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Aphasia classifications and specialized language batteries differ across the fields of

neurodegenerative disorders and lesional brain injuries, resulting in difficult comparisons

of language deficits across etiologies. In this study, we present a simplified framework, in

which a widely-used aphasia battery captures clinical clusters across disease etiologies

and provides a quantitative and visual method to characterize and track patients

over time. The framework is used to evaluate populations representing three disease

etiologies: stroke, primary progressive aphasia (PPA), and post-operative aphasia. A

total of 330 patients across three populations with cerebral injury leading to aphasia

were investigated, including 76 patients with stroke, 107 patients meeting criteria for

PPA, and 147 patients following left hemispheric resective surgery. Western Aphasia

Battery (WAB) measures (Information Content, Fluency, answering Yes/No questions,

Auditory Word Recognition, Sequential Commands, and Repetition) were collected

across the three populations and analyzed to develop a multi-dimensional aphasia model

using dimensionality reduction techniques. Two orthogonal dimensions were found to

explain 87% of the variance across aphasia phenotypes and three disease etiologies.

The first dimension reflects shared weighting across aphasia subscores and correlated

with aphasia severity. The second dimension incorporates fluency and comprehension,

thereby separating Wernicke’s from Broca’s aphasia, and the non-fluent/agrammatic

from semantic PPA variants. Clusters representing clinical classifications, including

late PPA presentations, were preserved within the two-dimensional space. Early PPA

presentations were not classifiable, as specialized batteries are needed for phenotyping.

Longitudinal data was further used to visualize the trajectory of aphasias during recovery

or disease progression, including the rapid recovery of post-operative aphasic patients.

This method has implications for the conceptualization of aphasia as a spectrum disorder

across different disease etiology and may serve as a framework to track the trajectories

of aphasia progression and recovery.
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INTRODUCTION

Aphasias are acquired language disorders that are caused by
injury to language areas of the brain. Common etiologies include
stroke, tumors, traumatic brain injuries, or neurodegeneration.
While each of these conditions can lead to dysfunction of
language processing, an outstanding question is how the
behavioral symptoms of these conditions relate to one another.
Here, we provide a simplified, two-dimensional framework, by
which aphasia subtypes can be compared across etiologies and
tracked over time.

The understanding of language networks has predominantly
been developed from stroke and neurodegenerative cases, which
have largely been studied independently (1–3).While stroke leads
to a pattern of injury that abides to a vascular distribution,
neurodegenerative processes often lead to more diffuse injuries
that cross vascular territories and affect regions rarely isolated
in stroke (4–6). Lesional studies are often characterized using
classical nomenclature, i.e., Broca’s, Wernicke’s, conduction,
transcortical motor and sensory, anomic, and global aphasia. On
the other hand, given the unique language profile and selective
vulnerability of specific language networks in neurodegenerative
disorders, a separate clinical classification scheme has been
developed for PPA (7–9). The PPA variants currently recognized
include non-fluent/agrammatic (nfvPPA), semantic (svPPA), and
logopenic variants (lvPPA) (8, 10–12). More recently, transient
aphasias have been found to occur in over 70% of patients
undergoing left hemisphere peri-sylvian resection (13–15),
offering yet another approach for studying language dysfunction.

A method to unify behavioral descriptions is an important
step to help with comparisons across disease etiologies, which
provide opportunity to extend coverage of complex language
networks. An example was the routine exclusion of the anterior
temporal lobe from the stroke-based aphasia literature before
the study of svPPA (6, 16). Cross-etiology studies have been
limited, as patients of each disorder are typically evaluated
in separate contexts and with disease-specific assessments, in
addition to their disease specific classifications. In addition,
simplified methods to characterize aphasia over time may
supplement ongoing efforts to understand disease trajectories
(17), such as with stroke recovery (18, 19) or neurodegenerative
progression (20).

In this study, we had the opportunity to analyze data acquired
from individuals suffering from three disease etiologies: stroke,
PPA, and transient post-resective aphasias by employing a
commonly-used aphasia assessment tool, the Western Aphasia
Battery (WAB) (21). First, using data-driven techniques, we
developed a model based on cross-sectional data from multiple
disease etiologies, as to form a common behavioral platform.
Second, using this framework, we demonstrate that disease
phenotypes can be visually tracked over time. Recent efforts (22)
have demonstrated the feasibility of comparing across patient
cohorts using dimensionality reduction techniques; we propose
an alternative two-dimensional platform and demonstrate the
feasibility of tracking disease attributes over time. Ultimately,
this method, combined with more detailed language evaluations
shared across cohorts may allow for the interdisciplinary study

of complex language networks, by focusing on their similarities
rather than their differences. Furthermore, it can enable the
comparison and visualization of phenotypes over time in an
intuitive and rapid manner for clinical utility.

MATERIALS AND METHODS

Patient Cohort
Three patient cohorts were retrospectively examined in this study
(total n = 330). The first cohort was comprised of 147 patients
undergoing left hemisphere resective surgery between September
2010 and October 2013 at the University of California, San
Francisco (UCSF) Medical Center. Inclusion criteria included
patients with (1) left hemisphere resective surgery; (2) left
hemisphere dominance for language as confirmed by the Wada
test or pre-surgical language deficits; (3) English proficiency; and
(4) administration of the WAB 2–3 days post-surgery. Of the 147
patients tested 2–3 days post-operatively, 85 patients were also
assessed 1 month post-operatively and included in the disease
progression analysis. Patients underwent neurosurgical resection
for a range of indications, including malignancy, epileptogenic
foci, and vascular malformations.

The second cohort comprised of 107 English-proficient
patients with known neurodegenerative disorders undergoing
language evaluation at UCSF with the WAB between July 2001
and October 2014. Of 107 patients, 75 patients had clinically
classified primary progressive aphasia and were classified into
non-fluent/agrammatic, semantic, and logopenic variants based
on the international consensus recommendations (8). Of the 75
patients with PPAs, 50 patients were tested at a later time and
included in the disease progression analysis.

The third cohort consisted of 76 English-speaking patients
with single left hemisphere strokes leading to language
dysfunction. These patients underwent language assessments
between June 1988 and May 2009 at the VA Northern
California Health Care System (VANCHCS). Of the 76 patients,
70 were classifiable by the WAB criteria. All patients were
tested on multiple occasions and included in the disease
progression analysis. These data were provided via a Cooperative
Research and Development Agreement between the VANCHCS
and UCSF.

All patients whose de-identified data were used in this study
gave written consent under the original protocols from which
these data were derived, and all studies had been approved by
local Human Research Protection Programs.

Aphasia Battery Examination
In each cohort, the WAB was administered by a speech language
pathologist or a trained research assistant. The WAB (21) is
a comprehensive and validated aphasia battery that assesses
five language domains: fluency, information content, auditory
comprehension, repetition, and naming. Fluency is rated by the
clinician on a subjective scale based on the flow of the patient’s
spontaneous speech output and the degree of grammatical
structure produced. Information content assesses the functional
value of the patient’s speech, including accuracy of responses
to basic questions. Auditory comprehension is assessed by
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responses to yes/no questions and the comprehension of single
words and sequential commands containing various degrees
of grammatical complexity. The repetition task incorporates
the repetition of words, phrases, and sentences. Finally, the
naming task evaluates object naming, semantic fluency, sentence
completion, and responsive speech tasks.

The primary metrics used in this study were the six individual
WAB subtest scores that were shared across all three patient
cohorts, thus allowing for the direct comparison of data
across the three etiologies. These included: content, fluency,
yes/no comprehension, auditory word recognition, sequential
commands, and repetition. Clinical classifications for the stroke
and resection cohort data were made based on the WAB
classification criteria (21). For the classification of PPA, the most
currently-accepted clinical criteria were used (8). In this group,
the full WAB battery was not administered, as naming abilities
were assessed with alternative measures.

Statistical Methods
Dimensionality reduction techniques were utilized to visualize
multi-dimensional data along dimensions that capture the
highest variability in the data. In this study, principal component
analysis (PCA) was used to construct dimensions from linear
combinations of features across all data sets. Core datasets across
all three cohorts were combined to arrive at a common basis,
or a set of new dimensions, such that visual comparisons could
be made across patient cohorts using the same basis. Within the
core dataset, each patient was represented once, as determined
by the expected evolution of the cohort. For instance, for the
stroke and post-resective cohorts, each patient was represented
by their initial data point; for the PPA cohort, each patient was
represented by the latest data point. The initial data point for
all post-resective patients was represented by testing on post-
operative day 2–3; the averaged last clinic data point for the PPA
cohort was 74.5 months (SD= 26.1, median 74).

Raw patient data was then normalized to the mean and
standard deviations of the combined data set and then projected
onto the common basis. The new dimensions were ordered by
the explanatory power for variance in the data; i.e., Dimension
1 explaining the most variance, and Dimension 6 explaining
the least variance. T-tests were performed to demonstrate
separability of clinical cohorts across individual dimensions or
summary metrics. Longitudinal data was projected onto the
common bases constructed by the original data, which includes
patients both with and without longitudinal data.

Given that the determination of principal components (PCs)
can be strongly influenced by variation in sample population
(23), a weighted PCA (24, 25) was also performed to account
for non-uniformities in patient sampling and to ensure equal
representation of clinically distinct aphasia types, regardless of
disease etiology. The methods and findings are detailed in the
Supplementary Table 1 and Supplementary Figure 1. Given the
similarity of results between the two techniques, including the
relative relationships between aphasia clusters and the variability
explained in the data, the findings from the non-weighted PCA is
henceforth used for demonstration.

RESULTS

Cross-Sectional Study: Characterization of
Aphasia Phenotypes via a
Multi-Dimensional Framework Across
Multiple Disease Etiologies
In order to develop a framework generalizable to all three
disease etiologies, data from all three cohorts were included
to derive a common basis. The clinical assessments performed
across all three patient cohorts are presented in Table 1. For the
stroke and post-resective patient cohorts, the WAB assessment
was performed in full to determine the aphasia classification
and aphasia quotient (AQ). The AQ is a weighted average of
WAB subscores and represents aphasia severity (26). For the
PPA cohort, the WAB assessment was not performed in full,
and the AQ was thus not calculated. PCA was performed on
the aggregated data in Table 1 to arrive at a common basis
representing themost salient aphasia features across three disease
etiologies. The contributions of the WAB subscores to each
dimension are illustrated in Table 2, in which the dimensions
are ordered by the degree of variability captured within the data.
Dimension 1 explained 75.0% of the variability in the data, while
dimension 2 accounted for 12.0%. Dimensions 3 and 4 captured
4.0 and 3.6%, respectively. For comparison, weighted PCA was
also performed on aggregated data; the loadings are displayed in
Supplementary Figure 1.

As seen in Table 2, the first dimension comprised of all six
tasks nearly equally. This correlational structure suggests that
the combination of all the tasks explained more variability in
the data than any independent contribution of an individual
task. Dimension 1 strongly correlated with the AQ (R2 =

0.96), suggesting that it represents clinical severity, such that
lower values indicate near normal phenotypes and higher values
indicate more severe phenotypes. Given that the AQ was
derived from an equal representation of each domain (fluency,
comprehension, repetition, naming and information content)
(26), it is not surprising that Dimension 1 would reflect the
AQ. Dimension 2 is composed of both positive and negative
contributors, thus separating tasks involved in fluency and
production from those involved in comprehension and semantic
meaning. Thus, while Dimension 1 captures disease severity,
Dimension 2 characterizes the quality of the aphasia, separating
fluency from comprehension. In this study, we focus on these two
dimensions to allow for a simplified and intuitive visualization of
the combined data.

A two-dimensional plane that extends in the orthogonal
dimensions of 1 and 2 captures 87% of the variability in
the cross-population data. In Figure 1A, each patient used to
create the common bases is projected onto the two-dimensional
plane; each point represents a unique patient. Cross-sectional
data of the post-resective, stroke, and PPA cohorts are plotted
onto the same axes in Figures 1B–D. The post-operative
(Figure 1B) and stroke (Figure 1D) patients are color coded
by their WAB classification. Given that WAB subscores are
used to formulate the two dimensions, as well as to classify
aphasia subtypes for the lesional cohorts, the clustering of
these clinical classifications within the two-dimensional space
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TABLE 1 | WAB assessments for neurodegenerative, stroke and post-resective patient cohorts depicting the time points of highest pathology.

#Pts Content Fluency Y/N Word rec Seq commands Repetition AQa

Neurodegenerationb PNFA 25 7.1 ± 3.0 5.4 ± 2.9 56.5 ± 5.0 57.2 ± 4.8 66.4 ± 14.8 65.6 ± 30.4

Logopenic 17 6.9 ± 2.3 6.5 ± 2.4 49.6 ± 15.9 50.1 ± 14.6 52.1 ± 25.1 59.1 ± 22.8

Semantic 33 6.9 ± 2.7 8.4 ± 0.8 45.0 ± 15.8 42.4 ± 14.3 52.4 ± 27.1 81.9 ± 16.2

Unclassifiable 32 8.4 ± 2.4 8.4 ± 2.0 56.1 ± 7.9 54.2 ± 12.5 67.2 ± 20.1 81.4 ± 21.2

Total 107 7.3 ± 2.6 7.4 ± 2.4 51.9 ± 12.9 51.3 ± 12.7 58.7 ± 22.3 73.5 ± 23.3

Stroke WNL 10 9.9 ± 0.3 9.6 ± 0.5 59.7 ± 0.9 59.8 ± 0.6 79.6 ± 1.2 98.8 ± 2.4 97.4 ± 2.5

Anomic 20 8.6 ± 0.9 8.0 ± 1.7 58.8 ± 2.4 56.6 ± 6.4 66.4 ± 15.6 91.5 ± 7.2 85.1 ± 7.4

Conduction 6 8.2 ± 0.9 7.8 ± 1.8 55.5 ± 2.3 57.0 ± 2.8 64.2 ± 14.5 52.8 ± 13.5 73.4 ± 12.4

Transcortical sensory 2 7.5 ± 1.5 6.5 ± 1.5 54.0 ± 0.0 41.0 ± 1.0 26.0 ± 1.0 89.0 ± 8.0 71.9 ± 7.4

Wernickes 15 4.3 ± 2.6 7.5 ± 0.6 37.2 ± 14.6 29.3 ± 15.0 19.0 ± 17.8 27.6 ± 24.3 42.2 ± 18.0

Brocas 14 4.0 ± 2.6 2.3 ± 1.4 51.2 ± 8.8 42.6 ± 12.1 48.8 ± 15.8 27.0 ± 23.3 38.7 ± 19.7

Global 3 0.0 ± 0.0 0.3 ± 0.5 29.0 ± 20.5 14.0 ± 7.8 2.0 ± 2.8 0.0 ± 0.0 5.6 ± 3.1

Unclassifiable 6 9.2 ± 0.4 7.3 ± 2.1 58.0 ± 2.2 59.0 ± 1.5 71.3 ± 7.4 80.7 ± 19.1 86.1 ± 9.2

Total 76 6.7 ± 3.2 6.6 ± 3.0 51.6 ± 12.8 47.2 ± 16.1 52.1 ± 26.9 60.4 ± 36.7 65.4 ± 28.7

Post-resective WNL 49 10.0 ± 0.1 9.5 ± 0.5 59.4 ± 1.4 59.9 ± 0.4 78.4 ± 2.7 96.2 ± 4.0 97.2 ± 1.9

Anomic 46 9.0 ± 1.3 8.2 ± 1.2 55.9 ± 4.6 56.9 ± 3.4 67.8 ± 9.1 85.8 ± 8.3 84.9 ± 7.6

Conduction 13 8.2 ± 1.8 7.7 ± 1.5 53.5 ± 2.8 55.2 ± 3.3 59.9 ± 9.4 57.7 ± 11.7 74.5 ± 9.8

Transcortical motor 4 4.8 ± 1.1 2.5 ± 0.5 56.2 ± 2.5 42.8 ± 15.9 47.5 ± 15.6 80.0 ± 26.7 57.4 ± 9.4

Wernickes 10 5.5 ± 2.3 6.5 ± 1.3 37.2 ± 9.0 33.1 ± 13.2 30.2 ± 15.8 30.6 ± 23.3 44.3 ± 13.8

Brocas 15 4.1 ± 2.6 2.1 ± 1.7 50.8 ± 8.9 49.2 ± 9.9 46.2 ± 18.2 32.5 ± 32.6 40.0 ± 22.0

Global 10 0.7 ± 1.0 0.9 ± 1.2 13.8 ± 18.2 3.3 ± 4.9 0.8 ± 1.3 0.0 ± 0.0 5.0 ± 5.3

Total 147 7.8 ± 3.1 7.2 ± 3.1 52.2 ± 13.5 51.3 ± 15.9 60.8 ± 23.4 71.6 ± 33.3 74.8 ± 28.6

WAB subscore are the mean ± SD. Maximal scores for each subscores are as follows: Content (10), Fluency (10), Y/N (60), Word Rec (60), Seq Command (80), Repetition (100).
aWAB naming subtests were not administered in the Neurodegenerative group; hence AQ severity scores were not generated.
bThe last clinical assessment for each patient is represented in the neurodegenerative cohort, given its progressive nature. The earliest clinical assessment is represented in the stroke

and post-resective cohorts, given their nature of recovery.

TABLE 2 | Contributions of WAB subscores to each principal

component dimension.

Dimensions

1 2 3 4

Content −0.18 0.09 0.10 0.05

Fluency −0.15 0.31 0.11 −0.23

Y/N −0.16 −0.22 0.31 0.06

Word Rec −0.17 −0.16 −0.07 −0.09

Seq Commands −0.17 −0.11 −0.27 −0.20

Repetition −0.17 0.11 −0.15 0.38

is an expected finding. However, the relative relationships
across classical aphasias and primary progressive aphasia are
clearly depicted in this visualization. Along dimension 1, this
visualization follows clinical aphasia subtypes across severity
with normal variants on one end of the spectrum and
global aphasiacs on the other. Complementing severity scores,
Dimension 2 is observed to add additional information on
subtype. Patients with Wernicke’s and Broca’s aphasias are
separated (p < 0.001) in Dimension 2 but not along Dimension
1 (p = 0.30). Those with transcortical motor aphasia are

more closely clustered to those with Broca’s aphasia, whereas
transcortical sensory aphasic patients cluster more closely to
those with Wernicke’s aphasia, abiding by the separation of
fluent and non-fluent aphasia types along Dimension 2. Of
note, as the data is normalized prior to performing PCA, the
relative values rather than absolute values provide insight on
the relationship between phenotypes; the absolute values are
nevertheless included in the figures to provide a method of
comparison across plots.

In Figure 1C, the PPA cohort is color coded by their
clinical classification. In this two-dimensional space, despite
only utilizing subscores from a screening aphasia battery,
the clustering of the clinically classified PPA variants was
found to be preserved. Just as Wernicke’s and Broca’s aphasias
are separated on Dimension 2, svPPA, lvPPA, and nfvPPA
clusters are statistically different along Dimension 2. The
lvPPA cluster is statistically different from svPPA (p < 0.001)
and nfvPPA (p = 0.005) along Dimension 2, as well as
svPPA from nfvPPA (p < 0.001). There was no distinction in
the classification of PPA syndromes with respect to severity
alone, i.e., along Dimension 1. When assessing only early
PPA clinical presentations, as in Supplementary Figure 2, the
separability between PPA variants is less significant. Early
presentations of svPPA remain statistically separable from
those of nfvPPA (p = 0.02) and lvPPA (p = 0.04) along
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FIGURE 1 | Cross-sectional visualization of WAB subscores onto a two-dimensional plane derived from a basis of 330 unique patients across three disease

etiologies. (A) Projection of all data points used in the formulation of the common PCA bases onto Dimensions 1 and 2. WAB cross-sectional data for patient

subgroups projected onto the common basis for all unique (B) post-operative, (C) PPA, and (D) stroke patients.

Dimension 2; however, early presentations of nfvPPA are not
statistically different from that of lvPPA (p = 0.71), given that
additional specialized aphasia batteries are required for early
PPA phenotyping. The weighted PCA technique did mildly
improve the statistical separability of the early presentations of
PPA, as shown in Supplementary Figure 3. In addition, as seen
in Supplementary Figures 2, 3, the visualization of unclassified
patients falling outside of the established clinical clusters is
more apparent in later clinical presentations, as compared to
early presentations.

Longitudinal Study: Temporal Evolution of
Aphasia During Disease Progression and
Recovery
Beyond cross-sectional data, the two-dimensional representation
of aphasias can be useful in tracking and summarizing symptom
evolution over time. In Figures 2–4, a subset of patients
with longitudinal data are projected onto the common basis
described in Figure 1. Arrows are used to connect unique
patient encounters for individual patients over time. In Figure 2,
the progression of PPA across clinic visits is demonstrated by
increasing severity across Dimension 1, as well as higher absolute
values for nfvPPA and svPPA variants along Dimension 2.
Furthermore, individual tracings suggest that some lvPPA have
tendencies toward nfvPPA or svPPA, particularly in the later
course of the disease. The mean time between clinic visits for the
PPA cohort is 15.6 months (SD = 6.6, median = 13 months). A
cross sectional depiction of early vs. late clinical presentation of
PPA patients and the spread of aphasia phenotypes is visualized

in Supplementary Figure 2. Scores along dimensions 1 and 2 and
vectors of change are demonstrated to provide summary metrics
to supplement original subscores.

Recovery in aphasia syndromes for stroke and post-resective
patients is seen in Figures 3, 4, respectively. The quantitative
scores and relative locations within the two-dimensional space,
depicting the subtype of aphasia, can be tracked through the
recovery period. For instance, in this sampled patient population,
global aphasics are found to recover toward a trajectory similar
to that of Broca’s aphasics as compared to that of Wernicke’s
aphasics. Over time, patients on average converge toward less
severe aphasias. In addition, recovery tends to abide by the
natural division of Dimension 2, maintaining separation of fluent
and non-fluent aphasia types, as observed in prior studies (2, 27).
The mean time between clinic visits for the stroke cohort is 12.7
months (SD = 16.5, median = 5.0 months). Rapid recovery is
visualized in the post-resective patient cohort in Figure 4, in
which arrows are connecting individual patients from 2 to 3
days to 1-month post-operative; the cross-sectional visualization
of the recovery process is depicted in Supplementary Figure 4.
From this diagram, nearly all patients who suffered a transient
aphasia, even those of high severity, improved to within normal
limits or to anomic aphasia.

DISCUSSION

By evaluating a large cohort of patients suffering from stroke,
neurodegenerative, and post-resective aphasia, we have provided
a two-dimensional framework that can visualize language
impairment across a variety of disease etiologies. While the
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FIGURE 2 | Visualization of PPA patient trajectories with each arrow connecting individual patients at each clinic visit. Patients meeting clinical classifications are

depicted. Over time, aphasias phenotypes become more severe (i.e., increased values along dimension 1) and separable in quality (i.e., larger magnitudes along

dimension 2).

FIGURE 3 | Visualization of stroke patient trajectories with each arrow connecting individual patients at each clinic visit. Over time, stroke recovery leads to more mild

forms of aphasia, while still maintaining the fluency distinction within Dimension 2.

language tool assessment shared across three cohorts highlights
the similarities of aphasia phenotypes across disease etiologies, as
with prior dimensionality reduction studies (22), the proposed
framework using only two dimensions also provides sufficient

granularity to preserve clinical classifications across all cohorts.
This visual method of characterizing an aphasia phenotype
provides a simplified and intuitive method of rapidly assessing
aphasia phenotypes across populations and time.
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FIGURE 4 | Visualization of transient aphasias in post-neurological surgery patients from 2 to 3 days to 1 month post-operative. Patients rapidly improve to normal

and anomic phenotypes within 1 month of post-resective surgery.

Interpretation of the Two-Dimension Model
Across Disease Etiologies
The two-dimensional spectrum provides a method to identify
behavioral similarities across patients from different disease
etiologies. The scores along dimension 1 and 2 are shown to
be descriptors of an aphasia, characterizing both the severity
and the quality of aphasia. The scores and relative locations
of established clinical phenotypes are shaded in Figures 1B–D.
While Dimension 1 strongly correlates with severity, Dimension
2 separates Broca’s from Wernicke’s aphasia, as well as the
three variants of PPA. Considering the contributions of each
WAB subtype as in Table 2 and the WAB scoring system,
in which lower WAB subscores signify worse performance,
aphasic patients with tendencies toward poor production
would have stronger net negative magnitude in Dimension
2, whereas patients with tendencies toward intact fluency but
poor comprehension would have stronger positive magnitudes
in Dimension 2. Magnitudes near zero may imply minimal
symptoms, as in the within-normal-limits or anomic patients,
or it may indicate combined positive and negative contributions,
such as in the global aphasics. While the interpretation of latent
structures derived from PCA has limitations, the clustering of
clinical phenotypes can help provide intuition to each dimension.
In particular, the distinction in the deficits reflected in Dimension
2 has historically aligned with frontal and temporal pathology
or dorsal and ventral streams (28). Dimension 1, representing
general aphasia severity, is derived from all subscores and
may have broader considerations of functional and structural
networks, in addition to their localization (29).

In comparing across disease etiologies, fluent and non-
fluent forms of aphasia for both lesional and neurodegenerative

etiologies are shown to similarly separate along Dimension 2.
Both Broca’s aphasics and severe nfvPPAs localize to similar areas
within the two-dimensional space, suggesting more similarity
with each other than with other phenotypes. nfvPPA is
characterized by effortful speech, phonetic or motor speech

impairment compatible with apraxia of speech, dysarthria and/or

by agrammatism. Broca’s aphasia in the context of stroke

aphasia is also characterized by halting, effortful speech with

agrammatism and apraxia of speech. The behavioral similarity
mirrors the neuroanatomical similarity, in which peak atrophy
for patients with nfvPPA localizes to the left posterior inferior
frontal gyrus and adjacent areas (3). Investigation at higher
dimensions or with more detailed behavioral assessments would
enable discernment of behavioral differences (22). For instance,
studies of nfvPPA have shown that grammar and fluency can
be dissociated; case examples of patients with nfvPPA were
found to have near normal fluency but impaired grammar
and vice versa. In the current study, the dissociation between
grammar and fluency was not seen in any of the dimensions,
given that datasets obtained across all disease etiologies did
not include grammar or naming specific assessments. Higher
dimensions may also provide insight in other sample-based
sources of variance, such as behavioral variation related to
multilingualism, which would be of interest for future study.
However, here, the two-dimensional framework proposed here
is intended as a simplified tool for the rapid assessment of
an aphasia phenotype generalizable to etiology at a single time
and across time. Constructed on screening aphasia testing,
the framework focuses on the similarities across etiology, and
yet enables the granularity required for clinical separability of
classical phenotypes within etiology.
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Similar behavioral associations can be drawn in other regions
of the two-dimensional model. For instance, lvPPAs are seen to
resemble conduction and anomic aphasias. While the extent to
which lvPPA is a distinct entity has previously been a subject of
debate (30), here it clearly emerges as a separate group within
Dimension 2.

Within the two-dimensional model, svPPAs were found to
overlap with Wernicke’s and transcortical sensory aphasias,
essentially ventral to the Sylvian fissure, suggesting that
their behavioral phenotypes are overall more similar to one
another than with other phenotypes. Comparison studies
between the svPPA and Wernicke groups have indicated
qualitatively different semantic deficits, including relative sparing
of sentence comprehension or sensitivity to frequency/familiarity
in semantic dementia, as compared to Wernicke’s aphasia (6,
31, 32). While such qualitative differences are again not the
focus of this study, the method here may provide an effective
screening tool for more detailed assessments across disease
etiologies. For instance, patients across etiologies with similar
scores along Dimension 1 and 2, as derived from a small subset of
WAB data, would be candidates for more detailed linguistic and
anatomical comparisons given aphasias of similar characteristics
and severities.

Many studies have illustrated stroke aphasias via a multi-
dimensional template (33–35), displaying cross-sectional data
on an axis of phonology vs. semantic factors. Other studies
have attempted to subtype PPA variants on a two dimensional
template comprised of grammaticality and word comprehension,
based on the clinical identification of orthogonal tasks for
subtyping (36, 37). Only one prior study, Ingram et al. (22),
proposed a multidimensional cross-cohort platform, composed
of four dimensions. As compared to Ingram et al. (22), this
study focused on the development of a two dimensional platform
using a screening aphasia battery to provide a single framework
for characterizing phenotypes. Because this study employed two
native dimensions rather than a four factor rotated solution
(22), the interpretations of the dimensions were distinct. The
four-axis model (22) features phonology, semantics, motor
production, and visuoexecutive functioning on its axes, whereas
the simplified, two-axis model proposed here features aphasia
severity and quality, e.g., separating fluency from comprehension
in opposing directions. Here, we demonstrate that even using a
reduced number of subscores and a two-dimensional platform,
classical disease phenotypes were statistically distinguishable and
could be tracked over time.

Implications: Visualization of the Spectrum
of Aphasias
Defining aphasia subtypes is essential for understanding
patient symptomology and associating symptoms with disease
pathophysiology. However, a challenge of developing clinical
classification is to account for diverse phenotypic variability.
Within the stroke literature, the WAB and the BDAE have been
used for many decades. Despite even these two standardized
classifications, there is often disagreement in the classification of
patients with aphasia (38). From the PPA perspective, current

classification schemes are based on the assessment of over
10 different components of language (8). Despite widespread
acceptance of these classifications, several studies noted that up
to 40% of PPAs are not classifiable by the current guidelines, the
majoritymeeting the criteria of multiple PPA variants (11, 36, 39–
41). As with the four-dimensional model (22), the heterogeneity
of behavioral characteristics that challenge current classification
schemes in multiple disease etiologies can be elucidated in the
two-dimensional model, based on the continuum of the two-
dimensional space.

As seen in Figure 1, the spectrum of phenotypes within a
single clinical classification is apparent for both lesional and
neurodegenerative etiologies. In Figure 1C, three PPA variants
are separable in Dimension 2; however, each variant has
considerable heterogeneity, as seen by the spread in severity and
quality scores, even when evaluating with a screening language
assessment. When considering unclassifiable PPA patients, many
fall within the bounds of the early presentations of PPA; however,
several are seen to fall in between the clinical clusters along
Dimension 2, as shown in yellow in Figure 1C. These depictions
highlight that, in both stroke and neurodegenerative disorders,
clinical classifications are broad syndromic descriptions that
include patients who can have different relative impairment
of motor speech and/or grammatical linguistic difficulties. For
instance, syndromes that isolate motor speech or grammatical
impairments depend on localization and extent of the lesion, as
well as type of tissue involved, i.e., white vs. gray matter (42–44).

Another challenge to current classification schemes is that
diagnoses are based on one time point rather than accounting for
evolution in time. In the PPA literature, this limitation has been
most commonly discussed in regards to lvPPA (39). For instance,
patients in their prodromic state of nfvPPA or svPPA may be
misclassified as lvPPA (39, 45). In Figure 2, several trajectories
display tendencies toward misclassification, as some patients
classified as lvPPA are seen to have trajectories toward nfvPPA
or svPPA over time. As the epicenter of disease in lvPPA can vary
between the angular gyrus or superior posterior temporal gyrus
(46), the trajectories of lvPPA may reflect progression within
frontal and temporal language networks.

It is important to note that while this model may provide
broad insight into syndrome classifications and trajectories
with respect to neighboring clinical clusters, the trajectories
are determined from a subset of behavioral scores. Further
investigation with expanded language batteries applied across
cohorts and associated imaging studies are required to probe
underlying neurobiology and cortical connectivity.

Implications: Quantitatively Tracking
Disease Progression Over Time
Studies have utilized data-driven techniques, such as PCA (22, 34,
47, 48), ANOVA (49) and hierarchal cluster techniques (41), for
the characterization of aphasias. The application of quantitative
methods for assessing behavioral phenotypes across different
aphasia etiologies using a two-dimension platform and over
time are novel contributions. By employing WAB subscores as
a screening tool, summary scores of a patient’s severity and
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aphasia subtype can be plotted along a landscape of clinical
aphasia syndromes. Furthermore, averaged trajectories can be
ascertained through computation of unit vectors of aphasia
recovery or progression, as in Supplementary Figure 5.

A simplified framework of visualizing aphasias has broad
clinical applications including tracking quantitative metrics of
language over clinic visits to enable clearer communication to
families and other providers (50) or visualizing two-dimensional
outcome measures and trajectories with respect to risk factors
(18) or therapies (51). Furthermore, a cross-etiology platform
can be used as a screening method to identify patients from
multiple disease cohorts with greatest resemblance, as an initial
step prior to pursuing more detailed testing and subsequent
neurobiological comparisons. Using data-driven approaches, this
study presents a simplified, two-dimensional model visualization
that can provide rapid intuition on the severity and general
quality of the aphasia over time and is generalizable to multiple
patient populations.
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