLS signals were binarized and segmented in order to generate

nuclear masks, which were applied to the Hoechst channel to obtain pixel intensities. Single-

cell tracking for time-lapse experiments was archived with Python/Perl/Matlab scripts.

Drug efficacy

Doxorubicin efficacy at the single cell level can be measured in terms of DNA damage bio-

marker(s), such as histone γ-H2Ax. In order to combine kinetic measurements in live cells

with antibody staining for the γ-H2Ax marker, we performed immunofluorescence micros-

copy experiments as follows: Live cells were incubated with both Hoechst dye and doxorubicin

at different concentrations and imaged for relatively short periods (typically three hours) that

were sufficient to detect dynamic patterns in fluorescence staining. Immediately thereafter,

cells were fixed with paraformaldehyde, stained with an anti-γ-H2Ax antibody, and again

imaged (see Movie C in S1 File). This protocol allowed us to combine both the dynamic mea-

surement of dye incorporation and the resulting phenotype (extent of DNA damage) for indi-

vidual cells.

Image analysis

Fluorescence images were analyzed using custom-designed in-house programs. Briefly, the

image background was subtracted using ImageJ; and nuclear segmentation, tracking, and data

analysis were performed using custom MATLAB code.

Determinants of drug-target interactions at the single cell level
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Numerical simulations

Wolfram Mathematica was used to simulate reaction–diffusion model(s).

Spatial distribution of bound dye in individual nuclei

Since MFC10A cells are fairly symmetric and ellipsoidal in shape, we can identify principal

axes and positions of the ‘center of mass’ using the nuclear localization sequence marker

(NLS-mCherry) as a reference (N.B., NLS fluorescence intensity is stable and unchanging over

the time course of these experiments).

We introduced the distance r of any given pixel from the center of mass in the xy plane.

The corresponding time dependent pixel intensity is Irðy; tÞ ¼ Ið~x; tÞ and depends, of course,

on the orientation θ of the pixel, as well. If the target (DNA) distribution were symmetric in

the nucleus and the shape of the nucleus were spherical, one would expect that all pixels posi-

tioned the same distance r away from the center of the nucleus would have identical dye incor-

poration kinetics. Similarly, for a symmetric nuclear ellipse, pixels in the xy plane satisfy the

condition:

x2

a2
þ

y2

b2
¼ const ¼ r2 ð1Þ

and would be expected to have identical intensities at any given time (here a, b are principal

axes of the nucleus).

In reality, owing to a non-homogeneous target distribution and other factors affecting dye

mobility and dye transport, pixel intensities are not identical and are noisy. Averaging over

all pixels that satisfy the geometric condition of Eq (1) yields a much more robust time-depen-

dent observable variable Ir(t) = hIr(θ, t)i where averaging is performed over orientation angle

θ.

We note that the actual measured quantities correspond to the integrated intensity in the z-

dimension within the depth of the confocal plane. We take this fact into account while match-

ing experimental and theoretical results (see S1 Text for more details).

Finally, we defined moments of the pixel intensity distribution as follows:

MnðtÞ ¼
P

jIðj; tÞr
n
j

P
jIðj; tÞ

ð2Þ

where I(j, t) and rj are, respectively, time-dependent fluorescence intensity and distance from

the center of mass for pixel j. This representation of the front is robust and can be defined for

any nuclear geometry. This method is often used in image processing and usually referred to

as the image moment method. The main advantage of this method in our case is its invariance

with respect to translation, scale, and rotation [5, 6] due to movements of the cell and micro-

scope stage.

Results

Time course of dye binding

Time traces of overall dye intensity (incorporation), Itot(t), for a typical experiment in live cells

are depicted in Fig 1a. There are two striking features of these traces: (i) the characteristic time

scale of drug incorporation kinetics, and (ii) the broad population distribution in individual

cell kinetics. The dynamics of Hoechst dye incorporation for a typical cell (population average)

is depicted in Fig 1b for various dye concentrations.
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The time scale of 103 sec for micromolar dye concentrations is rather unexpected based on

first principles, which we next address. The simplest way to describe dye incorporation is to

assume that the kinetics is driven by second order binding and first order dissociation reac-

tions:

d
dt

vðtÞ ¼ � ~kon uðtÞ vðtÞ þ ~koff ½c � vðtÞ� ð3Þ

where v and u are free target and drug concentrations, respectively, and c is the concentration

of available binding sites (capacity). The parameters ~kon and ~koff correspond to effective associ-

ation and dissociation rates, respectively. These parameters depend not only on the intrinsic

reaction rates, but also on the spatial disposition of the target molecules, potential competing

binding targets, obstructive barriers to free diffusion, cell membrane properties, and active

transport processes in the cell. It is a straightforward exercise to demonstrate that experimen-

tally observed values of ~kon and ~koff are very different from the corresponding intrinsic

values kon and koff. Let us assume that the extracellular dye concentration is constant over

time, u(t) = u0 (we will see below that this is not always the case). Under this condition, one

readily derives from Eq (3) the following equation:

vðtÞ ¼ vst þ ðc � vstÞe� b t ð4Þ

b ¼ ~kon u0 þ
~koff ¼

~koff ð1þ u0=KdÞ ð5Þ

vst ¼
~koff

b
c ð6Þ

with the steady-state dye concentration vst, dissociation constant Kd, and relaxation rate β. The

intrinsic dissociation rate and dissociation constant for dye-DNA complexes in vitro (in cell

free systems) have been measured by several groups [7, 8]:

koff > 10� 1sec� 1 ð7Þ

Kd < 10� 8 M ð8Þ

Based on these intrinsic parameters, one would, therefore, expect a relaxation rate β faster

than 10−1 sec−1 for any dye concentration u0. For a dye concentration in the micromolar

Fig 1. (a) Recorded time traces of overall dye incorporation, Itot(t), of individual live cells. The dye concentration is

[dye] = 2 μM. (b) Population average of incorporation kinetics, Mean(Itot), for different Hoechst dye concentrations in

cell culture.

https://doi.org/10.1371/journal.pcbi.1006601.g001
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range, u0 * 1 μM, the relaxation rate is dominated by the binding reaction and would be

expected to be 10 sec−1. Experimentally, however, we observed a much slower relaxation rate,

of the order of 10−3 sec−1 (Fig 1a and 1b). We note that replacing the intrinsic association rate

kon with a conventional diffusion-driven association rate does not explain the slowness of the

observed relaxation rate. First, the exponent β is a sum of two terms [see Eq (5)]. Second, a typ-

ical value for a diffusion-driven association rate for a small molecule the size of the dye inter-

acting with DNA (in water) is 109 M−1 sec−1, an order of magnitude faster than the intrinsic

observed association rate, kon. In order to eliminate factors related to evolving cell phenotype

in culture (i.e., cell fate), we also fixed cells with paraformaldehyde and measured fluorescence

over an extended period of time. Of note, we observed no significant effect of fixation on the

dynamics of the population average by comparing the fluorescence of live and fixed cells for

time periods of less than 3 hours.

The time traces of dye incorporation are shown in Figures Aa and Ab in S1 Text for dye

concentrations of 8 μg/ml. Here, we used digitonin (Fig. Aa) selectively or in combination with

Triton X-100 (Fig. Ab) to permeabilize either the plasma membrane alone or all cell mem-

branes, respectively [9]. The results (Fig. Aa) show that mild digitonin treatment at moderate

dye concentrations does not affect incorporation kinetics. Digitonin at high concentration

(50 ug/ml or Triton X-100 (0.1%) treatment), however, has a major impact on incorporation

kinetics compared to the presence of an intact nuclear membrane (Fig. Ab). We observed

acceleration in the initial phase of the incorporation rate by 2.5 − 3.5 -fold with a high concen-

tration of digitonin or with Triton X-100 treatment of fixed cells. Nevertheless, even under

these conditions, the incorporation kinetics is very slow compared to in vitro behavior. Since it

has been reported [9] that even 5 μg/ml digitonin is sufficient to permeabilize the plasma mem-

brane in HeLa cells, we hypothesized that the reason for accelerated kinetics in the presence of

higher concentrations of detergents might not only be a consequence of dissolution of limiting

membrane structures, but also dissolution of other membrane structures in the cell under

these conditions.

We next assessed the effective dissociation rate of dye from cellular DNA by means of ‘cold

chase’ experiments. After overnight incubation with dye, cells were centrifuged and the super-

natant containing unbound dye aspirated and replaced with dPBS, after which fluorescence

intensity was monitored over time. The resulting decay in fluorescence is depicted in Figure B

in S1 Text. Here we compare the fluorescence intensity of cells that were chased with dye-free

PBS (dPBS) (Fig. Ba) to cells that were maintained in dye-containing solution (Fig. Bb). Note

that fluorescence decay was essentially unaffected by the presence of free dye in solution. The

slight and near equivalent fluorescence decay in both conditions is most likely due to dye deg-

radation at room temperature and not dissociation from DNA.

We observed that effectively irreversible tight binding of dye, resulting in fluorescence,

occurs only in intact nuclei (Figure C in S1 Text). Here, lysed cells were incubated with dye,

and after achieving steady-state fluorescence, chased with dye-free buffer as described above.

Unlike intact cells, the fluorescence intensity of the cell lysate decreases instantaneously (on

the time scale of our typical experiments) after the chase and quickly equilibrates at a new

steady-state level.

Spatial distribution of dye binding in individual nuclei

In order to tease out factors contributing to the slow kinetics of dye incorporation, we studied

the spatial distribution of bound dye as a function of time. Surprisingly, we observed a reaction

front propagation in live cells that lasted several minutes (cf. Fig 2a, and Movies (A, B) in

S1 File).

Determinants of drug-target interactions at the single cell level
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The dependence of Ir(t) as a function of time is shown in Figure D in S1 Text for a typical

spheroidal nucleus with principal axes of the nucleus a� b. It is clear from the results of

Figure D that dye incorporation dynamics is non-uniform (at least during the initial several

minutes of monitoring). The observed front is a result of faster incorporation of the dye at the

periphery of the nucleus compared with the center. While this is rather expected behavior,

what is surprising, once again, is the kinetics of front propagation. Free dye diffusion in water

is characterized by an estimated diffusion constant of 500 μM2 sec−1 [10] and, hence, the

Fig 2. (a) Reaction front propagation during staining of MFC10A cells with Hoechst dye. (b) Time traces of moment

of inertia, M2, for individual cells, [dye] = 2 μM, live cells. The reference lines correspond to the theoretical calculation

of M2 for different geometric objects (cf. S1 Text for details). Initially, bound dye is expected to be localized in the thin

outer shell of the nucleus. If the distribution of bound sites were uniform throughout a spheroidal nucleus, the

expected M2 should correspond to that of a solid ball. The thick shell in the reference plot corresponds to (1/4)R
thickness. (c) Time traces of M2 for different dye concentrations, population average, fixed cells.

https://doi.org/10.1371/journal.pcbi.1006601.g002
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expected homogenization time in a nucleus of radius 20 μM is 1 sec, two to three orders of

magnitude faster than what we observed experimentally.

Note that the results in Figure D suggest that after an initial period of homogenization (i.e.,

completed front propagation), the kinetics becomes uniform across the entire nucleus. To

make this observation more apparent, we compared fluorescence intensities of the whole

nucleus and sub-regions of the nucleus at different time points in Figure E in S1 Text (see

S1 Text for the computational details). Here, a sub-region corresponds to 10% of all pixels situ-

ated around the geometric center of each individual nucleus (sub-regions were defined by

“shrinking” the nucleus’s shape in each dimension proportionately and, hence, preserving

nuclear geometry).

Comparison of sub-regional to total fluorescence intensity, indeed, demonstrates slow reac-

tion front propagation dynamics that varies among cells. However, quantification of the

dynamics based on this representation relies heavily on a uniform distribution of target density

and symmetry of the nuclei.

A more direct and rigorous way to quantify and characterize front propagation is to calcu-

late moments of the pixel intensity distribution Mn, a parameter that is not dependent on sym-

metries in geometry and target distribution. Typical time traces of the second moment M2 are

depicted in Fig 2b for individual nuclei ([dye] = 2 μM) and for the population average (Fig 2c,

different dye concentrations). Front propagation initially drives a large second moment (only

a thin shell of the nucleus incorporates dye) towards a steady-state that depends on the DNA

distribution. While the typical time scale of homogenization is significantly faster than the

relaxation time for overall dye intensity, it is still much slower than the 1 sec time scale dis-

cussed above. Note that time traces of M2 depicted in Fig 2b display variability in both relaxa-

tion kinetics and the steady–state achieved, similar to total dye incorporation Itot.
Furthermore, we observed excellent correlation between the relaxation rates of M2 and Itot
time traces (cf. Fig. F in S1 Text).

Reaction-diffusion model

The observed pattern of front propagation and incorporation suggests that the slow kinetics is

driven by slow mixing of the dye in the nucleus. To confirm this hypothesis, we introduce a

reaction–diffusion model that takes into account the interaction between dye and DNA, and

diffusion of free dye. Assuming that DNA binding sites are largely stationary compared to dye

molecules, we derive:

Rðu; vÞ ¼ kon u v � koff ðc � vÞ ð9Þ

@tuðx; tÞ ¼ Dr2
xu � Rðu; vÞ ð10Þ

@tvðx; tÞ ¼ � Rðu; vÞ ð11Þ

Here, R is a local reaction rate and D corresponds to the diffusion coefficient of free dye in

the nucleus. Note that the model implicit in Eqs (9)–(11) corresponds to a mean field descrip-

tion and, therefore, is not suitable for the study of variability in incorporation dynamics across

the nucleus. Eqs (9)–(11) also need to be supplemented by the appropriate boundary condi-

tion:

Drxuðx; tÞ ¼ hm½uext � uðx; tÞ�; x 2 O ð12Þ

where O corresponds to the position of the nuclear membrane, uext is the external dye concen-

tration, and hm is an effective mass transfer coefficient through the boundary O. Unlike other
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parameters that appear in Eqs (9)–(11), the value of hm is difficult to estimate since it depends

on multiple electrostatic and other chemical properties of the cytosol and cell membranes,

such as macromolecular obstructions to diffusion, partition coefficient, dielectric properties,

and specific transporter kinetics. Instead, we can attempt to determine the value of the coeffi-

cient hm by fitting experimental data to Eqs (9)–(12).

Note that under the assumption that Eqs (9)–(12) correctly describe dye incorporation

kinetics, the variability among individual cells is driven by the effective mass transfer coeffi-

cient hm and nuclear radius R. Indeed, all cells are exposed to an identical dye concentration in

cell culture (even if that concentration is itself time-dependent), and all cells (in the same cell

cycle phase) have a similar number of available binding sites.

Upon further consideration, one realizes that the model described by Eqs (9)–(11) is inade-

quate. Dynamics and steady-state prediction based on Eqs (9)–(11) cannot adequately explain

the experimental data (cf. S1 Text). Briefly, in the steady-state, the free extracellular dye con-

centration will be the same as the intracellular concentration, uext = ust. Therefore, the bound

dye concentration in the steady-state is completely insensitive to uext in the range of concentra-

tions higher than Kd * 0.01 μM; however, we observed a sensitivity to dye concentration in

cell culture in the concentration range of 0.1 μM − 10 μM. We note that with the introduction

of continuous extracellular dye depletion through the boundary condition, Eq (12) does not

remedy the inadequacy of the model described by Eqs (9)–(11) (cf. S1 Text for details). Other

model modifications are, therefore, required to account for the observed experimental data.

A local dye concentration in excess of the Kd is a principal reason for the failure of the sim-

ple passive diffusion model of Eqs (9)–(11) to recapitulate the observed experimental data. The

introduction of a barrier (such as a limiting membrane compartment) results in slower kinet-

ics, as we have seen for small values of the Biot number (dimensionless transfer coefficient,

Bi ¼
hm Rn

D ) (cf. S1 Text), but by itself does not lead to a reduction in the local free dye concen-

tration at later time points. This reduction in free dye concentration could be achieved by

active transport of the dye molecules through the cell membrane boundary; however, we

observed that cell fixation with formaldehyde does not qualitatively change the fluorescence

kinetics. Thus, we turned to other possible explanations for the experimental observations,

chief among which is non-specific binding leading to apparent anomalous diffusion.

Buffering by non-specific binding and anomalous diffusion

Another possible explanation for the reduction in free dye concentration is ‘buffering’ by non-

specific (i.e., weaker) binding to other macromolecules in the cytoplasm and nucleus. One

obvious suspect in this regard is DNA itself, since dye binding to different base pair sequences

occurs and results in much lower or undetectable fluorescence.

If such nonspecific binding (low affinity, high capacity) is a correct explanation for the sig-

nificant reduction in free dye concentration inside the nucleus, one would expect much higher

uptake of the dye by the cells during the course of the experiment than expected from specific

binding alone. Indeed, if the dye binds only to the specific high affinity sites that constitute a

small fraction (* 1%) of total DNA, the effect of dye binding to these specific sites on total

dye concentration is expected to be small. In our experimental setting, the number of cells per

well is * 5 � 104, and, therefore, the number of total base pairs per well bptot is * 1.5 � 1014.

This number can serve as the basis for a rough estimate of the number of non-specific binding

sites. For a typical dye concentration of 1 μM in a cell culture well of 150 μl volume, the num-

ber of available dye molecules dyetot is * 9 � 1013, which is comparable to bptot. Provided that

only * 1% of total DNA binds dye molecules specifically [11], depletion of the total dye pool

should be negligible with exclusive specific binding. We, however, observed a significant
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depletion of dye not only at [dye] = 1 μM, but also at higher dye concentrations (vide infra).

This finding is consistent with lower affinity binding of high capacity.

The amount of non-specific binding sites that act as a dye buffer is proportional to cell den-

sity. In order to quantitate this relationship accurately, we used suspended fixed cells, which

allows one to quantitate this relationship accurately and also to monitor the remaining free

dye concentration in cell culture over time. The latter measurement was obtained by cell cen-

trifugation and subsequent analysis of dye in the cell-free supernatant. Subtracting residual

dye concentration from the initial concentration, we can estimate the amount of dye taken up

by the cells and compare it to the amount of DNA in the cells.

In order to assess different fluorescence conditions, we incubated different combinations

of dye concentration and cell density. The resulting fluorescence intensity at late time point

(18 hours of dye incubation) is shown in Figures Ga and Gb in S1 Text, where we compare the

fluorescence intensity from intact fixed HeLa cells (Fig. Ga) and the extrapolated signal from

the calf thymus DNA (CT) titration data set (Fig. Gb). Namely, we extrapolated a CT signal

assuming 6 pg/cell DNA concentration using CT/dye titration data shown in Figure H in S1

Text. Note that high dye concentration leads to quenching of the fluorescence signal (see also

[11]) in CT, for which reason we restricted our analysis to dye concentrations < 8 μg/ml.
The results of Figures Ga and Gb suggest there may exist dye binding molecules in addition

to the specific binding sites in the minor groove of DNA (e.g., other DNA binding sies, RNA,

and/or proteins) that would account for higher fluorescence intensity in cells compared to

cell-free CT standards. The existence of buffering molecules would also explain less tight bind-

ing that manifests in significantly more gradual titration curves for cells compared to cell-free

CT samples.

We estimated residual (free) dye concentration in cell suspension samples using the stan-

dard CT method (N.B., we could not measure free dye by simple light absorption owing to sen-

sitivity limits). Cells were centrifuged at 8000 g, and the collected supernatant was incubated

with a fixed concentration of CT (� 100 μg/ml). The CT standard was obtained by titrating

various dye concentrations in the presence of the same concentration of CT as above (cf.

Figure I in S1 Text). Using this approach, one can estimate the residual free dye concentration

in the cell suspensions. The results are shown in Figures Gc and Gd for the corresponding raw

data (Fig. Gc) and extrapolated values of free dye in supernatant samples (Fig. Gd). Owing to

the second incubation step that is necessary in this approach, the original free dye was diluted

two-fold, which was taken into account in the results in Fig. Gd.

We note that due to limited sensitivity of the assay, the free dye concentration could not be

accurately assessed for values< 1 μg/ml. For this reason, we did not apply extrapolation to

samples with initial dye concentrations less than 4 μg/ml. For high initial dye concentrations,

we observed dye uptake that cannot be explained by specific DNA binding alone. Indeed, for a

cell density of 2.5 � 105 cells/ml, there is approximately 1.5 μg of DNA per ml volume in solu-

tion. The dye uptake by the cells shown in Figure Gd is at least 3 times greater than the total

DNA concentration, 4.5 μg/ml for [dye] = 8 μg/ml. Taking into account that only a fraction of

DNA is available for specific binding (cf. CT titration data, Fig. H in S1 Text), there must exist

(macro)molecules with low binding affinity and much higher concentration (capacity) than

specific DNA sites to account for the magnitude of dye uptake we observed.

Dynamics and steady-state solution of non-specific binding model:

The basis for anomalous diffusion

Before we turn to a numerical simulation of the model that takes into account non-specific

binding interactions, let us demonstrate the resulting behavior in a single cell. It is intuitively
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clear that any binding and dissociation reactions, whether specific or non-specific, can lead to

anomalous diffusion of molecule(s) in the cell by impairing the theoretical unimpeded diffu-

sion of the molecule in the cytosol. (Anomalous diffusion has been studied in some limiting

cases of these interactions under the rubrics of ‘excluded volume’ and ‘fractal structure of the

cell’; for review see e.g., [12, 13]).

We demonstrate anomalous diffusion behavior for a ‘toy’ system: diffusion of a single parti-

cle (drug molecule) in bulk. In what follows, we assume that the particle undergoes a random

walk on a d-dimensional lattice and can interact with particles uniformly embedded in nodes

of the lattice. A diffusing particle can be in one of two possible probabilistic states, p and q (i.e.,

free or bound, respectively). We introduce transition rates k+ and k− between these two states

(which are the microscopic analogues to kon and koff, respectively). The major advantage of the

model compared to a general case is linearity and, hence, the existence of an exact solution.

Indeed, the continuous version of this model yields:

R1ðp; qÞ ¼ kþ pðx; tÞ � k� qðx; tÞ ð13Þ

@tpðx; tÞ ¼ Dr2
xp � R1ðp; qÞ ð14Þ

@tqðx; tÞ ¼ R1ðp; qÞ ð15Þ

subject to boundary and initial conditions:

pðO; tÞ ¼ 0 ð16Þ

pðx; 0Þ ¼ dðxÞ ð17Þ

qðx; 0Þ ¼ 0 ð18Þ

where the boundary O is assumed to be very far from the origin, x = 0.

In this setting, we wish to calculate the mean square displacement hx2i of the particle from

its origin:

hx2i ¼

Z

dx x2 ðpþ qÞ ð19Þ

On very short time scales k+ t� 1, the diffusion is normal and is described by the usual

rate law hx2i = 2 dDt where d is the lattice dimensionality. In the long time regime (k+ + k−)

t� 1, one expects the following asymptotic behavior:

hx2i ’ 2 d D� t ð20Þ

D� ¼ D
k�

k� þ kþ
ð21Þ

The asymptotic behavior Eqs (20) and (21) is due to translational symmetry, namely, diffu-

sion and reaction processes do not depend on the position of the particle on the lattice. Indeed,

since the particle can move only while in a free state, the late time asymptotic diffusion rate is

proportional to the steady-state probability that the particle is free at any given time. In order

to derive an exact solution to the mean square displacement in the case of the toy model Eqs

(13)–(18), we first derive the relaxation dynamics of the free particle state p0(t) in the case
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006601 December 20, 2018 11 / 23

https://doi.org/10.1371/journal.pcbi.1006601


of d = 0 (single site lattice, corresponds to D = 0 in Eqs (13)–(15)):

p0ðtÞ ¼
k�

k� þ kþ
þ

kþ
k� þ kþ

e� ðk� þkþÞt ð22Þ

The exact solution of Eqs (13)–(15) is, therefore, given by:

hx2i ¼ 2 dD
Z t

0

dt p0ðtÞ ð23Þ

hx2i ¼ d½1 � e� ðk� þkþÞt� þ 2 dD� t ð24Þ

d ¼ 2 dD
kþ

ðk� þ kþÞ
2 ð25Þ

Here, the integral over time in Eq (23) corresponds to the total time the diffusing particle

remains in the free state during observation time t. The numerical simulation of the mean

square displacement for Eqs (13)–(15) in 1 d is presented in Fig 3a along with the exact solu-

tion, Eqs (23)–(25).

The mean square displacement in the presence of association and dissociation reactions for

our model exhibits anomalous diffusion in the transient time regime, Eqs (23)–(25). One

expects that if interacting particles are embedded on the lattice in a non-uniform fashion, this

pattern will persist much longer since under these conditions a diffusing particle will explore

different regions of space, and microscopic reaction rates k+ and k− will become position-

dependent.

We next considered a locally non-uniform distribution of interacting particles (which is the

case for DNA binding sites) and compared the time dependence of hx2i to the case of a uni-

form distribution (with identical average k+ values in both cases). One may expect that after

sufficient space exploration time (late time limit), hx2i would exhibit similar asymptotic behav-

ior for both uniform and non-uniform local distributions of interacting particles. In order to

demonstrate this fact, we introduced a local perturbation to the binding rate, kþ ¼ k0
þ
þ DðxÞ.

For periodic local perturbation, Δ/ sin(ωx + θ), simulated mean square displacements hx2i

are shown in Fig 3b.

Even for uniformly distributed interacting particles, the diffusion is anomalous if more

than a single particle performs a random walk on the lattice. This anomalous diffusion occurs

because binding and dissociation rates become time-dependent. Indeed, for a given walker,

the state of interacting particles at any site on the lattice depends on whether other walkers are

engaged at that site.

Disregarding spatial fluctuations, we can formulate a mean-field approximation for the

multiple walkers problem by substituting k+ * kon ρf(t), where ρf(t) describes the time-

dependent concentration of available (i.e., not bound) reactive species interacting with the

walker. For low dye (walker) concentrations, we can estimate the effective diffusion rate using

Eqs (20) and (21):

D� ¼ D
koff

koff þ konr
ð26Þ

D� ¼ D
Kd

Kd þ r
ð27Þ
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where it is assumed that the free reactive species concentration does not change significantly,

ρf(t)� ρ. For the sub-micromolar dissociation constant Kd of non-specific binding reported in

[11] and high intracellular concentrations with lower affinity binding sites ρ� 100 μM, one

may expect a 102 − 103 times slower effective diffusion rate D� compared to the diffusion of

dye in water, D. This slow effective diffusion constant is consistent with the time scale we

observed in our experiments. We note here that the mechanism of retardation of dye transport

through membrane(s) most likely is also driven by non-specific interaction between dye and

lipid molecules or dye and (membrane) protein molecules present in high local concentration.

Using Eq (27) we can approximate the time-dependent changes in effective diffusion con-

stant in the bulk phase by assuming

Deff ðtÞ ¼ D
Kd

Kd þ rðtÞ
ð28Þ

Fig 3. (a) The one-dimensional simulation of the toy model, Eqs (13)–(15). Parameter values are D = 0.088,

k− = 0.035, k+ = 0.58 (uniform). Offset δ has been determined from Eq (25): δ� 0.27. (b) Log-log plot of mean square

displacement for non-uniform distribution of binding rate, kþ ¼ k0
þ
þ DðxÞ. Parameter values are the same as in (a),

and perturbation Δ(x) is periodic with frequencyo ¼ 2p

5
. (c) Conceptual diagram of effective diffusion rate as a

function of time for the full problem. Black H is dye bound to specific DNA binding sites and red H is dye bound to

less specific, high capacity, low affinity DNA binding sites.

https://doi.org/10.1371/journal.pcbi.1006601.g003
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where ρ(t) is a time-dependent spatial average concentration of available binding sites. This is,

of course, a crude approximation that completely ignores spatial fluctuations in interacting

particle density. In order to estimate the time dependence of ρ(t), we (i) assume that all cells

are identical, and (ii) once again ignore spatial fluctuations in the distribution of interacting

particles. Under these assumptions, we derive the autonomous evolution equation for ρ(t):

d
dt
r ¼ � kon ðu0 þ r � rtotÞrþ koff ðrtot � rÞ ð29Þ

rð0Þ ¼ rtot ð30Þ

where we define ρtot as a total amount (capacity) of DNA and u0 is an initial amount of dye

available for each cell. The solution of the nonlinear equation, Eqs (29) and (30), is:

rðtÞ ¼ r1 þ r2 tanh
1

2
b t þ r3

� �

ð31Þ

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½koff þ kon u0 þ kon r0�
2
� 4 ½kon u0� ½kon r0�

q
ð32Þ

where all parameters, ρ1, ρ2, ρ3, and β, depend on reaction rates and initial conditions.

In order to estimate the value of rate β, we consider a case wherein u0� ρ0 * 1 μM. (Note

that here ρ0 corresponds to the average concentration of DNA in culture media, not in the

individual cell). In this case one derives:

b � 2 koff
ffiffiffiffiffiffiffiffiffiffiffiffi
r0=Kd

p
ð33Þ

Experimentally, we observed a very slow effective dissociation rate koff≲ 10−5 sec−1,

(see Fig. B in S1 Text). Hence, the dye depletion rate can be approximated from the above as

β≲ 10−4 sec−1 for sub-millimolar non-specific dissociation constant Kd.

The derivation of the solution Eqs (31) and (32) and its generalization to the case of multi-

ple binding species can be found in S1 Text; also note Figure Ja for a comparison of analytical

and numerical solutions for this case (cf. S1 Text section, Mean-field Solution to Autonomous

Binary Reaction Model).

We also used a numerical simulations scheme that allows us to trace a single “molecule”

(walker) displacement during a stochastic reaction-diffusion process implemented in 3d space.

The typical time traces of hx2i for mobile species in the absence and presence of interactions

with stationary interacting species are shown in Figs. Jc-Je in S1 Text. A conceptual diagram of

the time dependence of ~D is shown in Fig 3c.

In order to incorporate nonspecific binding in the model defined by Eqs (9)–(11), we intro-

duced an additional term that corresponds to an average (lower affinity, relatively) non-spe-

cific binding site. We further assume that this non-specific binding site is immobile compared

to free dye in the time course of the experiment:

Rðu; vÞ ¼ kon u ðc � vÞ � koff v ð34Þ

Rn
ðu; vnÞ ¼ knon u ðc

n � vnÞ � knoff v
n ð35Þ

@tuðx; tÞ ¼ Dr2
xu � Rðu; vÞ � Rn

ðu; vnÞ ð36Þ
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@tvðx; tÞ ¼ Rðu; vÞ ð37Þ

@tvnðx; tÞ ¼ Rn
ðu; vnÞ ð38Þ

Here, the superscript ns refers to a (generic) non-specific binding site. We include an esti-

mate of two additional parameters in the model in Eqs (34)–(38), knon and knoff , from reference

[7] and assume that the concentration of non-specific binding sites is * 100-fold greater than

specific sites, i.e., cn * 100c. The results of numerical simulation of the model described by

Eqs (34)–(38) are shown in Fig 4a–4d.

The corresponding experimental results are shown in Fig 5a and 5b. Numerical simulations

of the full non-specific interaction model support the prediction of the qualitative estimate

above that both dye incorporation and front propagation are consistent with a slow diffusion

process. The front dynamics is not described by a simple exponent as expected in the case of

normal diffusion but, rather, consistent with the anomalous behavior discussed above.

Single cell heterogeneity in drug incorporation

We turn next to the heterogeneity in incorporation kinetics. To begin, we examine the steady-

state levels of dye incorporation. A typical histogram of steady-state fluorescence intensity is

presented in Figure L in S1 Text. This multi-modal distribution is likely to be driven by the cell

cycle, with the two largest peaks corresponding to G1 and G2 phases. The coefficient of varia-

tion (CV) for cells in G1 and G2 states is similar and has typical values of 0.1, excluding outliers

(e.g., segmentation errors in quantifying nuclear fluorescence). We observed that low dye

Fig 4. (a) Numerical simulation (time dependent external concentration uext(t)) of overall dye incorporation per unit

volume for different Biot numbers, uext = 1 μM. (b) Moment of inertia M2 as a function of time, same conditions as in

(a). (c) Numerical simulation of overall dye incorporation per unit volume for different [dye], uext = 1 μM. (d) Moment

of inertia M2 as a function of time, same conditions as in (c).

https://doi.org/10.1371/journal.pcbi.1006601.g004
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concentrations result in very slow kinetics (cf. Fig 1b) for dynamics of the population average.

This slow kinetics is difficult to study experimentally, especially with live cells (tracking indi-

vidual cells becomes difficult with cell motion over long times). In order to explore a possible

link between the variability in kinetics and DNA target state (such as cell cycle phase), we per-

formed a timed double (sequential) addition experiment, viz., dye was added to cell culture in

two sequential steps. If, at the first step of the experiment, the dye concentration is low and it is

experimentally impossible to achieve the steady-state, adding high dye concentrations to the

cells in the second step allows us to achieve steady-state equilibration. Even though conditions

at final equilibrium are different from conditions after the first addition of dye, the DNA bind-

ing capacity can be resolved using this method.

Using these sequential addition experimental data, it is straightforward to confirm the exis-

tence of the buffering molecules discussed above. If the dye were not depleted from cell cul-

ture, one would expect that adding less dye in the second phase of the experiment would result

in a decrease or, in the best case, no change in final fluorescence intensity. This is not the case,

as shown in Figures Ma and Mb in S1 Text. As an example, consider changes in the average

fluorescence intensity for the experimental conditions [dye1] = 0.25 μM, [dye2] = 0.12 μM
shown in Figure Ma (brown curve). Despite adding a lower concentration of dye, the average

fluorescence intensity increases. This behavior persists for higher dye concentrations. For

Fig 5. (a) Itot and (b) moment of inertia M2, for different dye concentrations, population average, fixed cells. (c) Itot
and (d) moment of inertia M2, for different dye concentrations, Triton X-100-treated fixed cells, conditions as in (a)

and (b).

https://doi.org/10.1371/journal.pcbi.1006601.g005
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example, the experimental conditions [dye1] = [dye2] = 1 μM also result in an increase of fluo-

rescence intensity (Fig. Mb, red line).

The steady-state dependence of mean and CV of individual nuclear intensities on dye con-

centration are shown in Figure N in S1 Text. We classified cells into two cycle phases based on

the final fluorescence intensity observed in the sequential addition experiment. While steady-

state intensities display significant variation for different fluorescence conditions (Figures Na

and Nb), their degree of variability (CV) remains roughly constant for a broad range of dye

concentrations (Figures Nc and Nd).

In contrast to the narrow distribution of dye incorporation in the steady-state, relaxation

kinetics toward equilibrium exhibit a much greater variance. To demonstrate this point graph-

ically, we introduce the normalized time-dependent variable I�tot defined as:

I�tot ¼
ItotðtÞ
ItotðTÞ

; ð39Þ

where T is a final dye incubation time point. Time traces of live cells’ raw intensity Itot and nor-

malized intensity I�tot are shown in Fig 6a and 6b, respectively. The estimated half-life of relaxa-

tion ranges from the fastest relaxation rate, τ1/2� 10 min, to the slowest relaxation rate, τ1/2 >

60 (min), for [dye] = 1 μM, a 6-fold difference.

It is clear from Fig 6b that the relaxation rate of incorporation correlates with the cell cycle,

namely, cells in G1 phase achieve equilibrium faster than those in G2 phase. Therefore, the vari-

ability in relaxation rates is actually smaller if one takes into account cell cycle state. Even

allowing for this distinction, the variability in relaxation rate is still several fold higher

(CV * 0.6) than the variability in the steady-state fluorescence intensity (CV * 0.15) (Figs.

Nc, Nd, Oa and Ob in S1 Text).

Membrane components determine variability in drug kinetics

In order to determine the factors controlling the variability in dye kinetics, we performed

experiments on fixed cells with permeabilized membranes (using Triton X-100). The resulting

kinetics is depicted in Fig 6c and 6d. Cells permeabilized with Triton X-100 display fluores-

cence dynamics that is initially significantly faster (about 3-fold on average) than intact cells,

consistent with the microplate reader data discussed above for the HeLa cell line, (cf. Fig 5a

and 5c). The variability in intensity of permeabilized cells appears significantly lower com-

pared to that of intact cells. As a result, late time behavior becomes almost uniform for permea-

bilized cells.

In addition and importantly, the data from the sequential addition experiments show that

variability in kinetics among cells persists after the first addition using non-permeabilized

fixed cells (Fig 6e and 6f). Therefore, the factor(s) that cause variability do not “saturate” dur-

ing the incubation phase. Since the interaction of the dye with membrane(s) is most likely

driven by non-specific association/dissociation reactions, one would expect that saturation of

binding sites would result in more uniform dynamics during the second addition phase of the

experiment. This result suggests that there may exist factor(s) other than transport through the

cell membrane that control(s) variability in incorporation kinetics.

Some of the fixed cells’ time traces exhibit other interesting behaviors. Namely, a few traces

reach peak fluorescence intensity during the incubation period after which their fluorescence

intensity decreases with time. This biphasic behavior is especially apparent for low dye concen-

trations (Fig 6e and 6f). We examined images of cells that exhibit this behavior and discovered

that the nuclei of these cells have region(s) that incorporate dye very quickly compared to the

rest of the nucleus. The very same region is responsible for a decrease in fluorescence signal
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after it peaks. We hypothesized that the regions with fast reaction kinetics correspond to

micro-damaged areas of the nucleus (i.e, exposed/accessible DNA binding sites) owing to fixa-

tion. The effective diffusion and, hence, mixing, of the dye is, therefore, enhanced. Under this

assumption, the peak fluorescence intensity is caused by a decrease in the extracellular dye

concentration during the time course of the experiment (due to depletion of the free dye by

cells discussed above). This observation supports the hypothesis that the reason for accelerated

kinetics in the presence of detergents might not only be a consequence of membrane dissolu-

tion, but also of the presence of other binding species and compartments within the cell.

Doxorubicin binding and implications for pharmacotherapy

We next investigated whether anomalous and slow diffusion in cells is unique to Hoechst dye.

To this end, we studied the incorporation dynamics of another DNA binding drug, doxorubi-

cin, a potent cancer chemotherapeutic agent. In order to characterize doxorubicin

Fig 6. (a) Time traces of overall dye incorporation ([dye] = 1 μM) of individual live cells, color corresponds to final

intensity. (b) Normalized intensity, I�tot , colored as in (a). Traces of normalized intensity, I�tot, [dye] = 1 μM, (c) fixed

cells + PBS; (d) fixed cells + Triton X-100. Traces of individual cell normalized fluorescence intensity, I�tot , for the

following conditions in the double incubation protocol: (e) [dye1] = 0.5 μM, [dye2] = 0.5 μM, and (f) [dye1] = 0.5 μM,

[dye2] = 0.25 μM.

https://doi.org/10.1371/journal.pcbi.1006601.g006
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incorporation, we employed an indirect method based on doxorubicin-DNA intercalation

competition with Hoechst dye 33342 [14, 15]. Since the total pool of DNA sites specific for

binding to doxorubicin and Hoechst dye is limited, one may expect that dye fluorescence in

cells would depend on the local concentration of doxorubicin.

We, indeed, observed this antagonistic (competitive) effect at the single cell level. If doxoru-

bicin is delivered at the same time or later than dye to cultured cells, we observed a peak pat-

tern in time traces shown in Fig 7a and 7b.

The peak position corresponds to the point at which doxorubicin concentration in the

nucleus becomes high enough to compete effectively with bound dye for specific DNA binding

sites. The timing of the peak fluorescence depends on relative dye and doxorubicin concentra-

tions in cell culture, as can be seen in the case of high or low dye concentrations shown in

Fig 7a and 7b, respectively. (A similar pattern is observed in fixed cells, Figs. Qa and Qb in

S1 Text).

If cells are pre-treated with doxorubicin several hours prior to dye addition, however, traces

exhibit simple plateau saturation (which is [Dox]-dependent). This observation leads to the

conclusion that it takes a fairly long period of time for doxorubicin to achieve sufficient intra-

cellular concentrations to compete effectively with Hoechst dye. As in the dye case, this time

period is [Dox]-dependent (see timing of peaks in Fig 7a). Thus, slow incorporation is most

likely a common feature of DNA binding drugs for exactly the same reasons as for Hoechst

dye: (i) high local DNA concentrations, and (ii) non-specific interactions with other macro-

molecules in cells. Since these factors affect both dye and doxorubicin molecules similarly, one

may expect that the kinetics of dye incorporation can be used as a proxy for doxorubicin

kinetics.

Fig 7. Population average Itot time dependences for different doxorubicin concentrations in live cell culture, (a) [dye] = 8 μM and

(b) [dye] = 0.25 μM. (c) and (d): Population average CVp, same conditions as above.

https://doi.org/10.1371/journal.pcbi.1006601.g007
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Surprisingly, dye homogenization in cells does not seem to be affected by co-incubation

with doxorubicin. This conclusion is supported by the time traces of either moment of inertia

M2 introduced above or another proxy for homogenization, the coefficient of variation in indi-

vidual nuclear pixel intensities CVp. The observed dynamics of CVp is shown in Fig 7c and 7d,

and unlike total intensity of incorporation (Fig 7a and 7b), is largely [Dox]-independent. (A

similar pattern is seen in fixed cells, Figs. Qc and Qd in S1 Text). The most likely explanation

for this behavior is the very similar effective diffusion properties of dye and doxorubicin, since

one would otherwise expect non-uniform displacement of bound dye molecules throughout

the nucleus.

Doxorubicin is, of course, a clinically used chemotherapeutic agent and, hence, one can

quantify drug efficacy in individual cells by assessing the time course of DNA damage after

incubation. We used γ-H2Ax antibody intensity as a proxy for DNA damage in cells. To sim-

plify phenotype characterization, we dichotomized DNA damage by introducing an assay

threshold. The threshold was set based on a comparison of γ-H2Ax antibody intensity in doxo-

rubicin-treated and untreated conditions. First, we observed that dye acts as a buffer at high

dye concentration by competing for binding with doxorubicin in the DNA minor groove

(Fig 8a and 8b).

For high dye concentration (16 μM), the extent of DNA damage is below the threshold (cor-

responding to an intensity of 100 arbitrary units of γ-H2Ax antibody) for most cells. By con-

trast, incubation with low dye concentration (0.5 μM) leads to extensive DNA damage for a

large fraction of cells. This result is consistent with the peak pattern for dye and doxorubicin

co-incubation discussed above, which is also driven by competition for DNA binding. In addi-

tion, slow dynamics of drug incorporation leads to a higher extent of DNA damage, which is a

non-trivial effect. To demonstrate this phenomenon, we plotted time traces of dye fluorescence

intensity in individual cells treated with doxorubicin, as depicted in Fig 8c and 8d. Most of the

cells that undergo DNA damage are in G2 phase, which is typically characterized by slower

incorporation kinetics compared to cells in G1 phase; however, cells that exhibit a lesser degree

of DNA damage in G2 phase typically achieve peak dye fluorescence intensity faster. The tem-

poral position of the peak is related to the rate of intracellular doxorubicin accumulation.

Hence, counterintuitively, cells are more likely to escape DNA damage if doxorubicin incorpo-

ration dynamics is rapid.

Discussion

We observed several striking features of binding kinetics in our model system: First, both

binding and dissociation of dye are much slower (by three orders of magnitude) in cells than

in cell-free systems. In fact, the effective dissociation rate is so slow that binding is essentially

irreversible. We show that this dye “trapping” in the nucleus is due to (i) high local DNA con-

centrations; (ii) higher capacity, lower affinity interactions with other macromolecules; and

(iii) lipid membrane(s) partitioning and permeability characteristics. Second, we observed

reaction front propagation by monitoring the spatial distribution of the dye in the nucleus

over time. Temporal dynamics of front propagation is also slow compared to the dye diffusion

rate in water, and is most likely controlled by the same factors as mentioned above. Third,

slow drug intake/extrusion is not unique to the dye. We demonstrate that a clinically used

drug (doxorubicin) that has a binding mechanism similar to the Hoechst dye also exhibits

slow binding kinetics. Finally, we demonstrate that drug incorporation dynamics varies signif-

icantly among individual cells. On the characteristic time scales of our experiments (minutes

to hours), some of the heterogeneity is due to the effects of the cell membrane compartments

in the cell and their kinetic effects on dye entry into the cytosol and nucleus. We observed a
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correlation between the dynamics of drug incorporation and its efficacy in causing DNA dam-

age using doxorubicin as a drug and dye dynamics as a proxy for the kinetic properties of indi-

vidual cells.

Effectively irreversible binding has a very interesting implication in terms of distribution of

incorporated drug between cells. For sub- or even micromolar drug concentrations, one

expects that cells with fast incorporation kinetics would effectively serve as a sink reducing

drug availability to cells with slower kinetics. This behavior might be interpreted as “passive”

drug resistance in subpopulations of cells. There might be nothing biologically unique about

this cell subpopulation; however, the existence of cells that can take up drug rapidly is a driving

factor for the drug-resistant subpopulation. The possible clinical solution in this case might be

completely counterintuitive. Instead of improving targeting of passively resistant cells, the

drug-sensitive subpopulation of resistant cells needs to be treated with reagents that decrease
their drug incorporation rate. A similar notion of the effective sink might be applicable on a

Fig 8. Extent of DNA damage due to doxorubicin treatment vs. Hoechst dye incorporation. Cells were incubated with [Dox] = 1

μM and (a) [dye] = 0.5 μM or (b) [dye] = 16 μM correspondingly. Time traces of individual cells incubated with [Dox] = 1 μM and (c)

[dye] = 2 μM or (d) [dye] = 4 μM. Blue colored traces correspond to a lower extent of DNA damage as determined using the marker

γ-H2Ax. Red colored traces correspond to a higher extent of DNA damage.

https://doi.org/10.1371/journal.pcbi.1006601.g008

Determinants of drug-target interactions at the single cell level

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006601 December 20, 2018 21 / 23

https://doi.org/10.1371/journal.pcbi.1006601.g008
https://doi.org/10.1371/journal.pcbi.1006601


larger spatial scale to cells in solid tumors. Some cells (e.g., those in outer layers) may act as a

shield, taking up the drug, which, in turn, may facilitate drug resistance of the inner layers of

cells in the tumor.

Non-specific interactions are often short range, driven by chemical reaction requiring close

proximity of interacting species. Owing to a crowded intracellular environment, these interac-

tions can effectively trap drug molecules in subcellular regions with high local concentrations

of non-specific binders. Hence, non-specific interactions between drug and macromolecules

present in the cell may result in slow and anomalous intracellular diffusion of drug molecules.

Since the spatial organization of the intracellular micro-environments depends on cell cycle

phase, one may expect that drug incorporation kinetics will also be cell cycle-dependent.

The heterogeneity of drug incorporation is not driven exclusively by cell cycle state. We

observed a high degree of variability in kinetics for both G1 and G2 subpopulations of cells.

While active transport has been shown to be an important factor contributing to drug incorpo-

ration efficacy on long time scales, we have not detected significant changes in short-term

kinetics between live and fixed cells at the population average level (at least not in HeLa and

MFC10A cell lines). Hence, other factors, such as relative spatial organization of drug targets

and non-specific interacting molecules, likely drive variability in incorporation kinetics and

account for anomalous diffusion characterization of the drug.

Slow drug transport through the plasma membrane is often empirically taken into account

during drug design and optimization stages. We observed, however, that a slow diffusion pro-

cess occurs within a cell, as well, at least for cationic DNA-binding small molecules, such as

Hoechst dye and doxorubicin. The immediate consequence of this slow diffusion is a dramatic

mismatch between kinetic reaction rates in vivo and in vitro, which we observed experimen-

tally. Hence, we believe that non-specific interactions have to be taken into account in order to

describe drug kinetics adequately. By so doing, it is likely that different strategies will be

needed to optimize drug efficacy and minimize drug resistance.
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