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Abstract: The burden of neurodegenerative diseases in the central nervous system (CNS) is increas-
ing globally. There are various risk factors for the development and progression of CNS diseases,
such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires
the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome
proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ,
and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard,
PPARs have recently been suggested as promising therapeutic targets for suppressing the devel-
opment of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation
in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not
been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα
modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent
advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα
for the prevention of and protection from various CNS diseases.

Keywords: central nervous system; eye; peroxisome proliferator-activated receptors

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-
regulated nuclear receptors, including PPARα, PPARβ/δ, and PPARγ. These receptors
bind to DNA as heterodimers with retinoid X receptors (RXRs) and act as transcription
factors to activate PPAR-inducible gene expression processes [1]. PPARs are encoded
by distinct genes (PPARα, NR1C1; PPARβ/δ, NUC1 or NR1C2; PPARγ, NR1C3), which
are located on chromosomes 15, 17, and 6 in mice and chromosomes 22, 6, and 3 in
humans [2,3]. Structural and functional analyses demonstrated that the N-terminal DNA-
binding domains (DBD) of PPARα, PPARβ/δ, and PPARγ are about 80% identical, while
the C-terminal ligand-binding domains (LBD) separated by a hinge region (H) show
approximately 60 to 70% identity (Figure 1) [4,5]. Polyunsaturated fatty acids are considered
as preferred endogenous PPAR ligands [6–9]. Furthermore, various lipids such as saturated
fatty acids, fatty acyl-CoA species, prostaglandins, leukotrienes, oxidized fatty acids, and
oxidized phospholipids have been considered PPAR activators [6–9]. The investigation of
physiologically relevant endogenous ligands for PPARs continues [10].
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Figure 1. A schematic illustration of functional domains of PPARs (PPARα, PPARβ/δ, and PPARγ). N and C represent 
N-terminus and C-terminus, respectively. DBD and LBD represent DNA-binding domain and ligand-binding domain, 
respectively. H represents a hinge region. Numbers: percentages (%) identical to human PPARα. 

PPARα is mainly expressed in the liver, where it controls the oxidation of fatty ac-
ids and regulates lipoprotein metabolism [11,12]. PPAR-δ/β is involved in the modula-
tion of macrophage-derived inflammation and fatty acid metabolism [11,12]. PPARγ is 
mainly expressed in white and brown adipose tissues and regulates insulin sensitivity 
[11,12]. Furthermore, PPARγ exerts various roles in regulating the development, metab-
olism, and inflammatory responses of the central nervous system (CNS) [12,13]. In this 
regard, the therapeutic role of PPARγ modulation in CNS diseases has been heavily re-
searched and well reviewed [13]. To date, PPARγ has been a focal point in the modula-
tion of neuro-inflammation for Alzheimer’s disease (AD) [14]. However, recently, 
PPARα modulation has emerged as a novel therapeutic target in various brain, spinal 
cord, and eye diseases. As such, the role of PPARα modulation in CNS diseases must be 
collated [15–17]. In this regard, we focused on reviewing the therapeutic effects of 
PPARα modulation as a promising approach for the treatment of various CNS diseases 
(Figure 2). 

 

Figure 1. A schematic illustration of functional domains of PPARs (PPARα, PPARβ/δ, and PPARγ).
N and C represent N-terminus and C-terminus, respectively. DBD and LBD represent DNA-binding
domain and ligand-binding domain, respectively. H represents a hinge region. Numbers: percentages
(%) identical to human PPARα.

PPARα is mainly expressed in the liver, where it controls the oxidation of fatty acids
and regulates lipoprotein metabolism [11,12]. PPAR-δ/β is involved in the modulation of
macrophage-derived inflammation and fatty acid metabolism [11,12]. PPARγ is mainly
expressed in white and brown adipose tissues and regulates insulin sensitivity [11,12].
Furthermore, PPARγ exerts various roles in regulating the development, metabolism, and
inflammatory responses of the central nervous system (CNS) [12,13]. In this regard, the
therapeutic role of PPARγ modulation in CNS diseases has been heavily researched and
well reviewed [13]. To date, PPARγ has been a focal point in the modulation of neuro-
inflammation for Alzheimer’s disease (AD) [14]. However, recently, PPARα modulation
has emerged as a novel therapeutic target in various brain, spinal cord, and eye diseases.
As such, the role of PPARα modulation in CNS diseases must be collated [15–17]. In
this regard, we focused on reviewing the therapeutic effects of PPARα modulation as a
promising approach for the treatment of various CNS diseases (Figure 2).
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Figure 2. A schematic view of PPARα modulation therapy in central nervous system (CNS) diseases.
The PPARα-retinoid X receptor (RXR) heterodimer binds to the peroxisome proliferator response
element (PPRE; AGGTCANAGGTCA with unknown redundancy) in the nucleus (yellow box). It
induces expressions in a variety of PPARα target genes, which are involved in anti-inflammation,
protection, and the metabolism of glucose and lipid. To date, therapeutic roles of PPARα activation by
PPARα agonist (ligand, yellow triangle) have been suggested in brain diseases (Alzheimer’s disease:
AD, post-traumatic stress disorder: PTSD, depression, Parkinson’s disease: PD, amyotrophic lateral
sclerosis: ALS, multiple sclerosis: MS, and ischemic stroke), spinal cord injury, and eye diseases
(diabetic retinopathy: DR, age-related macular degeneration: AMD, ocular ischemic syndrome: OIS,
and corneal opacity).
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2. Brain Diseases

The distribution of PPAR isotypes in mouse and human brains has been recently
studied even though therapeutic effects of PPARs have been examined in various brain dis-
eases [18]. In the prefrontal cortex and nucleus accumbens of the adult mouse brain, PPARα
expression was significantly greater than PPARγ expression [18]. In other subregions (the
amygdala and ventral tegmental area), there was no significant difference between PPARα
and PPARγ [18]. Furthermore, PPARα was detected as the only isotype to colocalize with
all types of cells (neurons, astrocytes, and microglia) in both adult mouse and adult human
brain tissues, which implies that PPARα may have extensive roles depending on the cell
type in human and mouse brains [18].

In the disease state of AD, PPARα is a potential therapeutic target. The knockdown
of PPARα reduced the expression of the α-secretase “a disintegrin and metalloproteinase”
10 (Adam10), which cleaves amyloid precursor protein (APP) in the non-amyloidogenic
pathway [19]. The overexpression of PPARα (via lentivirus) increased the expression of
ADAM10 in Pparα knockout neurons [19]. Furthermore, using gemfibrozil (an agonist
of PPARα), PPARα:RXRα was recruited to the Adam10 promoter in mouse hippocampal
neurons and reduced β-amyloid (Aβ) production [19]. Given our understanding of the
ability of ADAM10 to alleviate the burden of Aβ in AD [20–22], the therapeutic role of
PPARα activation in AD should also be considered. Another study showed that peroxiso-
mal proliferation by Wy-14,643 (a selective agonist of PPARα with weak agonists of PPARγ
and PPARδ; EC50 values: 0.63, 32, and >100 µM at PPARα, PPARγ, and PPARδ, respec-
tively) increased PPARα expression and attenuated Aβ-dependent toxicity in primary rat
hippocampal neurons [23]. In a double transgenic mouse model of AD co-expressing a
mutant human amyloid-β protein precursor (AβPPswe) and presenilin 1 without exon
9 (PS1dE9), 4-phenylbutyrate and Wy-14,643 (two agonists of PPARα) reduced spatial
memory loss and Aβ neuropathology, prevented tau phosphorylation (known to induce
the formation of neurofibrillary tangles and neuropil threads during the progression of
AD [24,25]), and mitigated the loss of the synaptic protein [26]. Fenofibrate (an agonist of
PPARα) also showed therapeutic effects on the amyloidogenic processing of APP through
the PPARα/PI3K pathway in a transgenic mouse model of AD, which overexpresses
APP/PS1 [27]. Pterostilbene, another agonist of PPARα, improved performance in spatial
learning and memory tasks tested by a radial arm water maze in SAMP8 mice (a model
of sporadic and age-related AD) and rescued a reduction in PPARα expression in the
hippocampus of SAMP8 mice [28]. Although further investigation is needed, these data
suggest that PPARα activation in the brain could moderate the progression of AD.

In the disease state of neuropsychiatric disorders, PPARα modulation has also been
suggested as a novel therapeutic target [29]. Wy-14,643 showed anti-depressant effects in
the forced swim test, tail suspension test, and chronic social defeat stress conditions in mice
via the promotion of the BDNF signaling pathway [30]. As BNDF is a key determinant of
anti-depressant effects [31], mood regulation through PPARα activation could be promis-
ing for the treatment of neuropsychiatric disorders. Based on next-generation sequencing
(NGS) analysis, c.209-2delA, His117Gln, Arg141Cys, and Arg226Trp of the PPARA gene
were found to be risk variants for schizophrenia in 1200 Japanese patients with schizophre-
nia [29]. Furthermore, behavioral deficits and impaired synaptogenesis in the cerebral
cortex similar to schizophrenia were seen in Pparα knockout mice [29]. Treatment with
fenofibrate alleviated spine pathology caused by phencyclidine (a schizophrenia-mimetic
agent, one of NMDA receptor agonists) and reduced sensitivity to MK-801 (a hallucino-
genic agent, one of NMDA receptor agonists) [29]. In other neuropsychiatric disorders
such as post-traumatic stress disorder (PTSD) and major depressive disorders, PPARα
activation by N-palmitoylethanolamine (PEA, an agonist of PPARα) improved contextual
fear responses, facilitated fear extinction, and induced anxiolytic effects under a socially
isolated condition in mice [32]. PEA has also been examined for neuroprotective effects in
a murine model of Parkinson’s disease (PD) induced by treatment with 1-methyl-4-phenyl-
1,2,3,6-tetrahyropyridine (MPTP), which destroys dopaminergic neurons in the substantia
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nigra [33]. Specifically, pathological microglial and astrocytic activation as well as damages
in microtubule-associated protein, dopamine transporter, and nNOS expressions in the
substantia nigra were lessened after treatment with PEA [33]. PEA treatment also decreased
MPTP-associated behavioral impairments and motor deficits [33]. Finally, PEA-induced
neuroprotection was found to be partially PPARα-dependent through experiments in Pparα
knockout mice [33]. Another PPARα agonist (fenofibrate) also showed similar therapeutic
effects on the progression of PD by preventing MPTP-induced cell death in the substantia
nigra [34].

Similar to other neurodegenerative diseases, neuroinflammation is considered an
important contributor to the progression of amyotrophic lateral sclerosis (ALS) [35,36].
The brain (especially the motor cortex and brainstem), spinal cord, and skeletal muscles
innervated by neurons are all affected in ALS [35,36]. Continuous systemic administrations
of fenofibrate improved ALS-like phenotypes, such as weight loss and motor dysfunction
analyzed by rotarod testing, and extended the survival rates in SOD1G93A mice (a widely
used preclinical model for ALS [37]) [38]. Attenuation in spinal neuronal cell loss, as
well as spinal cord gliosis, was observed in SOD1G93A mice treated with fenofibrate [38].
An induction of PPARα expression and reductions in the expression of inflammatory
molecules such as iNOS and COX-2 were suggested as the therapeutic reasons behind
these observations [38].

Multiple sclerosis (MS) is another immune disease (an autoimmune disease) in the
CNS (the brain and spinal cord) [39]. Autoreactive T cells migrate to the CNS and evoke
severe inflammatory processes, particularly demyelinating events in the CNS [40]. These
abnormal events lead to an axonal loss in CNS neurons, finally resulting in physical,
neurological, and psychiatric problems [39,41]. Since PPARα activation could regulate
inflammation, PPARα agonists have also been examined as potential therapeutics for
MS [42,43]. Experimental autoimmune encephalomyelitis (EAE) was induced to develop
a common experimental model of MS [44]. Treatment with gemfibrozil and fenofibrate
inhibited EAE clinical signs in mice [42]. PPARα agonists (gemfibrozil and fenofibrate) had
suppressive effects on CD4-positive Ag-specific proliferation [42]. Furthermore, gemfibrozil
treatment could shift the cytokine secretion of T cell lines through the inhibition of IFN-γ
production and the promotion of IL-4 production [42]. This implies that PPARα activation
could modulate immune responses in MS. A previous report demonstrated greater PPARα
expression in male CD4-positive cells than female CD4-positive cells. This difference was
associated with reductions in NF-κB and c-Jun activities as well as an induction in IFN-γ
levels [45]. Male Pparα knockout mice showed more severe clinical signs than female Pparα
knockout mice after induction of EAE [45]. Based on this outcome, this group suggested
that the abundant T cell expression of PPARα may be one of the factors driving males to be
less prone to develop Th1-mediated autoimmunity than females in MS [46]. Fenofibrate
also showed modulatory effects of other immune responses [47,48]. Lipopolysaccharide
(LPS)-induced IL-12 family protein expressions were suppressed by fenofibrate treatment in
primary mouse microglia and astrocytes [47]. Furthermore, fenofibrate treatment inhibited
mRNA expressions of IL-12 family subunits in EAE mice [47]. As IL-12 family proteins
have been known to play a crucial role in the generation of Th1 cells and the development
of autoimmune diseases [49–52], the therapeutic effects of fenofibrate could be promising
in MS.

In the disease state of ischemic stroke, PPARα activation has also been suggested
as a therapeutic target. Fenofibrate treatment during the acute phase of experimental
stroke in rats by transient middle cerebral artery occlusion (MCAO) in combination with
thrombolysis by tissue plasminogen activator (tPA) exerted a reduction in the infarction
volume (total, cortical, and striatal areas) and increased expression of ICAM-1 (a marker
of leukocyte/endothelium interactions) and CD11b (a marker of activated microglia) [53].
Another study showed that fenofibrate treatment improved cerebral blood flow (CBF)
in a murine model of ischemic stroke by transient MCAO [54]. However, fenofibrate
treatment did not improve CBF in Pparα-null mice [54]. Similar therapeutic effects were



Life 2021, 11, 1168 5 of 13

seen in the exogenous administration of PEA in a murine model of ischemic stroke by
transient MCAO, including a reduction in the infarction volume, astrocytic activation, and
increased expressions of pro-inflammatory markers [55,56]. These outcomes imply that
PPARα modulation may play a critical role in cerebrovascular protection in the ischemic
brain. Taken together, reports on the therapeutic roles of PPARα activation in various brain
diseases are growing in number (Figure 2).

3. Spinal Cord Diseases

Although less work has described the therapeutic potential of PPARα activation
in spinal cord injuries, beneficial effects of PPARα activation have been reported. The
expression of PPARα was detected in the rat spinal cord [57,58]. After subcutaneous
injection of complete Freund’s adjuvant (CFA) to a hind paw in rats, the PPARα isotype
was activated rapidly only in the rat spinal cord [59]. Even though we could not conclude
any role of PPARα activation during hyperalgesia with these observations, PPARα could
be considered responsive to pain pathways in the spinal cord. Using melatonin, which
is the secretory immunomodulatory product of the pineal gland, the role of PPARα was
examined in a mouse model of spinal cord trauma by vascular clipping to the dura in
the spinal cord. Melatonin-mediated anti-inflammatory effects (suppression in infiltration
of neutrophils, induction of pro-inflammatory cytokine, and activation of NF-κB) were
weakened in Pparα knockout mice compared to those in wild-type mice [16]. Furthermore,
Esposito et al. reported that PPARα might contribute to the anti-inflammatory activity of
simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase) in spinal
cord injury [60]. The same group demonstrated that PPARα activation could contribute to
anti-inflammation in spinal cord injuries using glucocorticoids (anti-inflammatory agents
commonly used in the treatment of spinal cord trauma) in the same model of spinal cord
trauma by vascular clipping to the dura in the spinal cord [61]. In summary, the anti-
inflammatory effects of various drugs in spinal cord injuries were mediated by spinal
PPARα activation. Conversely, a study using gemfibrozil (an FDA-approved drug for
hyperlipidemia/an agonist of PPARα) exhibited opposing outcomes in spinal cord injured
mice [62]. Locomotor dysfunction and histological impairments were exacerbated by
treatment with gemfibrozil [62]. Therefore, we think that more investigations are needed to
understand the therapeutic potential of PPARα activation in spinal cord injuries (Figure 2).

4. Eye Diseases

PPARα expression was considerably detected in the retina, cornea, and retinal pigment
epithelium (RPE) of humans and mice [63–66]. The roles played by PPARα in maintain-
ing homeostasis in the eye, including retinal protection, neovascularization, and retinal
inflammation, have been well established. Fenofibrate Intervention in Event Lowering in
Diabetes (FIELD) and Action to Control Cardiovascular Risk in Diabetes (ACCORD) are
some of the largest clinical trials that focus on the role of fenofibrate in diabetic mellitus
patients and complications such as diabetic retinopathy (DR) [67,68]. Based on these two
clinical results, fenofibrate treatment could reduce the need for laser photocoagulation in
patients with pre-existing retinopathy and slow the progression of DR [67,68]. Numerous
experimental model studies have focused on explaining the therapeutic role of fenofibrate
in DR. Streptozotocin-induced diabetic rats, and Akita mice (type 1 diabetes mellitus by
a spontaneous point mutation in the Ins2 gene), showed increased permeability in the
retina, and its vascular leakage was reduced by the oral administration of fenofibrate [69].
Retinal vascular leukostasis was also decreased through treatment with fenofibrate in
streptozotocin-induced diabetic rats [69]. When it comes to the modulation of retinal
neovascularization, the intraocular delivery of fenofibrate could reduce the number of
preretinal vascular cells in a rat model of oxygen-induced retinopathy, along with a reduc-
tion in vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α
immunoreactivities in the retina [69]. Furthermore, PPARα-dependent therapeutic effects
of fenofibrate on DR were confirmed using Pparα knockout animals [69]. The same group
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further demonstrated the neuroprotective effects of PPARα activation in the retinopathy
of type 1 diabetes mellitus [70]. The oral administration of fenofibrate protected against
visual dysfunction (analyzed by spatial frequency threshold), and intraperitoneal injec-
tion of fenofibric acid (a PPARα activator) reduced retinal apoptosis (analyzed by DNA
fragmentation assay) [70]. Furthermore, using in vitro R28 cells (immortalized rat retinal
precursor cells), the restoration of mitochondrial respiration by PPARα activation was
confirmed under 4-hydroxynonenal (4-HNE)-induced oxidative stress condition [70]. As
pericyte loss has been reported to occur in the early stage of DR and plays a critical role
in its progression [71–73], the protective roles of PPARα were also examined in capillary
pericytes in the diabetic retina by the same group [74]. Specifically, the administration of
fenofibrate ameliorated the formation of retinal acellular capillary and loss of pericytes in a
mouse model of streptozotocin-induced diabetes [74]. In Pparα knockout diabetic mice, the
retinal acellular capillary was more severely formed [74]. A reduction in oxidative stress-
induced apoptosis and reactive oxygen species production was observed by the activation
and expression of PPARα in cultured primary human retinal capillary pericytes [74]. Fur-
thermore, primary retinal pericytes obtained from Pparα knockout mice showed increased
apoptosis under the same oxidative stress. Taken together, the therapeutic effects of PPARα
activation in the diabetic retina have been identified using fenofibrate (Figure 2).

The study of the therapeutic effects of PPARα activation in the diabetic retina has con-
tinued using a new selective PPARα modulator (SPPARMα), pemafibrate [71]. Pemafibrate
was designed to have higher potency and selectivity for PPARα activation than fenofi-
brate [75–78]. In this regard, pemafibrate showed fewer side effects on kidney injuries than
fenofibrate [75–77,79]. As the safety concern regarding deleterious effects on renal function
was raised in preclinical and clinical studies of fenofibrate [75–77,79], the use of pemafibrate
became more promising in DR with renal dysfunction. Based on DNA microarray analysis
and ChIP-seq of PPARα in human umbilical vein endothelial cells (HUVECs) incubated
with pemafibrate, THBD expression (which encodes thrombomodulin) could be regulated
by PPARα through its binding to the promoter region of THBD [80]. As thrombomodulin
(one of the integral membrane proteins expressed in endothelial cells) has an important role
in anti-inflammation [81–83], severe inflammation in DR could be modulated by PPARα
activation (using pemafibrate) in the diabetic retina. The oral administration of pemafibrate
inhibited VCAM-1 and MCP1 expression (inflammatory markers) in the rat streptozotocin-
induced diabetic retina [80]. Knockdown of thrombomodulin by small interfering RNA
attenuated the pemafibrate-mediated inhibition in VCAM-1 and MCP1 expression in the rat
streptozotocin-induced diabetic retina [80]. Finally, the therapeutic effects of PPARα activa-
tion by pemafibrate on inhibiting retinal vascular leukostasis and leakage were mediated
through the upregulation of THBD [80]. As excess extracellular glutamate is involved in
retinal cell death in DR [84–86], the therapeutic effects of pemafibrate on retinal protection
against DR were indirectly examined in a rat model of N-methyl-D-aspartate (NMDA)-
induced excitotoxicity [87]. Treatment with pemafibrate reduced retinal ganglion cell loss
induced by intravitreal injection of NMDA, and its protection was associated with the inhi-
bition of c-Jun phosphorylation [87], which is linked to the induction of cell death-related
genes [88]. In our previous study, the oral administration of pemafibrate exerted retinal
protective effects in a murine model of DR by intraperitoneal injection of streptozotocin [89].
However, the therapeutic effects were not explained by ocular PPARα activation, as there
was no significant change in PPARα target gene expressions by pemafibrate [89]. Rather,
PPARα activation in the liver (analyzed by increases in PPARα target gene expressions
including fibroblast growth factor 21; Fgf21) and induction of FGF21 in the serum, as well
as improvements of blood glucose and lipid metabolisms, were suggested as drivers of the
therapeutic effects of pemafibrate [89]. Similar effects were observed in a murine model
of oxygen-induced retinopathy, where retinal neovascularization was suppressed by the
oral administration of pemafibrate [90]. FGF21 is a hormone secreted by the liver [91] and
has been reported to have suppressive effects on ocular neovascularization and vascular
leakage in several animal models [92,93]. In this regard, therapeutic effects of pemafibrate
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on ocular neovascularization may be related to hepatic and systemic FGF21 induction. A
recent report also demonstrated that fenofibrate reduced the severity of retinopathy in db/db
mice (another mouse model of DR) without inducing PPARα-dependent gene expressions
in the retina [94]. Rather, strong activation of PPARα in the liver was observed [94]. Taken
together, further investigations on where PPARα activation exerts its therapeutic effects on
DR are needed (Figure 2).

In the disease state of age-related macular degeneration (AMD), PPARα activation
has also been suggested as a promising therapeutic target. Treatment with fenofibric acid
reduced choroidal neovascularization (CNV) in a rat model of AMD by laser irradiation to
the eye [95]. Its effects were explained by the downregulation in VEGF, TNF-α, and ICAM-1
expressions [95]. Furthermore, CNV was more developed in Pparα knockout mice than
in wild-type mice [95]. As expected, the therapeutic roles of fenofibric acid on CNV were
abolished in Pparα knockout mice [95]. As subretinal fibrosis and disruption of retinal iron
homeostasis are also pathological outcomes in AMD, the therapeutic effects of fenofibrate
were examined in relation to these aspects [96,97]. Fenofibrate inhibited subretinal fibrosis
in the retina of very low-density lipoprotein receptor (Vldlr) knockout mice, which is one of
the models of AMD for subretinal fibrosis [96]. Fenofibrate treatment inhibited two fibrotic
signaling pathways (TGF-β-Smad2/3 and Wnt) in the Vldlr knockout retina [96]. An addi-
tional study demonstrated that fenofibrate treatment prevented iron-induced activation of
oxidative stress and Wnt/β-catenin signaling in the eye [97]. As oxidative stress-induced in-
juries to RPE are implicated in the progression of AMD [98,99], therapeutic roles of PPARα
activation were directly tested in adult retinal pigment epithelial cell line-19 (ARPE-19)
using sulindac (one of the first nonsteroidal anti-inflammatory drugs) [100]. Sulindac pro-
tection against oxidative stress-induced RPE damages by tert-butylhydroperoxide (TBHP)
or UVB light exposure was found to be PPARα-dependent [100]. Taken together, PPARα
activation could aid in slowing the progression of AMD (Figure 2).

In the disease state of an ocular ischemic syndrome (OIS), little is known about the
therapeutic roles of PPARα activation. Nonetheless, based on our recent studies, fenofibrate
and pemafibrate showed neuroprotective effects (analyzed by electroretinography) via
boosting liver PPARα function with systemic induction of FGF21, which is one of the
neuroprotective molecules in the CNS [101,102]. Furthermore, pemafibrate treatment
exerted the modulation of pathological gliosis in the ischemic retina to reduce ischemic
damages in the inner retina [102]. Although the functions of PPARα were only examined in
the liver and retina, we suspect that PPARα activation by pemafibrate/fenofibrate may not
be limited to the liver. A recent report demonstrated that fenofibrate treatment increased
circulating hematopoietic stem cells (possibly from the bone marrow) [103]. As OIS is
closely related to circulation abnormalities in cardiovascular diseases, more comprehensive
investigations of PPARα activation by pemafibrate/fenofibrate are necessary (Figure 2).

In the disease state of corneal diseases, the therapeutic roles of PPARα activation
have been studied. In the streptozotocin-induced diabetic rat cornea and diabetic human
cornea, a decrease in PPARα expression was detected [104], implying that the functions of
PPARα in the cornea could be impaired by diabetes. Fenofibrate treatment reduced a loss
of corneal nerve fiber density in streptozotocin-induced diabetic rats [104]. In mice, Pparα
knockout showed decreases in corneal nerve fiber density and corneal sensitivity and an
increase in the incidence of corneal lesions at the chronic stage [104]. These data suggest
that targeting PPARα may potentially protect against corneal degeneration induced by
diabetes and/or aging. The suppression of corneal neovascularization has been suggested
as an additional therapeutic effect of PPARα activation in the cornea. Fenofibrate treatment
suppressed corneal neovascularization by reducing Vegf and Ang-2 mRNA expressions in
a rat corneal alkali burn model [105]. The same group demonstrated that treatment with a
mixture of fenofibrate/pioglitazone (combination of PPARα and PPARγ activation) also
suppressed corneal neovascularization by reducing Vegf and Ang-2 mRNA expressions
in a rat alkali burn model [106]. Another group showed that the oral administration of
PPARα agonists (fenofibrate, WY14,643, ETYA, bezafibrate, and gemfibrozil) suppressed
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FGF2-induced corneal neovascularization [107]. Taken together, the therapeutic roles of
PPARα activation in corneal diseases have been established (Figure 2).

5. Future Perspectives

Thus far, when reviewing the therapeutic roles of PPARs in the CNS, PPARγ has
received the most attention, as it shows promising effects against CNS diseases. As a result,
the role of PPARα has been less discussed. In this review article, we summarized recent
reports of PPARα modulation therapy with agonists of PPARα (Figure 3) in CNS diseases,
from the brain to the eye in an attempt to generate a more comprehensive understanding of
the protective roles of PPARα in CNS diseases. Although more investigations on the thera-
peutic roles of PPARα in CNS diseases are needed, we think that PPARα and PPARγ share
a number of neurophysiological roles, which include the regulation of neuroinflammation,
neuroprotection, and stress responses, and the modulation of cognition, anxiety, and emo-
tional actions in the CNS [108–111]. On the other hand, understanding the therapeutic
roles of PPAR-δ/β in CNS diseases is limited, as it was discovered later, and less research
has been conducted. Thus, a comprehensive summarization of the role of PPAR-δ/β in
CNS diseases requires more time and effort.
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The CNS maintains unique and important physiological barriers from the peripheral
circulation, termed “the blood–brain barrier” and/or “the blood–retina barrier”. For CNS
drug delivery, more research is needed on how to effectively deliver PPAR agonists to the
CNS or activate PPARs locally in various CNS tissues. Along with our current summary
(Figure 2), we urge further research to obtain more solid evidence on PPARα modulation
therapy in CNS diseases.
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