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We consider a discrete-time Ricker population model with the Allee effect under the random disturbances. It is shown that noise
can cause various dynamic regimes, such as stable stochastic oscillations around the equilibrium, noise-induced extinction, and a
stochastic trigger. For the parametric analysis of these regimes, we develop a method based on the investigation of the dispersions
and arrangement of confidence domains. Using this method, we estimate threshold values of the noise generating such regimes.

1. Introduction

Environmental noise is an inevitable attribute of any living
system. Investigations of noise-induced phenomena in bio-
logical systems attract the attention of many researchers [1–
4]. Obviously, noise changes the quantitative properties of
the systemdynamics.Moreover, even small deterministic dis-
turbances and stochastic fluctuations can cause abrupt catas-
trophic qualitative shifts in ecosystems [5–7]. Theoretically,
such shifts can be attributed to the multistability of the
corresponding nonlinear mathematical models. Due to non-
linearity, these dynamic models exhibit coexisting attractors,
nonuniformity of phase portraits, and high sensitivity of
boundaries of basins of attraction. Under the random dis-
turbances, a phase trajectory can cross a separatrix between
basins of the attraction of coexisting attractors and exhibit
new dynamical regimes [5, 8]. In spatial population models,
noise can generate pattern formations [9–11].

A classic example of noise-induced phenomena in ecosys-
tems is an extinction of the population in the stochastic
models with the Allee effect.TheAllee effect means that there
is a threshold population level below which the population
goes to extinction. Deterministic population models with
Allee effect are fairly well studied [12–18]. An analysis of

stochastic population continuous-timemodels with the Allee
effect is presented in [19–23].

In the present paper, we study Allee effect in the
discrete-time population Ricker model forced by additive
and parametric noises. For discrete-time systems, an exhaus-
tive mathematical description of the stochastic dynamics in
terms of probabilistic distributions requires a solution of the
Frobenius-Perron equation [24, 25]. An analytical solution of
this functional equation even for one-dimensional systems is
possible only in very special cases. In these circumstances,
for the description of stochastic attractors, a method of direct
numerical simulation is widely used. This method requires a
lot of computing power, so a development of the analytical
approximations is a highly relevant area of research [26–28].

In the present paper, for the general one-dimensional
discrete-time systems with parametric noise, we develop a
new analytical method for the approximation of the disper-
sions of randomstates around stochastically forced equilibria.
Mathematical background of thismethod is shortly presented
in Section 2.

In Section 3, for the modified Ricker population model
with Allee effect, we study probabilistic mechanisms of the
noise-induced extinction and generation of stochastic trigger
regime. Here, we demonstrate constructive abilities of the
new approach based on confidence domains technique.
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2. Analysis of Stochastic Equilibrium

Consider a deterministic system

𝑥
𝑡+1

= 𝑓 (𝑥
𝑡
) , (1)

where𝑓(𝑥) is a smooth scalar function. It is supposed that the
system (1) has exponentially stable equilibrium 𝑥. It means
that 𝑓(𝑥) = 𝑥 and |𝑓


(𝑥)| < 1.

Along with the deterministic system (1), consider a
stochastically forced system

𝑥
𝑡+1

= 𝑓 (𝑥
𝑡
) + 𝜎 (𝑥

𝑡
) 𝜉
𝑡
, (2)

where 𝜎(𝑥) = (𝜎
1
(𝑥), . . . , 𝜎

𝑛
(𝑥)) is a smooth 𝑛-vector func-

tion and 𝜉
𝑡
= (𝜉
1,𝑡
, . . . , 𝜉

𝑛,𝑡
)
⊤ is uncorrelated 𝑛-vector random

process with parameters E𝜉
𝑡

= 0, E(𝜉
𝑡
𝜉
⊤

𝑡
) = 𝑉, 𝑡 =

0, 1, . . .. Here, 𝑛 × 𝑛-matrix 𝑉 defines second moments of the
coordinates of the vector 𝜉

𝑡
. The function 𝜎(𝑥) describes a

dependence of the intensity of random disturbances on the
state of the system.

For the deviations 𝑧
𝑡

= 𝑥
𝑡
− 𝑥 of the system (2) states

𝑥
𝑡
from the equilibrium 𝑥, the following first approximation

system holds:

𝑧
𝑡+1

= 𝑓

(𝑥
𝑡
) 𝑧
𝑡
+ (𝜎 (𝑥) + 𝜎


(𝑥) 𝑧
𝑡
) 𝜉
𝑡
, (3)

where 𝜎

(𝑥) = (𝜎



1
(𝑥), . . . , 𝜎



𝑛
(𝑥)). It follows from (3) that

𝑧
2

𝑡+1
= [𝑓

(𝑥)]

2

𝑧
2

𝑡
+ 2𝑓

(𝑥) [𝜎 (𝑥) + 𝜎


(𝑥) 𝑧
𝑡
] 𝑧
𝑡
𝜉
𝑡

+ 𝜎 (𝑥) 𝜉
𝑡
𝜉
⊤

𝑡
𝜎
⊤
(𝑥)

+ [𝜎 (𝑥) 𝜉
𝑡
𝜉
⊤

𝑡
𝜎
⊤

(𝑥) + 𝜎

(𝑥) 𝜉
𝑡
𝜉
⊤

𝑡
𝜎
⊤
(𝑥)] 𝑧

𝑡

+ 𝜎

(𝑥) 𝜉
𝑡
𝜉
⊤

𝑡
𝜎
⊤

(𝑥) 𝑧
2

𝑡
.

(4)

Consider the dynamics of the first two moments 𝑚
𝑡

=

E𝑧
𝑡
, 𝐷
𝑡
= E𝑧2
𝑡

for the system (3). From (3) and (4), due to
the noncorrelatedness of 𝑧

𝑡
and 𝜉
𝑡
, it follows that

𝑚
𝑡+1

= 𝑎𝑚
𝑡
,

𝐷
𝑡+1

= 𝑏𝐷
𝑡
+ 𝜇𝑚
𝑡
+ 𝛼,

(5)

where

𝑎 = 𝑓

(𝑥) , 𝑏 = 𝑎

2
+ 𝛽,

𝛼 = 𝜎 (𝑥)𝑉𝜎
⊤
(𝑥) , 𝛽 = 𝜎


(𝑥) 𝑉𝜎

⊤
(𝑥) ,

𝜇 = 𝜎 (𝑥)𝑉𝜎
⊤

(𝑥) + 𝜎

(𝑥) 𝑉𝜎

⊤
(𝑥) .

(6)

Suppose that the nonlinear randomly forced system
(2) has a stochastic attractor with the stationary stable
probabilistic distribution. For the approximation of the two
first moments of the random states of this probabilistic
distribution near equilibrium𝑥, wewill use a stable stationary
solution of the system (5).

Due to the condition of stability |𝑓(𝑥)| < 1, for any initial
value𝑚

0
, the sequence𝑚

𝑡
is stabilized:

lim
𝑡→∞

𝑚
𝑡
= 0. (7)

A necessary and sufficient condition of the convergence of the
sequence𝐷

𝑡
to the constant value𝑀 is the inequality

𝑏 < 1. (8)

Here,

𝑀 =

𝛼

1 − 𝑏

=

𝜎 (𝑥)𝑉𝜎
⊤
(𝑥)

1 − [𝑓

(𝑥)]
2

− 𝜎

(𝑥) 𝑉𝜎

⊤
(𝑥)

. (9)

Remark 1. If all noises in system (2) are additive, the func-
tions 𝜎

𝑖
(𝑥) are independent of 𝑥 and, therefore, 𝛽 = 0,

𝑏 = [𝑓

(𝑥)]
2, and condition (8) of the existence of stable

stationary solutions of the system (5) is equivalent to the
condition |𝑓


(𝑥)| < 1 of the stability of the equilibrium 𝑥. If

the intensity of noise depends on the system (2) state (𝛽 > 0),
then just the stability of the deterministic equilibrium is not
sufficient. Here, condition (8) applies a restriction [𝑓


(𝑥)]
2
+

𝜎

(𝑥)𝑉𝜎

⊤
(𝑥) < 1 on the parameters 𝜎


(𝑥) and 𝑉 of noise.

If this restriction is not satisfied, then the sequence of the
second moments 𝐷

𝑡
given by the system (5) will increase

indefinitely.

Remark 2. For the geometrical description of the scattering
of random states, the confidence intervals are widely used.
For scalar Gaussian random variable with mean value 𝑥 and
dispersion𝐷, the confidence interval is (𝑥 − 𝑟, 𝑥 + 𝑟), where

𝑟 = 𝑐√2𝐷, 𝑐 = erf−1 (𝑃) ,

erf (𝑥) =

2

√𝜋

∫

𝑥

0

𝑒
−𝑡
2

𝑑𝑡,

(10)

and 𝑃 is a fiducial probability. Stationary distributed random
states of the system (2) are localized in the neighborhood
of the equilibrium 𝑥. Using dispersion value 𝑀, one can
construct a confidence interval (𝑥−𝑟, 𝑥+𝑟)where 𝑟 = 𝑐√2𝑀.

Remark 3. Consider a stochastic system

𝑥
𝑡+1

= 𝑓 (𝑥
𝑡
) + 𝜎
1
(𝑥
𝑡
) 𝜉
1,𝑡

+ 𝜎
2
𝜉
2,𝑡

(11)

forced by only two noises: parametric noise with intensity
𝜎
1
(𝑥) and additive noise with intensity 𝜎

2
. Here, 𝜉

1,𝑡
and 𝜉
2,𝑡

are uncorrelated scalar random processes with parameters

E (𝜉
𝑖,𝑡
) = 0, E (𝜉

2

𝑖,𝑡
) = 1 (𝑖 = 1, 2) ;

E (𝜉
1,𝑡
𝜉
2,𝑡
) = 0 (𝑡 = 1, 2, . . .) .

(12)

This system is a particular case of the system (2) with

𝜎 (𝑥) = (𝜎
1
(𝑥) , 𝜎

2
) , 𝜉

𝑡
= [

𝜉
1,𝑡

𝜉
2,𝑡

] ,

𝑉 = [

1 0

0 1
] ,

𝛼 = 𝜎
2

1
(𝑥) + 𝜎

2

2
, 𝛽 = [𝜎



1
(𝑥)]

2

,

𝑏 = [𝑓

(𝑥)]

2

+ [𝜎


1
(𝑥)]

2

.

(13)
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It follows from (9) that, for this case,

𝑀 =

𝜎
2

1
(𝑥) + 𝜎

2

2

1 − [𝑓

(𝑥)]
2

− [𝜎


1
(𝑥)]
2
. (14)

In the next section, we apply this theory to the study of
noise-induced phenomena in Ricker model with Allee effect.

3. Analysis of Stochastic Ricker
Model with Allee Effect

Consider a general one-dimensional population model gov-
erned by the following discrete-time equation:

𝑁
𝑡+1

= 𝑔 (𝑁
𝑡
)𝑁
𝑡
, (15)

where 𝑁 is a size of the population and 𝑔(𝑁) is a per capita
intrinsic growth rate function. Value 𝑁 = 0 is a trivial
equilibrium of this system.

The dynamics of the system (15) is defined by the features
of the function 𝑔(𝑁). The condition 𝑔 > 1 implies a growth
of the population size; for 𝑔 < 1, the population decreases.
Solutions of the equation 𝑔(𝑁) = 0 define the other equilibria
of (15).

The simplest examples of the functions 𝑔(𝑁) are plotted
in Figure 1(a). As one can see, for sufficiently small values𝑁

0
,

due to 𝑔(𝑁
0
) > 1, the population grows. On the contrary,

for large 𝑁
0
, the population decreases. The value 𝑁 = 𝐾 is a

nontrivial equilibrium of the system (15). If this equilibrium
is unstable, then the system (15) can exhibit different types
of dynamics with periodic or chaotic oscillations around the
equilibrium𝑁 = 𝐾.

This type of dynamics is observed for well-known
discrete-time models such as Verhulst equation with 𝑔(𝑁) =

1 + 𝑟(1 − (𝑁/𝐾)) (red line in Figure 1(a)) and Ricker system
with 𝑔(𝑁) = exp[𝑟(1 − (𝑁/𝐾))] (blue line in Figure 1(a)).
Such type of the function 𝑔(𝑁) considered here adequately
reflects a survival law: the more the population size, the less
the growth rate.

For small size of the population, the function 𝑔(𝑁) has
to describe a birth rate mainly. But there are many ecological
situations when at a low population level the function 𝑔(𝑁)

is significantly less than unit, and 𝑔(𝑁) vanishes as the size
of the population tends to zero. If we assume that the birth
rate is proportional to the population size as the population
level is low, one gets another type of the function 𝑔(𝑁) (see
Figure 1(b)).

As one can see, this new function now provides another
type of the population dynamics for small values of 𝑁

0
.

Indeed, onemore equilibrium𝑁 = 𝐴 for (15) appears. If𝑁
0
<

𝐴, then the sequence 𝑁
𝑡
monotonically tends to zero. This

means an extinction of the population. If 𝑁
0
is slightly more

than 𝐴, then the population grows and its future behavior is
defined by features of the function 𝑔(𝑁) for 𝑁 > 𝐴. So, the
value 𝑁 = 𝐴 is a threshold value separating two different
types of population dynamics. Such a phenomenon of the
existence of a threshold population level, below which the
population goes to extinction, is called an Allee effect [12, 16].

To incorporate an Allee effect into the classical Ricker
model, we use the following modification [29] of the growth
rate function:

𝑔 (𝑁) =

𝑁

𝐴

exp [𝑟 (1 −

𝑁

𝐴

)] . (16)

For this function, due to 𝑔(𝐴) = 1, (15) has an equilibrium
𝑁 = 𝐴 corresponding to the Allee threshold. Another
nontrivial equilibrium 𝑁 = 𝐾 can be found from the
following equation:

𝐾 exp [𝑟 (1 −

𝐾

𝐴

)] = 𝐴. (17)

For dimensionless new variable 𝑥 = 𝑁/𝐴, (15) can be
rewritten as

𝑥
𝑡+1

= 𝑥
𝑡
𝜑 (𝑥
𝑡
) = 𝑓 (𝑥

𝑡
) , 𝜑 (𝑥) = 𝑥 exp [𝑟 (1 − 𝑥)] .

(18)

For the zone 0 < 𝑟 < 1, the system (18) has three equilibria:
𝑥
0
= 0, 𝑥

1
= 1, and 𝑥

2
(𝑟) > 𝑥

1
. The equilibrium 𝑥

0
is stable,

the equilibrium 𝑥
1
is unstable, and the equilibrium 𝑥

2
(𝑟) is

stable for 0.1788 < 𝑟 < 1. For 𝑟 < 0.1788, the systemperforms
a Feigenbaum scenario of period-doubling bifurcations and
transition to chaos. The unstable equilibrium 𝑥

1
separates

basins of attraction of the stable equilibrium 𝑥
0
and attractors

(both regular and chaotic) arranged in the zone 𝑥 > 𝑥
1
. Here,

𝑥
1
plays a role of the threshold population level of Allee effect:

if the initial density 𝑥
0
of the population is below 𝑥

1
, then it

goes to the extinction: lim
𝑡→∞

𝑥
𝑡
= 0.

Inwhat follows, we focus on the casewhen𝑥
2
is stable and

fix 𝑟 = 0.5. In Figure 2, for 𝑟 = 0.5, the dynamics of the system
(18) for the different initial values 𝑥

0
is shown. Here, stable

equilibria 𝑥
0
= 0 and 𝑥

2
= 3.513 are plotted by green circles;

the unstable equilibrium 𝑥
1
= 1 is plotted by red circle. A red

squaremarks a right border of the interval of attraction of the
equilibrium 𝑥

2
.

For the Ricker model in this deterministic case, there are
only two variants of the dynamics: the population goes either
to extinction or to the positive equilibrium. Such a strong
separation of dynamical regimes can be destroyed by a noisy
environment.

Along with the deterministic model (18), we will consider
the stochastic system

𝑥
𝑡+1

= 𝑥
𝑡
[𝜑 (𝑥
𝑡
) + 𝜎
1
𝜉
1,𝑡
] + 𝜎
2
𝜉
2,𝑡

= 𝑥
2

𝑡
exp [𝑟 (1 − 𝑥

𝑡
)] + 𝜎

1
𝑥
𝑡
𝜉
1,𝑡

+ 𝜎
2
𝜉
2,𝑡
,

(19)

where 𝜉
1,𝑡

and 𝜉
2,𝑡

are uncorrelated scalar random processes
with parameters

E (𝜉
𝑖,𝑡
) = 0, E (𝜉

2

𝑖,𝑡
) = 1 (𝑖 = 1, 2) ;

E (𝜉
1,𝑡
𝜉
2,𝑡
) = 0.

(20)

Here, 𝜎
1
is an intensity of the parametric noise modeling the

disturbances of the rate function 𝜑(𝑥), and 𝜎
2
is an intensity

of the external additive noise.
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Figure 1: Intrinsic growth rate function 𝑔(𝑁): (a) without Allee effect; (b) with Allee effect.
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Figure 2: Dynamics of the deterministic Ricker model (18) with
Allee effect for 𝑟 = 0.5.

Under stochastic disturbances, the solutions of (19) leave
the deterministic equilibria and form some stationary proba-
bilistic distributions around points 𝑥

0
and 𝑥
2
. For the analysis

of the dispersions of the random states, the approximations
(14) are used. For dispersions in the system (19), around the
equilibrium 𝑥

0
we have

𝑀
0
=

𝜎
2

2

1 − 𝜎
2

1

, (21)

and around the equilibrium 𝑥
2
we have

𝑀
2
=

𝜎
2

1
𝑥
2

2
+ 𝜎
2

2

1 − (𝑓

(𝑥
2
))
2

− 𝜎
2

1

. (22)

When the noise intensity is quite small, random states
leaving a stable deterministic equilibrium are concentrated
around it with the small dispersion. As the noise intensity
increases, a dispersion of random states increases too, and
the system (19) can exhibit qualitative changes of stochastic
dynamics.

Upon reaching a certain critical value of the noise
intensity, iterations of the stochastic system (19) with a high

probability pass through the unstable equilibrium 𝑥
1
into the

basin of attraction of the stable equilibrium 𝑥
0
and perform

small-amplitude stochastic oscillations near 𝑥
0
. Biologically,

this phenomenon can be interpreted as a noise-induced
extinction of the population. Evaluation of the critical noise
intensity corresponding to the beginning of these transitions
may be obtained on the base of confidence domains tech-
nique. Functions (21) and (22) give us explicit parametrical
description for confidence intervals 𝐼

0
= (𝑥
0
− 𝑟
0
, 𝑥
0
+ 𝑟
0
)

and 𝐼
2
= (𝑥
2
− 𝑟
2
, 𝑥
2
+ 𝑟
2
), where 𝑟

𝑖
= erf−1(𝑃)√2𝑀

𝑖
.

In Figures 3–5, the dependence of the stochastic attractors
on the intensity 𝜎

1
of parametric noise for the fixed additive

noise intensity 𝜎
2
is presented. Here, random states (grey

color) of attractors have been found by the direct numerical
simulation. The stable equilibria 𝑥

0
, 𝑥
2
of the deterministic

system are plotted by green lines, the unstable equilibrium 𝑥
1

is plotted by red line, and the nearest borders 𝑥 = 𝑥
0
+ 𝑟
0
(𝜎
1
)

and 𝑥 = 𝑥
2
− 𝑟
2
(𝜎
1
) of confidence intervals 𝐼

0
and 𝐼
2
are

plotted by dashed blue lines. Here, the representative time
series are also shown.

As one can see in Figure 3(a) for the fixed 𝜎
2
= 0.1, when

𝜎
1
exceeds threshold value𝜎∗

1
≈ 0.2, random trajectories with

high probability demonstrate noise-induced transitions from
the basin of attraction of the nontrivial equilibrium 𝑥

2
to the

small vicinity of the equilibrium 𝑥
0
.

An estimation of the critical value of 𝜎∗
1
can be derived

from the mutual arrangement of the separatrix 𝑥
1
and

confidence intervals borders. In our case, the noise intensity
that corresponds to the intersection of the lower border 𝑥 =

𝑥
2
− 𝑟
2
(𝜎
1
) of the confidence interval 𝐼

2
with the separatrix

𝑥 = 𝑥
1
can be used as an estimation of the threshold value

𝜎
∗

1
≈ 0.17. Here, the fiducial probability is 𝑃 = 0.999.
As one can see, the value 𝜎

∗

1
quite accurately localizes a

qualitative change in the stochastic dynamics of the studied
system. Note that, after transition to the neighborhood of
the trivial equilibrium, a dispersion of random states is well
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Figure 3: Noise-induced transitions for 𝜎
2
= 0.1.
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Figure 4: Noise-induced transitions for 𝜎
2
= 0.
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Figure 5: Noise-induced transitions for 𝜎
2
= 0.3.



6 BioMed Research International

described by the confidence interval found for 𝑥
0

= 0. In
Figure 3(b), a solution of the system (19) for 𝜎

1
= 0.2, 𝜎

2
= 0.1

illustrates the transition from the neighborhood of 𝑥
2
to the

neighborhood of 𝑥
0
.

Similar results can be obtained for the case when the
system (19) is forced by parametric perturbations only
(𝜎
1

̸= 0, 𝜎
2
= 0). In this case (see Figure 4), solutions of (19)

with high probability cross the separatrix 𝑥
1
= 1 and quickly

vanish. Biological interpretation of this transition is a noise-
induced extinction of the population.

As noise grows, both confidence intervals around the 𝑥
0

and 𝑥
2
expand beyond the boundary 𝑥 = 𝑥

1
of the basins of

attraction of these stable equilibria and begin to overlap each
other (see Figure 5(a) for 𝜎

2
= 0.3). As a consequence, the

system exhibits repeated random transitions between these
basins. Figure 5(b) for 𝜎

1
= 0.2, 𝜎

2
= 0.3 demonstrates two

types of stochastic oscillations: oscillations near equilibria
and noise-induced transitions between the neighborhoods of
equilibria. In this case, the population can be characterized as
a stochastic trigger.

So, in the presence of noise, the Ricker population
model with Allee effect represents various types of stochastic
dynamics: long-term random oscillations with the small
dispersion near the positive equilibrium, noise-induced
extinction, and stochastically generated trigger. The new
mathematical technique presented here provides a useful
tool for the analytical estimation of the noise intensities
corresponding to these regimes.

4. Conclusion

In this paper, we propose a new approach for the constructive
study of noise-induced phenomena in the Ricker popula-
tion model with the Allee effect. Theoretical basis of this
approach is an analysis of dispersions of random states near
deterministic equilibria of this bistable model. Using this
theory, we construct confidence intervals around the stable
equilibria. The mutual arrangement of these intervals and
Allee threshold are used in the geometrical analysis of the
various stochastic regimes in this model: stable stochastic
oscillations around nontrivial equilibrium, noise-induced
extinction, and stochastic trigger. Note that the elaborated
method is readily applicable to more complicated models of
multiple interacting populations forced by parametric noises.
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