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Abstract: The function of the nuclear receptor (NR) in breast cancer progression has been 

investigated for decades. The majority of the nuclear receptors have well characterized 

natural ligands, but a few of them are orphan receptors for which no ligand has been 

identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of 

orphan receptors, regulates various cellular and pathological activities. RORα is commonly 

down-regulated and/or hypoactivated in breast cancer compared to normal mammary 

tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells,  

in vitro and in vivo. Activity of RORα can be categorized into the canonical and  

non-canonical nuclear receptor pathways, which in turn regulate various breast cancer 

cellular function, including cell proliferation, apoptosis and invasion. This information 

suggests that RORα is a potent tumor suppressor and a potential therapeutic target for 

breast cancer. 
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1. Introduction 

Inactivation of tumor suppressors is essential for cancer development and progression. It has been 

shown that a wide variety of tumor suppressors, such as P53 [1], PTEN [2] and some microRNA [3], 
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have the potential to be used as therapeutic targets. Breast cancer is one of the most common 

malignancies of women worldwide. In 2010, global incidence of breast cancer was about  

1,643,000 cases and breast cancer-related women deaths were about 425,000 [4]. Therefore, there is 

urgent need to identify novel therapeutic targets to fight this mortal disease. We and others recently 

showed that the orphan nuclear receptor RORα is downregulated in cancer tissues and cell lines and 

that expression of RORα results in tumor suppressive activities [5–7], suggesting that RORα is a 

potential drug target for breast cancer treatment.  

Aberrant activation of nuclear receptors (NR) during breast cancer progression was observed many 

years ago. The clinical value of NR as a therapeutic target has already been demonstrated. For 

example, estrogen receptor-α (ERα), overexpressed in ~70% of breast cancers, is an effective target for 

the treatment of breast cancer [8]. In contrast, most breast cancers show a down-regulation of retinoic 

acid receptor (RAR) expression [9], while activation of RAR in breast cancer cells appears to have 

growth-inhibitory activity [10]. These findings raise hope that perhaps NR may provide new options to 

prevent progression in human breast cancer.  

There are 48 members in the human NR superfamily, which includes receptors for thyroid 

hormone, steroid hormones, various lipids and oxysterols. The majority of nuclear receptors have well 

characterized natural ligands, but a few of them are orphan receptors for which no ligand has been 

identified [11]. Retinoid orphan nuclear receptor (ROR), a subfamily of the orphan nuclear factor 

family, is so-named because of sequence similarities to the retinoic acid receptor (RAR) and the 

retinoid X receptor (RXR) [12,13]. In the early 1990s, RORα was identified as the first member of 

ROR subfamily of orphan receptors. Expression of RORα was found in multiple tissues and cells, 

including brain, muscle, colon, heart, skin, lung, spleen, leukocytes and mammary epithelial  

cells [14,15]. Aberrant activation of RORα influences various cellular pathologies, such as 

osteoporosis, autoimmune diseases, asthma and obesity [16–19]. Furthermore, reduced expression and 

hypoactivation of RORα in several human tumors, combined with their functional role as tumor 

suppressors, make RORα an attractive target for cancer therapy. 

2. RORα Structure 

RORα shows a domain structure similar to other NRs with four major functional domains  

(Figure 1A). The A/B region refers to amino-terminal of RORα. The C region, highly conserved 

among the ROR family members, is the DNA binding domain (DBD). A relatively short region, D, or 

the hinge domain, links the C region to the E region. The E region is the ligand binding domain (LBD); 

in addition to ligand recognition and binding, the LBD also regulates ligand-dependent transcriptional 

activity. The F region, a carboxy-terminal to the LBD, exists in some NRs [20]. There are four human 

RORα isoforms, referred to as ROR (α1–α4), while only two isoforms, α1 and α4, have been identified 

for mice [11]. Isoforms of RORα vary in their A/B domains and display different DNA recognition 

and transactivation features [13]. Crystallographic studies of RORα suggest that sterols, such as 

cholesterol, cholesterol sulfate and 7-dehydrocholesterol, may act as a natural ligand of this  

receptor [21,22]. Recent research has demonstrated that, in human endometrial cells, cholesterol 

sulfate can regulate expression of the RORα responsive gene NR1D1 without binding to the RORα 
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receptor itself, suggesting that cholesterol sulfate may regulate RORα responsive gene expression, not 

as a ligand for RORα [23]. 

Figure 1. Schematic structure of RORα and interaction of RORα with other proteins 

andpathways. (A) RORα shows a typical domain structure with four major functional 

domains. The A/B region refers to amino-terminal of RORα. The C region, highly 

conserved among the ROR family members, is the DNA binding domain (DBD). D is the 

hinge domain and links the C region to the E region. The E region is the ligand binding 

domain (LBD); (B) Canonical (red) and non-canonical (blue) nuclear receptor activities 

that may contribute to tumor suppressor function of RORα. 

  

3. RORα Function in Human Breast Cancer 

The RORα gene, which is comprised of 15 exons, covers a relatively large 730 kb genomic region. 

It maps to the middle of chromosome 15q22.2, a region that is highly unstable with frequent breaks 

and gene rearrangements [24]. Microarray data showed that mRNA levels of RORα are significantly 

reduced in many cancers (Table 1). RORα has also been identified as one of the methylation-silenced 

genes in gastric cancer cell lines [25], which favors the concept that reduced RORα expression 

promotes cancer progression. Downregulation of RORα phosphorylation was observed in colon  

cancer [26]. While RORα mRNA has been detected in both ER-positive and ER-negative human 

breast cancer cells [27], the RORα gene appears to be down-regulated in breast cancer compared to 

normal mammary tissue [24,28]. These results suggest that deregulation of RORα contributes to the 

development of breast cancer. 

RORα plays an important role in suppressing malignant phenotypes in culture and in vivo. Recently, 

we reported that inhibition of RORα expression was associated with disruption of polarized acinar 

structure, the normal cytoarchitecture for breast tissue. Restoration of RORα expression in breast 

cancer cells resulted in morphologic characteristics associated with less aggressive tumor types:  

non-branched round spheroid structures in 3D culture, with a colony size and invasive capacity that 

was significantly reduced [5]. Since disruption of polarized acinar structure is an important early event 

for breast cancer development, this study suggested that reduced RORα expression contributes to the 

earliest stages of breast cancer development. In addition, expression of RORα in the mammary 

epithelial cell line MCF12F significantly inhibited cell proliferation [24]. Activation of RORα in 

prostate cancer cells affected cell cycle distribution, inducing a decrease in the S phase and a 
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significant decrease of cell proliferation [7]. A recently study showed that introduction of RORα led to 

an increase of Dox-induced apoptosis in HCT-116 p53+/+ colon cancer cells [6]. Together, these 

results indicate that RORα is a potent tumor suppressor.  

Table 1. Analyzing published microarray datasets show that the mRNA levels of RORα is 

downregulated in various cancers; numbers in the table show how many datasets passed 

the threshold (cancer vs. normal: 1.5 fold change and p < 0.05). Blue represents the 

datasets in which the mRNA levels of RORα are downregulated in cancer tissues compared 

to normal tissues, while the datasets with upregulated RORα in cancer tissue are shown  

in red.  

Analysis type by cancer Normal vs. Cancer 

bladder cancer 1 
brain and CNS cancer 2 

breast cancer 9 2 
cervical cancer 3 

colorectal cancer 5 
esophageal cancer 7 

gastric cancer 2 
head and neck cancer 5 

kidney cancer 1 1 
leukemia 9 2 

liver cancer 1 
lung cancer 2 1 
lymphoma 4 4 
melanoma 3 1 
myeloma 1 1 

other cancer  9 
ovarian cancer 1 

pancreatic cancer 2 
prostate cancer 2 

sarcoma 1 1 
significant unique analyses 68 15 

total unique analyses 381 

4. Potential Pathways that Mediate the Tumor Suppressive Activities of RORα 

4.1. Canonical versus Non-Canonical Pathways 

RORα activates nuclear receptor pathways in cancer cells that can be categorized as canonical and 

non-canonical (Figure 1B). Through these pathways, RORα regulates a variety of cellular activities, 

such as proliferation, invasion and cell polarization. The canonical RORα pathway involves binding of 

RORα to ROR response elements (ROREs). ROREs are the specific DNA sequences, AT-rich 

consensus motifs, in the regulatory region of the target gene [13]. Binding of RORα to the RORE 

modulates gene transcription and ultimately results in a change in the amount of protein produced. The 

most distinctive difference between the canonical and non-canonical pathways is the ability of the  
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non-canonical pathway to influence gene expression without binding to ROREs. The mechanism by 

which RORα influences gene transcription is post-translational modifications and interaction. The 

significance of this pathway has been emphasized in recent studies. 

4.2. Role of SEMA3F  

SEMA3F is a tumor-suppressive microenvironmental factor that is often inactivated in metastatic 

cancer [29,30]. This factor has recently been characterized as a RORα-targeted gene [5]. Expression of 

RORα in breast cancer cells significantly induces SEMA3F transcription and inhibits the mammary 

tumor invasion in 3D culture [5]. RORE have been identified in the promoter region of the SEMA3F 

gene. Deletion of the RORE in the SEMA3F promoter significantly reduced the transcriptional 

activation driven by the SEMA3F promoter, indicating that RORα regulates transcription of SEMA3F 

through canonical nuclear receptor pathways. Moreover, silencing SEMA3F expression in  

RORα-expressing breast cancer cells rescues the invasive phenotypes in 3D culture, suggesting that 

tumor suppressor function of RORα is at least partially conferred by SEMA3F. On the other hand, 

reducing SEMA3F expression has little effect on tumor growth, suggesting that the tumor suppressor 

function of RORα involves other target genes and pathways as well [5]. 

4.3. Role of Wnt/β-Catenin  

RORα activity is regulated by various post-translational modifications, including phosphorylation, 

ubiquitination and SUMOylation. Lee and colleagues showed that Wnt5a/PKC induces 

phosphorylation of RORα on serine residue 35 [26]. Wnt signaling can use the canonical  

(β-catenin dependent) and non-canonical (β-catenin independent) pathways. The canonical Wnt  

signaling pathway has been implicated in supporting breast transformation to cancer and in tumor  

progression [31,32]. Wnt5a activates non-canonical Wnt signaling and directs a breast  

cancer-suppressing effect [33,34]. Phosphorylated RORα, induced by Wnt5a/PKC pathway activation, 

attenuates the canonical Wnt signaling pathway. The inhibition is accomplished through binding of 

RORα to β-catenin, which suppresses the transcription of Wnt/β-catenin target genes. The 

transrepression mechanism of RORα on β-catenin is achieved, at least in part, by competition with a 

subset of coactivators for β-catenin binding and, possibly, recruitment of histone lysine 

methyltransferases, which results in transcriptional repression [26]. Therefore, RORα may suppress 

breast cancer progression by inhibiting Wnt/β-catenin target genes. 

4.4. Role of p53  

It is well-established that p53-regulated apoptosis and DNA repair are important in preventing 

cancers and that aberrant p53 function promotes breast cancer development and progression [35,36]. 

RORα has recently been identified as a direct p53 target gene. DNA damaging agents, such as 

doxorubicin and ionizing radiation, induce RORα expression in a p53-dependent manner [6]. 

Interestingly, RORα can also enhance DNA damage-induced apoptosis through p53 in colon cancer 

cells. It is revealed by genome-wide analysis that RORα could regulate p53-responsive genes, which 

mainly influence apoptosis. Further study also showed that RORα regulates p53 stability and p53 
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transcription activation in a HAUSP/Usp7-dependent manner [6]. Although enhancing p53 target gene 

by RORα is also reported in hepatocellular carcinoma cells [37], it remains to be determined whether 

RORα could stimulate breast cancer cell apoptosis via such an interaction with p53. 

4.5. Role of Hypoxia/Angiogenesis  

Clinical evidence showed that hypoxia is associated with angiogenesis and a poor prognosis in 

patients with invasive breast cancer [38]. Other in vivo studies demonstrated that ischemia-induced 

angiogenesis was enhanced in RORα-deficient mice. RORα (sg/sg) mice had an increased angiogenic 

score and capillary density within the ischemic hindlimb, suggesting that RORα is a potential inhibitor 

of angiogenesis. In addition, more extensive angiogenesis correlated with an increased expression of 

endothelial nitric oxide synthetase (eNOS ) protein, whereas the level of the anti-angiogenic cytokine 

IL-12 was significantly reduced [39]. These observations suggest that RORα may participate in the 

control of gene transcription in response to hypoxic stress and functions as an important negative 

modulator of angiogenesis in breast cancer. HIF-1α is involved in tumor angiogenesis and metastasis 

by regulating genes involved in response to hypoxia [40]. Transcriptional activation of RORα4, but not 

RORα1, is induced under hypoxic conditions by HIF-1α in human hepatoma cells [41,42]. These 

studies suggest that RORα may be a potential target of hypoxic stress and is involved in the regulation 

of angiogenesis.  

4.6. Role of NF-κβ  

Emerging evidence demonstrates that RORα is a crucial regulator of the NF-κB pathway [43,44]. 

Ectopic expression of RORα in human primary smooth-muscle cells inhibits NF-κB-dependent 

promoter activity and NF-κB-responsive genes, such as IL-6, IL-8 and COX-2. Further analysis  

showed that RORα negatively interferes with the NF-κB signaling pathway by activating IκBα  

transcription [44]. In addition, it has been shown that NF-κB-responsive genes IL-6 and COX-2 can be 

up-regulated to Rev-ERBα [45], while the activity of Rev-ERBα can be competitively inhibited by  

RORα [46]. Transcription factor NF-κB regulates a variety of cancer related processes, including 

immune-response, cell survival and cancer invasion [47]. Elevated NF-κB binding activity has been 

observed in both breast cancer cell lines and primary human breast cancer tissues and contributes to 

the activation of cell-cycle related genes and various microenvironmental cues [48–50]. Thus, it is 

worthwhile to explore whether the RORα suppresses breast cancer progression through inhibition of 

the NF-κB signaling pathway. 

4.7. Role of Circadian-Related Genes 

Disruption of circadian rhythms is associated with an elevated risk of breast cancer [51,52]. It has 

been demonstrated that SNPs of NPAS2 and downregulation of PERs correlates with breast cancer 

development and progression [53,54]. Furthermore, PER2 deficient mice are prone to develop cancer 

in response to radiation [55]. These results suggest that aberrant activation of circadian genes 

contributes to breast cancer development. RORα-deficient mice exhibit aberrant circadian behavior, 

indicating that RORα is a potent regulator of circadian rhythms. It has been shown that RORα 
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regulates Bmal1 expression and consolidates daily locomotor activity in the suprachiasmatic  

nucleus [56]. Moreover, RORE has been identified in the promoter regions of BMAL1 and  

NPAS2 [57,58], indicating that the RORα regulates circadian genes expression through the canonical 

pathway. However, it remains to be determined whether RORα modulates circadian rhythms in breast 

cancer cells and how disruption of circadian rhythms promote breast cancer progression.  

4.8. Interaction with Other NR  

Cross-talk with or modulation of other nuclear receptors, such as estrogen receptor (ER), is another 

important function of RORα. It has been shown that RORα cooperates with ER to induce cyclin D1 

expression in the ER-positive breast cancer cell line MCF-7 [59]. RORα also significantly augmented 

the expression and activity of aromatase (an enzyme complex that catalyzes the conversion of 

androgens to estrogens) in MCF-7 cells [60]. Although RORα appears to be a potential ERα partner, 

RORα seems to be expressed differently than ER in breast cancer cells; no correlation was  

found between RORα expression and ERα status [61]. Interestingly, we found that RORα imparts  

some cancer-suppressive activities in the ER-negative breast cancer cell lines MDA-MB-231,  

MDA-MB-157 and T4-2, such as inhibition of cell migration and proliferation. In vivo, tumors formed 

by RORα-expressing MDA-MB-231 cells were also much smaller than tumors formed from the  

wild-type cells [5]. But, the same treatment has little effect on ER positive cell lines (data not shown). 

Thus RORα may have different activity in ER-positive and -negative breast cancer cells, and the 

mechanism whereby RORα differentially regulates cellular response in ER-positive and -negative cells 

remains to be elucidated.  

It is most likely that tumor suppressor function of RORα is mediated by multiple pathways and 

involves canonical and non-canonical nuclear receptor activity. In addition, crosstalk among those 

pathways has been observed in vitro and in vivo; therefore, an integrated view of RORα downstream 

signaling is crucial for our understanding of roles of this protein in breast cancer progression.  

5. ROR α as a Drug Target 

RORα-targeted therapeutics may efficiently suppress certain types of tumors, thus it is crucial to 

identify potent ligands or agonists that have the potential to be used in cancer treatment. In fact, a 

recent pharmacokinetic study indicates that SR1078, a synthetic agonist for the orphan nuclear 

receptors RORα and RORγ, induces expression of two ROR target genes, glucose-6-phosphatase and 

FGF21 in mice [62]. Treatment with SR1078 enhances apoptosis of liver cancer cells in culture, 

suggesting that the RORα agonist may be a potent inhibitor of cancer progression [37]. In addition, 

melatonin, secreted by the pineal gland, has been suggested as the natural ligand for RORα [63,64]. 

Increasing evidence suggests that melatonin has the potential be used in breast cancer prevention and 

therapeutically [52,65]. Melatonin treatment induced apoptosis in the murine colonic cancer; the effect 

was diminished by RZR/RORα antagonist CGP 55644 [66,67]. Thus, it is important to explore 

whether the RORα plays a key role in melatonin-mediated inhibition of cell invasion and proliferation 

of breast cancer cells. Hopefully, RORα-specific, clinically-useful agonists for breast cancer treatment 

will be identified and tested in the future. 
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6. Conclusions 

The orphan nuclear receptor RORα has recently been identified as a potent tumor  

suppressor [5,7,26,67]. Expression of RORα is downregulated in breast cancer tissues and cell lines. 

Restoration of RORα expression in cancer cells suppresses the malignant phenotypes in culture and  

in vivo [5]. Based on these observations and given the recent progress characterizing RORα agonists, 

further investigations of tumor suppressor activities by RORα in breast cancers may lead to the 

discovery of novel therapeutic targets for this mortal disease.  
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